Many Patients With Cancer Visit EDs Before Diagnosis

Article Type
Changed
Mon, 11/11/2024 - 12:38

More than one third of patients with cancer visited an emergency department (ED) in the 90 days before their diagnosis, according to a study of medical records from Ontario, Canada.

Researchers examined Institute for Clinical Evaluative Sciences (ICES) data that had been gathered from January 1, 2014, to December 31, 2021. The study focused on patients aged 18 years or older with confirmed primary cancer diagnoses.

Factors associated with an increased likelihood of an ED visit ahead of diagnosis included having certain cancers, living in rural areas, and having less access to primary care, according to study author Keerat Grewal, MD, an emergency physician and clinician scientist at the Schwartz/Reisman Emergency Medicine Institute at Sinai Health in Toronto, Ontario, Canada, and coauthors.

“The ED is a distressing environment for patients to receive a possible cancer diagnosis,” the authors wrote. “Moreover, it is frequently ill equipped to provide ongoing continuity of care, which can lead patients down a poorly defined diagnostic pathway before receiving a confirmed diagnosis based on tissue and a subsequent treatment plan.”

The findings were published online on November 4 in CMAJ).
 

Neurologic Cancers Prominent

In an interview, Grewal said in an interview that the study reflects her desire as an emergency room physician to understand why so many patients with cancer get the initial reports about their disease from clinicians whom they often have just met for the first time.

Among patients with an ED visit before cancer diagnosis, 51.4% were admitted to hospital from the most recent visit.

Compared with patients with a family physician on whom they could rely for routine care, those who had no outpatient visits (odds ratio [OR], 2.09) or fewer than three outpatient visits (OR, 1.41) in the 6-30 months before cancer diagnosis were more likely to have an ED visit before their cancer diagnosis.

Other factors associated with increased odds of ED use before cancer diagnosis included rurality (OR, 1.15), residence in northern Ontario (northeast region: OR, 1.14 and northwest region: OR, 1.27 vs Toronto region), and living in the most marginalized areas (material resource deprivation: OR, 1.37 and housing stability: OR, 1.09 vs least marginalized area).

The researchers also found that patients with certain cancers were more likely to have sought care in the ED. They compared these cancers with breast cancer, which is often detected through screening.

“Patients with neurologic cancers had extremely high odds of ED use before cancer diagnosis,” the authors wrote. “This is likely because of the emergent nature of presentation, with acute neurologic symptoms such as weakness, confusion, or seizures, which require urgent assessment.” On the other hand, pancreatic, liver, or thoracic cancer can trigger nonspecific symptoms that may be ignored until they reach a crisis level that prompts an ED visit.

The limitations of the study included its inability to identify cancer-related ED visits and its narrow focus on patients in Ontario, according to the researchers. But the use of the ICES databases also allowed researchers access to a broader pool of data than are available in many other cases.

The findings in the new paper echo those of previous research, the authors noted. Research in the United Kingdom found that 24%-31% of cancer diagnoses involved the ED. In addition, a study of people enrolled in the US Medicare program, which serves patients aged 65 years or older, found that 23% were seen in the ED in the 30 days before diagnosis.
 

 

 

‘Unpacking the Data’

The current findings also are consistent with those of an International Cancer Benchmarking Partnership study that was published in 2022 in The Lancet Oncology, said Erika Nicholson, MHS, vice president of cancer systems and innovation at the Canadian Partnership Against Cancer. The latter study analyzed cancer registration and linked hospital admissions data from 14 jurisdictions in Australia, Canada, Denmark, New Zealand, Norway, and the United Kingdom.

“We see similar trends in terms of people visiting EDs and being diagnosed through EDs internationally,” Nicholson said. “We’re working with partners to put in place different strategies to address the challenges” that this phenomenon presents in terms of improving screening and follow-up care.

“Cancer is not one disease, but many diseases,” she said. “They present differently. We’re focused on really unpacking the data and understanding them.”

All this research highlights the need for more services and personnel to address cancer, including people who are trained to help patients cope after getting concerning news through emergency care, she said.

“That means having a system that fully supports you and helps you navigate through that diagnostic process,” Nicholson said. Addressing the added challenges for patients who don’t have secure housing is a special need, she added.

This study was supported by the Canadian Institutes of Health Research (CIHR). Grewal reported receiving grants from CIHR and the Canadian Association of Emergency Physicians. Nicholson reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

More than one third of patients with cancer visited an emergency department (ED) in the 90 days before their diagnosis, according to a study of medical records from Ontario, Canada.

Researchers examined Institute for Clinical Evaluative Sciences (ICES) data that had been gathered from January 1, 2014, to December 31, 2021. The study focused on patients aged 18 years or older with confirmed primary cancer diagnoses.

Factors associated with an increased likelihood of an ED visit ahead of diagnosis included having certain cancers, living in rural areas, and having less access to primary care, according to study author Keerat Grewal, MD, an emergency physician and clinician scientist at the Schwartz/Reisman Emergency Medicine Institute at Sinai Health in Toronto, Ontario, Canada, and coauthors.

“The ED is a distressing environment for patients to receive a possible cancer diagnosis,” the authors wrote. “Moreover, it is frequently ill equipped to provide ongoing continuity of care, which can lead patients down a poorly defined diagnostic pathway before receiving a confirmed diagnosis based on tissue and a subsequent treatment plan.”

The findings were published online on November 4 in CMAJ).
 

Neurologic Cancers Prominent

In an interview, Grewal said in an interview that the study reflects her desire as an emergency room physician to understand why so many patients with cancer get the initial reports about their disease from clinicians whom they often have just met for the first time.

Among patients with an ED visit before cancer diagnosis, 51.4% were admitted to hospital from the most recent visit.

Compared with patients with a family physician on whom they could rely for routine care, those who had no outpatient visits (odds ratio [OR], 2.09) or fewer than three outpatient visits (OR, 1.41) in the 6-30 months before cancer diagnosis were more likely to have an ED visit before their cancer diagnosis.

Other factors associated with increased odds of ED use before cancer diagnosis included rurality (OR, 1.15), residence in northern Ontario (northeast region: OR, 1.14 and northwest region: OR, 1.27 vs Toronto region), and living in the most marginalized areas (material resource deprivation: OR, 1.37 and housing stability: OR, 1.09 vs least marginalized area).

The researchers also found that patients with certain cancers were more likely to have sought care in the ED. They compared these cancers with breast cancer, which is often detected through screening.

“Patients with neurologic cancers had extremely high odds of ED use before cancer diagnosis,” the authors wrote. “This is likely because of the emergent nature of presentation, with acute neurologic symptoms such as weakness, confusion, or seizures, which require urgent assessment.” On the other hand, pancreatic, liver, or thoracic cancer can trigger nonspecific symptoms that may be ignored until they reach a crisis level that prompts an ED visit.

The limitations of the study included its inability to identify cancer-related ED visits and its narrow focus on patients in Ontario, according to the researchers. But the use of the ICES databases also allowed researchers access to a broader pool of data than are available in many other cases.

The findings in the new paper echo those of previous research, the authors noted. Research in the United Kingdom found that 24%-31% of cancer diagnoses involved the ED. In addition, a study of people enrolled in the US Medicare program, which serves patients aged 65 years or older, found that 23% were seen in the ED in the 30 days before diagnosis.
 

 

 

‘Unpacking the Data’

The current findings also are consistent with those of an International Cancer Benchmarking Partnership study that was published in 2022 in The Lancet Oncology, said Erika Nicholson, MHS, vice president of cancer systems and innovation at the Canadian Partnership Against Cancer. The latter study analyzed cancer registration and linked hospital admissions data from 14 jurisdictions in Australia, Canada, Denmark, New Zealand, Norway, and the United Kingdom.

“We see similar trends in terms of people visiting EDs and being diagnosed through EDs internationally,” Nicholson said. “We’re working with partners to put in place different strategies to address the challenges” that this phenomenon presents in terms of improving screening and follow-up care.

“Cancer is not one disease, but many diseases,” she said. “They present differently. We’re focused on really unpacking the data and understanding them.”

All this research highlights the need for more services and personnel to address cancer, including people who are trained to help patients cope after getting concerning news through emergency care, she said.

“That means having a system that fully supports you and helps you navigate through that diagnostic process,” Nicholson said. Addressing the added challenges for patients who don’t have secure housing is a special need, she added.

This study was supported by the Canadian Institutes of Health Research (CIHR). Grewal reported receiving grants from CIHR and the Canadian Association of Emergency Physicians. Nicholson reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

More than one third of patients with cancer visited an emergency department (ED) in the 90 days before their diagnosis, according to a study of medical records from Ontario, Canada.

Researchers examined Institute for Clinical Evaluative Sciences (ICES) data that had been gathered from January 1, 2014, to December 31, 2021. The study focused on patients aged 18 years or older with confirmed primary cancer diagnoses.

Factors associated with an increased likelihood of an ED visit ahead of diagnosis included having certain cancers, living in rural areas, and having less access to primary care, according to study author Keerat Grewal, MD, an emergency physician and clinician scientist at the Schwartz/Reisman Emergency Medicine Institute at Sinai Health in Toronto, Ontario, Canada, and coauthors.

“The ED is a distressing environment for patients to receive a possible cancer diagnosis,” the authors wrote. “Moreover, it is frequently ill equipped to provide ongoing continuity of care, which can lead patients down a poorly defined diagnostic pathway before receiving a confirmed diagnosis based on tissue and a subsequent treatment plan.”

The findings were published online on November 4 in CMAJ).
 

Neurologic Cancers Prominent

In an interview, Grewal said in an interview that the study reflects her desire as an emergency room physician to understand why so many patients with cancer get the initial reports about their disease from clinicians whom they often have just met for the first time.

Among patients with an ED visit before cancer diagnosis, 51.4% were admitted to hospital from the most recent visit.

Compared with patients with a family physician on whom they could rely for routine care, those who had no outpatient visits (odds ratio [OR], 2.09) or fewer than three outpatient visits (OR, 1.41) in the 6-30 months before cancer diagnosis were more likely to have an ED visit before their cancer diagnosis.

Other factors associated with increased odds of ED use before cancer diagnosis included rurality (OR, 1.15), residence in northern Ontario (northeast region: OR, 1.14 and northwest region: OR, 1.27 vs Toronto region), and living in the most marginalized areas (material resource deprivation: OR, 1.37 and housing stability: OR, 1.09 vs least marginalized area).

The researchers also found that patients with certain cancers were more likely to have sought care in the ED. They compared these cancers with breast cancer, which is often detected through screening.

“Patients with neurologic cancers had extremely high odds of ED use before cancer diagnosis,” the authors wrote. “This is likely because of the emergent nature of presentation, with acute neurologic symptoms such as weakness, confusion, or seizures, which require urgent assessment.” On the other hand, pancreatic, liver, or thoracic cancer can trigger nonspecific symptoms that may be ignored until they reach a crisis level that prompts an ED visit.

The limitations of the study included its inability to identify cancer-related ED visits and its narrow focus on patients in Ontario, according to the researchers. But the use of the ICES databases also allowed researchers access to a broader pool of data than are available in many other cases.

The findings in the new paper echo those of previous research, the authors noted. Research in the United Kingdom found that 24%-31% of cancer diagnoses involved the ED. In addition, a study of people enrolled in the US Medicare program, which serves patients aged 65 years or older, found that 23% were seen in the ED in the 30 days before diagnosis.
 

 

 

‘Unpacking the Data’

The current findings also are consistent with those of an International Cancer Benchmarking Partnership study that was published in 2022 in The Lancet Oncology, said Erika Nicholson, MHS, vice president of cancer systems and innovation at the Canadian Partnership Against Cancer. The latter study analyzed cancer registration and linked hospital admissions data from 14 jurisdictions in Australia, Canada, Denmark, New Zealand, Norway, and the United Kingdom.

“We see similar trends in terms of people visiting EDs and being diagnosed through EDs internationally,” Nicholson said. “We’re working with partners to put in place different strategies to address the challenges” that this phenomenon presents in terms of improving screening and follow-up care.

“Cancer is not one disease, but many diseases,” she said. “They present differently. We’re focused on really unpacking the data and understanding them.”

All this research highlights the need for more services and personnel to address cancer, including people who are trained to help patients cope after getting concerning news through emergency care, she said.

“That means having a system that fully supports you and helps you navigate through that diagnostic process,” Nicholson said. Addressing the added challenges for patients who don’t have secure housing is a special need, she added.

This study was supported by the Canadian Institutes of Health Research (CIHR). Grewal reported receiving grants from CIHR and the Canadian Association of Emergency Physicians. Nicholson reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM CMAJ

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Plasma Omega-6 and Omega-3 Fatty Acids Inversely Associated With Cancer

Article Type
Changed
Wed, 11/13/2024 - 03:09

 

TOPLINE:

Higher plasma levels of omega-6 and omega-3 fatty acids are associated with a lower incidence of cancer. However, omega-3 fatty acids are linked to an increased risk for prostate cancer, specifically.

METHODOLOGY:

  • Researchers looked for associations of plasma omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) with the incidence of cancer overall and 19 site-specific cancers in the large population-based prospective UK Biobank cohort.
  • They included 253,138 participants aged 37-73 years who were followed for an average of 12.9 years, with 29,838 diagnosed with cancer.
  • Plasma levels of omega-3 and omega-6 fatty acids were measured using nuclear magnetic resonance and expressed as percentages of total fatty acids.
  • Participants with cancer diagnoses at baseline, those who withdrew from the study, and those with missing data on plasma PUFAs were excluded.
  • The study adjusted for multiple covariates, including age, sex, ethnicity, socioeconomic status, lifestyle behaviors, and family history of diseases.

TAKEAWAY:

  • Higher plasma levels of omega-6 and omega-3 fatty acids were associated with a 2% and 1% reduction in overall cancer risk per SD increase, respectively (P = .001 and P = .03).
  • Omega-6 fatty acids were inversely associated with 14 site-specific cancers, whereas omega-3 fatty acids were inversely associated with five site-specific cancers.
  • Prostate cancer was positively associated with omega-3 fatty acids, with a 3% increased risk per SD increase (P = .049).
  • A higher omega-6/omega-3 ratio was associated with an increased risk for overall cancer, and three site-specific cancers showed positive associations with the ratio. “Each standard deviation increase, corresponding to a 13.13 increase in the omega ratio, was associated with a 2% increase in the risk of rectum cancer,” for example, the authors wrote.

IN PRACTICE:

“Overall, our findings provide support for possible small net protective roles of omega-3 and omega-6 PUFAs in the development of new cancer incidence. Our study also suggests that the usage of circulating blood biomarkers captures different aspects of dietary intake, reduces measurement errors, and thus enhances statistical power. The differential effects of omega-6% and omega-3% in age and sex subgroups warrant future investigation,” wrote the authors of the study.

SOURCE:

The study was led by Yuchen Zhang of the University of Georgia in Athens, Georgia. It was published online in the International Journal of Cancer.

LIMITATIONS:

The study’s potential for selective bias persists due to the participant sample skewing heavily toward European ancestry and White ethnicity. The number of events was small for some specific cancer sites, which may have limited the statistical power. The study focused on total omega-3 and omega-6 PUFAs, with only two individual fatty acids measured. Future studies are needed to examine the roles of other individual PUFAs and specific genetic variants. 

DISCLOSURES:

This study was supported by grants from the National Institute of General Medical Sciences of the National Institutes of Health. No relevant conflicts of interest were disclosed by the authors.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Higher plasma levels of omega-6 and omega-3 fatty acids are associated with a lower incidence of cancer. However, omega-3 fatty acids are linked to an increased risk for prostate cancer, specifically.

METHODOLOGY:

  • Researchers looked for associations of plasma omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) with the incidence of cancer overall and 19 site-specific cancers in the large population-based prospective UK Biobank cohort.
  • They included 253,138 participants aged 37-73 years who were followed for an average of 12.9 years, with 29,838 diagnosed with cancer.
  • Plasma levels of omega-3 and omega-6 fatty acids were measured using nuclear magnetic resonance and expressed as percentages of total fatty acids.
  • Participants with cancer diagnoses at baseline, those who withdrew from the study, and those with missing data on plasma PUFAs were excluded.
  • The study adjusted for multiple covariates, including age, sex, ethnicity, socioeconomic status, lifestyle behaviors, and family history of diseases.

TAKEAWAY:

  • Higher plasma levels of omega-6 and omega-3 fatty acids were associated with a 2% and 1% reduction in overall cancer risk per SD increase, respectively (P = .001 and P = .03).
  • Omega-6 fatty acids were inversely associated with 14 site-specific cancers, whereas omega-3 fatty acids were inversely associated with five site-specific cancers.
  • Prostate cancer was positively associated with omega-3 fatty acids, with a 3% increased risk per SD increase (P = .049).
  • A higher omega-6/omega-3 ratio was associated with an increased risk for overall cancer, and three site-specific cancers showed positive associations with the ratio. “Each standard deviation increase, corresponding to a 13.13 increase in the omega ratio, was associated with a 2% increase in the risk of rectum cancer,” for example, the authors wrote.

IN PRACTICE:

“Overall, our findings provide support for possible small net protective roles of omega-3 and omega-6 PUFAs in the development of new cancer incidence. Our study also suggests that the usage of circulating blood biomarkers captures different aspects of dietary intake, reduces measurement errors, and thus enhances statistical power. The differential effects of omega-6% and omega-3% in age and sex subgroups warrant future investigation,” wrote the authors of the study.

SOURCE:

The study was led by Yuchen Zhang of the University of Georgia in Athens, Georgia. It was published online in the International Journal of Cancer.

LIMITATIONS:

The study’s potential for selective bias persists due to the participant sample skewing heavily toward European ancestry and White ethnicity. The number of events was small for some specific cancer sites, which may have limited the statistical power. The study focused on total omega-3 and omega-6 PUFAs, with only two individual fatty acids measured. Future studies are needed to examine the roles of other individual PUFAs and specific genetic variants. 

DISCLOSURES:

This study was supported by grants from the National Institute of General Medical Sciences of the National Institutes of Health. No relevant conflicts of interest were disclosed by the authors.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

Higher plasma levels of omega-6 and omega-3 fatty acids are associated with a lower incidence of cancer. However, omega-3 fatty acids are linked to an increased risk for prostate cancer, specifically.

METHODOLOGY:

  • Researchers looked for associations of plasma omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) with the incidence of cancer overall and 19 site-specific cancers in the large population-based prospective UK Biobank cohort.
  • They included 253,138 participants aged 37-73 years who were followed for an average of 12.9 years, with 29,838 diagnosed with cancer.
  • Plasma levels of omega-3 and omega-6 fatty acids were measured using nuclear magnetic resonance and expressed as percentages of total fatty acids.
  • Participants with cancer diagnoses at baseline, those who withdrew from the study, and those with missing data on plasma PUFAs were excluded.
  • The study adjusted for multiple covariates, including age, sex, ethnicity, socioeconomic status, lifestyle behaviors, and family history of diseases.

TAKEAWAY:

  • Higher plasma levels of omega-6 and omega-3 fatty acids were associated with a 2% and 1% reduction in overall cancer risk per SD increase, respectively (P = .001 and P = .03).
  • Omega-6 fatty acids were inversely associated with 14 site-specific cancers, whereas omega-3 fatty acids were inversely associated with five site-specific cancers.
  • Prostate cancer was positively associated with omega-3 fatty acids, with a 3% increased risk per SD increase (P = .049).
  • A higher omega-6/omega-3 ratio was associated with an increased risk for overall cancer, and three site-specific cancers showed positive associations with the ratio. “Each standard deviation increase, corresponding to a 13.13 increase in the omega ratio, was associated with a 2% increase in the risk of rectum cancer,” for example, the authors wrote.

IN PRACTICE:

“Overall, our findings provide support for possible small net protective roles of omega-3 and omega-6 PUFAs in the development of new cancer incidence. Our study also suggests that the usage of circulating blood biomarkers captures different aspects of dietary intake, reduces measurement errors, and thus enhances statistical power. The differential effects of omega-6% and omega-3% in age and sex subgroups warrant future investigation,” wrote the authors of the study.

SOURCE:

The study was led by Yuchen Zhang of the University of Georgia in Athens, Georgia. It was published online in the International Journal of Cancer.

LIMITATIONS:

The study’s potential for selective bias persists due to the participant sample skewing heavily toward European ancestry and White ethnicity. The number of events was small for some specific cancer sites, which may have limited the statistical power. The study focused on total omega-3 and omega-6 PUFAs, with only two individual fatty acids measured. Future studies are needed to examine the roles of other individual PUFAs and specific genetic variants. 

DISCLOSURES:

This study was supported by grants from the National Institute of General Medical Sciences of the National Institutes of Health. No relevant conflicts of interest were disclosed by the authors.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Starting Mammograms at Age 40: Will Women Benefit?

Article Type
Changed
Fri, 11/15/2024 - 10:08

Last April, the US Preventive Services Task Force (USPSTF) revised its breast cancer screening guidelines to recommend average-risk women start their screening mammograms at age 40, instead of age 50, and continue every other year until age 74. 

The USPSTF’s recent recommendations align with those from major organizations, including the National Comprehensive Cancer Network and the American College of Radiology. The latest update comes from the American College of Obstetricians and Gynecologists (ACOG), which recommended a start age of 40 and continued screening either annually or every 2 years.

For USPSTF, the decision to recommend the earlier screening age, instead of keeping the choice an individualized one, was largely driven by the steady rise in breast cancer diagnoses among women in their 40s, alongside evidence that Black women are more likely to get breast cancer younger and die from the disease compared with White women. 

But is this recommendation to screen earlier a change for the better? 

Opinions vary.

USPSTF member John Wong, MD, chief of clinical decision making and a primary care physician at Tufts Medical Center in Boston, believes the new recommendation is the right move.

“It is now clear that screening every other year starting at age 40 has the potential to save about 20% more lives among all women and there is even greater potential benefit for Black women, who are much more likely to die from breast cancer,” Wong told Medscape last year

However, in a recent Viewpoint in JAMA Internal Medicine, experts from the University of California San Francisco expressed their reservations about shifting the recommended screening age a decade earlier.

The trio — Karla Kerlikowske, MD, Laura Esserman, MD, and Jeffrey Tice, MD — called the new recommendations “surprising” given the lack of new randomized control trial data to support the change as well as data that show breast cancer deaths have been decreasing among women, including younger women. 

More specifically, breast cancer deaths for women under 50 have decreased from 5.9 to 3.9 per 100,000 individuals between 2000 and 2020 — a decline that can likely be attributed to better treatments rather than increased screening effectiveness, the Viewpoint authors said.

However, moving the screening age earlier would not markedly improve survival for most women, the authors argued. According to USPSTF modeling, starting mammograms at age 40 instead of 50 could avert only 1.3 additional breast cancer deaths per 1000 women screened biennially and 1.8 additional breast cancer deaths among Black women.

Starting screening at 40, however, does come with an array of potential harms. These include 65 more benign biopsies per 1000 women screened, 1 in 2 women with a false-positive mammography result (503 per 1000), and 1 in 500 women with an over-diagnosed breast cancer, meaning the cancer would not have become clinically evident in their lifetime. 

The use of digital breast tomosynthesis can slightly reduce the number of false-positives and benign biopsies compared to older mammography techniques, but these small improvements did not sway the overall pro-con assessment for the Viewpoint authors.

“False-positive results require additional imaging and are associated with anxiety for patients,” the authors noted. “Women who have benign biopsies may experience the potential adverse effects of biopsies, such as bleeding, infection, and scarring unnecessarily; and over-diagnosis may lead to unnecessary treatment.”

Kenneth Lin, MD, MPH, family physician and associate director of the Lancaster General Hospital Family Medicine Residency in Pennsylvania, agreed that starting mammograms at age 40 is not a change for the better. 

Lin and colleagues conducted an analysis based on data from the USPSTF’s 2016 breast cancer screening report that similarly found 1 additional breast cancer death prevented per 1000 women screened starting at 40 vs 50, at a cost of 576 more false-positive results, 67 more benign breast biopsies, and 2 women diagnosed and treated unnecessarily. 

Overall, “there is no compelling evidence to change our clinical approach to breast cancer screening for women in their 40s: individual decision-making based on patient preferences and values,” Lin wrote in a recent Medscape commentary

But several experts not involved in the USPSTF recommendations agree with the change. 

The updated recommendation to begin mammograms at age 40 for women at average risk “aligns with accumulating data suggesting that earlier and more frequent screening can save more lives, and is widely seen as a positive step,” said Lisa Abramson, MD, a radiologist specializing in breast imaging with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, New York City.

Melissa Fana, MD, a breast surgical oncologist at NYU Langone Health, agreed that the revised recommendation is justified and “will undoubtedly save lives.” 

“The recent change in the screening recommendation was meant to be inclusive, and provide women, particularly women aged 40 to 49 the opportunity to screen with mammography,” Fana said.

One major argument in favor of earlier screening is that it will help address racial inequities in breast cancer diagnoses, treatment, and deaths. Despite a 5% lower incidence of breast cancer, Black women are more likely to be diagnosed with distant-stage cancer or more aggressive breast cancer subtypes, such as triple-negative, compared with White women, and are more likely to die from breast cancer.

“We hope that the earlier initiation of mammography screening across the board will have a great net benefit in outcomes for Black women especially, who have been shown to have the poorest outcomes when it comes to breast cancer, in part because of long-standing inequities in social determinants of health,” said Cherie C. Hill, MD, FACOG, an ob.gyn. at Emory Healthcare in Atlanta, who coauthored the recent ACOG recommendations.

The Viewpoint authors Kerlikowske, Esserman and Tice agreed that Black women may benefit more from earlier screening. However, earlier screening does not address the underlying disparities in treatment and follow-up care for Black women, and it is unclear whether screening alone will help improve breast cancer mortality rates for Black women, the authors noted.

There is one place where experts seem to align: the importance of educating patients about their personal risk. 

The Viewpoint authors favor a risk-based approach to help women decide whether to start screening before age 50. 

“Engaging women in informed decision-making based on their invasive and advanced breast cancer risk would be a patient-centered approach toward tailored screening, informing when to consider starting screening and how often to screen,” the experts wrote. 

For a woman to truly make an educated decision on whether she would like to screen or wait after age 40, she would at least need to know what her specific lifetime risk of developing breast cancer is, not the average risk is for American women in general, Fana told this news organization. 

“Risk assessment calculators are widely available and include factors such as family history and reproductive history, and this information can evolve over time and affect lifetime risk,” Fana noted. But “some women just do not get this information.”

Abramson explained that ob.gyns. and primary care physicians will likely play a larger role in the early assessment of breast cancer risk, including discussions about genetic testing and personal risk factors starting as early as age 25. 

“For clinicians, the emphasis may be on educating patients about their individual risk, ensuring timely mammograms, and referring higher-risk individuals for further testing or consultations with specialists,” Abramson added. 

Esserman reported being a Blue Cross Medical Advisory Panel member, an uncompensated board member of Quantum Leap Healthcare Collaborative, which funds the I-SPY trial through the University of California, San Francisco, and having an investigator-initiated trial for high-risk ductal carcinoma in situ (DCIS) funded through UCSF by Moderna for a DCIS phase 1 study. Tice and Kerlikowske reported receiving grants from the National Cancer Institute outside the submitted work. Abramson and Fana have no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Last April, the US Preventive Services Task Force (USPSTF) revised its breast cancer screening guidelines to recommend average-risk women start their screening mammograms at age 40, instead of age 50, and continue every other year until age 74. 

The USPSTF’s recent recommendations align with those from major organizations, including the National Comprehensive Cancer Network and the American College of Radiology. The latest update comes from the American College of Obstetricians and Gynecologists (ACOG), which recommended a start age of 40 and continued screening either annually or every 2 years.

For USPSTF, the decision to recommend the earlier screening age, instead of keeping the choice an individualized one, was largely driven by the steady rise in breast cancer diagnoses among women in their 40s, alongside evidence that Black women are more likely to get breast cancer younger and die from the disease compared with White women. 

But is this recommendation to screen earlier a change for the better? 

Opinions vary.

USPSTF member John Wong, MD, chief of clinical decision making and a primary care physician at Tufts Medical Center in Boston, believes the new recommendation is the right move.

“It is now clear that screening every other year starting at age 40 has the potential to save about 20% more lives among all women and there is even greater potential benefit for Black women, who are much more likely to die from breast cancer,” Wong told Medscape last year

However, in a recent Viewpoint in JAMA Internal Medicine, experts from the University of California San Francisco expressed their reservations about shifting the recommended screening age a decade earlier.

The trio — Karla Kerlikowske, MD, Laura Esserman, MD, and Jeffrey Tice, MD — called the new recommendations “surprising” given the lack of new randomized control trial data to support the change as well as data that show breast cancer deaths have been decreasing among women, including younger women. 

More specifically, breast cancer deaths for women under 50 have decreased from 5.9 to 3.9 per 100,000 individuals between 2000 and 2020 — a decline that can likely be attributed to better treatments rather than increased screening effectiveness, the Viewpoint authors said.

However, moving the screening age earlier would not markedly improve survival for most women, the authors argued. According to USPSTF modeling, starting mammograms at age 40 instead of 50 could avert only 1.3 additional breast cancer deaths per 1000 women screened biennially and 1.8 additional breast cancer deaths among Black women.

Starting screening at 40, however, does come with an array of potential harms. These include 65 more benign biopsies per 1000 women screened, 1 in 2 women with a false-positive mammography result (503 per 1000), and 1 in 500 women with an over-diagnosed breast cancer, meaning the cancer would not have become clinically evident in their lifetime. 

The use of digital breast tomosynthesis can slightly reduce the number of false-positives and benign biopsies compared to older mammography techniques, but these small improvements did not sway the overall pro-con assessment for the Viewpoint authors.

“False-positive results require additional imaging and are associated with anxiety for patients,” the authors noted. “Women who have benign biopsies may experience the potential adverse effects of biopsies, such as bleeding, infection, and scarring unnecessarily; and over-diagnosis may lead to unnecessary treatment.”

Kenneth Lin, MD, MPH, family physician and associate director of the Lancaster General Hospital Family Medicine Residency in Pennsylvania, agreed that starting mammograms at age 40 is not a change for the better. 

Lin and colleagues conducted an analysis based on data from the USPSTF’s 2016 breast cancer screening report that similarly found 1 additional breast cancer death prevented per 1000 women screened starting at 40 vs 50, at a cost of 576 more false-positive results, 67 more benign breast biopsies, and 2 women diagnosed and treated unnecessarily. 

Overall, “there is no compelling evidence to change our clinical approach to breast cancer screening for women in their 40s: individual decision-making based on patient preferences and values,” Lin wrote in a recent Medscape commentary

But several experts not involved in the USPSTF recommendations agree with the change. 

The updated recommendation to begin mammograms at age 40 for women at average risk “aligns with accumulating data suggesting that earlier and more frequent screening can save more lives, and is widely seen as a positive step,” said Lisa Abramson, MD, a radiologist specializing in breast imaging with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, New York City.

Melissa Fana, MD, a breast surgical oncologist at NYU Langone Health, agreed that the revised recommendation is justified and “will undoubtedly save lives.” 

“The recent change in the screening recommendation was meant to be inclusive, and provide women, particularly women aged 40 to 49 the opportunity to screen with mammography,” Fana said.

One major argument in favor of earlier screening is that it will help address racial inequities in breast cancer diagnoses, treatment, and deaths. Despite a 5% lower incidence of breast cancer, Black women are more likely to be diagnosed with distant-stage cancer or more aggressive breast cancer subtypes, such as triple-negative, compared with White women, and are more likely to die from breast cancer.

“We hope that the earlier initiation of mammography screening across the board will have a great net benefit in outcomes for Black women especially, who have been shown to have the poorest outcomes when it comes to breast cancer, in part because of long-standing inequities in social determinants of health,” said Cherie C. Hill, MD, FACOG, an ob.gyn. at Emory Healthcare in Atlanta, who coauthored the recent ACOG recommendations.

The Viewpoint authors Kerlikowske, Esserman and Tice agreed that Black women may benefit more from earlier screening. However, earlier screening does not address the underlying disparities in treatment and follow-up care for Black women, and it is unclear whether screening alone will help improve breast cancer mortality rates for Black women, the authors noted.

There is one place where experts seem to align: the importance of educating patients about their personal risk. 

The Viewpoint authors favor a risk-based approach to help women decide whether to start screening before age 50. 

“Engaging women in informed decision-making based on their invasive and advanced breast cancer risk would be a patient-centered approach toward tailored screening, informing when to consider starting screening and how often to screen,” the experts wrote. 

For a woman to truly make an educated decision on whether she would like to screen or wait after age 40, she would at least need to know what her specific lifetime risk of developing breast cancer is, not the average risk is for American women in general, Fana told this news organization. 

“Risk assessment calculators are widely available and include factors such as family history and reproductive history, and this information can evolve over time and affect lifetime risk,” Fana noted. But “some women just do not get this information.”

Abramson explained that ob.gyns. and primary care physicians will likely play a larger role in the early assessment of breast cancer risk, including discussions about genetic testing and personal risk factors starting as early as age 25. 

“For clinicians, the emphasis may be on educating patients about their individual risk, ensuring timely mammograms, and referring higher-risk individuals for further testing or consultations with specialists,” Abramson added. 

Esserman reported being a Blue Cross Medical Advisory Panel member, an uncompensated board member of Quantum Leap Healthcare Collaborative, which funds the I-SPY trial through the University of California, San Francisco, and having an investigator-initiated trial for high-risk ductal carcinoma in situ (DCIS) funded through UCSF by Moderna for a DCIS phase 1 study. Tice and Kerlikowske reported receiving grants from the National Cancer Institute outside the submitted work. Abramson and Fana have no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Last April, the US Preventive Services Task Force (USPSTF) revised its breast cancer screening guidelines to recommend average-risk women start their screening mammograms at age 40, instead of age 50, and continue every other year until age 74. 

The USPSTF’s recent recommendations align with those from major organizations, including the National Comprehensive Cancer Network and the American College of Radiology. The latest update comes from the American College of Obstetricians and Gynecologists (ACOG), which recommended a start age of 40 and continued screening either annually or every 2 years.

For USPSTF, the decision to recommend the earlier screening age, instead of keeping the choice an individualized one, was largely driven by the steady rise in breast cancer diagnoses among women in their 40s, alongside evidence that Black women are more likely to get breast cancer younger and die from the disease compared with White women. 

But is this recommendation to screen earlier a change for the better? 

Opinions vary.

USPSTF member John Wong, MD, chief of clinical decision making and a primary care physician at Tufts Medical Center in Boston, believes the new recommendation is the right move.

“It is now clear that screening every other year starting at age 40 has the potential to save about 20% more lives among all women and there is even greater potential benefit for Black women, who are much more likely to die from breast cancer,” Wong told Medscape last year

However, in a recent Viewpoint in JAMA Internal Medicine, experts from the University of California San Francisco expressed their reservations about shifting the recommended screening age a decade earlier.

The trio — Karla Kerlikowske, MD, Laura Esserman, MD, and Jeffrey Tice, MD — called the new recommendations “surprising” given the lack of new randomized control trial data to support the change as well as data that show breast cancer deaths have been decreasing among women, including younger women. 

More specifically, breast cancer deaths for women under 50 have decreased from 5.9 to 3.9 per 100,000 individuals between 2000 and 2020 — a decline that can likely be attributed to better treatments rather than increased screening effectiveness, the Viewpoint authors said.

However, moving the screening age earlier would not markedly improve survival for most women, the authors argued. According to USPSTF modeling, starting mammograms at age 40 instead of 50 could avert only 1.3 additional breast cancer deaths per 1000 women screened biennially and 1.8 additional breast cancer deaths among Black women.

Starting screening at 40, however, does come with an array of potential harms. These include 65 more benign biopsies per 1000 women screened, 1 in 2 women with a false-positive mammography result (503 per 1000), and 1 in 500 women with an over-diagnosed breast cancer, meaning the cancer would not have become clinically evident in their lifetime. 

The use of digital breast tomosynthesis can slightly reduce the number of false-positives and benign biopsies compared to older mammography techniques, but these small improvements did not sway the overall pro-con assessment for the Viewpoint authors.

“False-positive results require additional imaging and are associated with anxiety for patients,” the authors noted. “Women who have benign biopsies may experience the potential adverse effects of biopsies, such as bleeding, infection, and scarring unnecessarily; and over-diagnosis may lead to unnecessary treatment.”

Kenneth Lin, MD, MPH, family physician and associate director of the Lancaster General Hospital Family Medicine Residency in Pennsylvania, agreed that starting mammograms at age 40 is not a change for the better. 

Lin and colleagues conducted an analysis based on data from the USPSTF’s 2016 breast cancer screening report that similarly found 1 additional breast cancer death prevented per 1000 women screened starting at 40 vs 50, at a cost of 576 more false-positive results, 67 more benign breast biopsies, and 2 women diagnosed and treated unnecessarily. 

Overall, “there is no compelling evidence to change our clinical approach to breast cancer screening for women in their 40s: individual decision-making based on patient preferences and values,” Lin wrote in a recent Medscape commentary

But several experts not involved in the USPSTF recommendations agree with the change. 

The updated recommendation to begin mammograms at age 40 for women at average risk “aligns with accumulating data suggesting that earlier and more frequent screening can save more lives, and is widely seen as a positive step,” said Lisa Abramson, MD, a radiologist specializing in breast imaging with Mount Sinai Health System and Icahn School of Medicine at Mount Sinai, New York City.

Melissa Fana, MD, a breast surgical oncologist at NYU Langone Health, agreed that the revised recommendation is justified and “will undoubtedly save lives.” 

“The recent change in the screening recommendation was meant to be inclusive, and provide women, particularly women aged 40 to 49 the opportunity to screen with mammography,” Fana said.

One major argument in favor of earlier screening is that it will help address racial inequities in breast cancer diagnoses, treatment, and deaths. Despite a 5% lower incidence of breast cancer, Black women are more likely to be diagnosed with distant-stage cancer or more aggressive breast cancer subtypes, such as triple-negative, compared with White women, and are more likely to die from breast cancer.

“We hope that the earlier initiation of mammography screening across the board will have a great net benefit in outcomes for Black women especially, who have been shown to have the poorest outcomes when it comes to breast cancer, in part because of long-standing inequities in social determinants of health,” said Cherie C. Hill, MD, FACOG, an ob.gyn. at Emory Healthcare in Atlanta, who coauthored the recent ACOG recommendations.

The Viewpoint authors Kerlikowske, Esserman and Tice agreed that Black women may benefit more from earlier screening. However, earlier screening does not address the underlying disparities in treatment and follow-up care for Black women, and it is unclear whether screening alone will help improve breast cancer mortality rates for Black women, the authors noted.

There is one place where experts seem to align: the importance of educating patients about their personal risk. 

The Viewpoint authors favor a risk-based approach to help women decide whether to start screening before age 50. 

“Engaging women in informed decision-making based on their invasive and advanced breast cancer risk would be a patient-centered approach toward tailored screening, informing when to consider starting screening and how often to screen,” the experts wrote. 

For a woman to truly make an educated decision on whether she would like to screen or wait after age 40, she would at least need to know what her specific lifetime risk of developing breast cancer is, not the average risk is for American women in general, Fana told this news organization. 

“Risk assessment calculators are widely available and include factors such as family history and reproductive history, and this information can evolve over time and affect lifetime risk,” Fana noted. But “some women just do not get this information.”

Abramson explained that ob.gyns. and primary care physicians will likely play a larger role in the early assessment of breast cancer risk, including discussions about genetic testing and personal risk factors starting as early as age 25. 

“For clinicians, the emphasis may be on educating patients about their individual risk, ensuring timely mammograms, and referring higher-risk individuals for further testing or consultations with specialists,” Abramson added. 

Esserman reported being a Blue Cross Medical Advisory Panel member, an uncompensated board member of Quantum Leap Healthcare Collaborative, which funds the I-SPY trial through the University of California, San Francisco, and having an investigator-initiated trial for high-risk ductal carcinoma in situ (DCIS) funded through UCSF by Moderna for a DCIS phase 1 study. Tice and Kerlikowske reported receiving grants from the National Cancer Institute outside the submitted work. Abramson and Fana have no relevant disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Fri, 11/15/2024 - 10:08
Un-Gate On Date
Fri, 11/15/2024 - 10:08
Use ProPublica
CFC Schedule Remove Status
Fri, 11/15/2024 - 10:08
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Fri, 11/15/2024 - 10:08

‘Small Increase’ in Breast Cancer With Levonorgestrel IUD?

Article Type
Changed
Mon, 10/28/2024 - 14:08

 

TOPLINE: 

The use of a levonorgestrel-releasing intrauterine system (LNG-IUS) is associated with an increased risk for breast cancer. An analysis by Danish researchers found 14 extra cases of breast cancer per 10,000 women using this type of an intrauterine device (IUD) vs women not using hormonal contraceptives.

METHODOLOGY:

  • The investigators used nationwide registries in Denmark to identify all women aged 15-49 years who were first-time initiators of any LNG-IUS between 2000 and 2019.
  • They matched 78,595 new users of LNG-IUS 1:1 with women with the same birth year who were not taking hormonal contraceptives.
  • Participants were followed through 2022 or until a diagnosis of breast cancer or another malignancy, pregnancy, the initiation of postmenopausal hormone therapy, emigration, or death.
  • The investigators used a Cox proportional hazards model to examine the association between the continuous use of LNG-IUS and breast cancer. Their analysis adjusted for variables such as the duration of previous hormonal contraception, fertility drugs, parity, age at first delivery, polycystic ovarian syndrome, endometriosis, and education.

TAKEAWAY:

  • Compared with the nonuse of hormonal contraceptives, the continuous use of LNG-IUS was associated with a hazard ratio for breast cancer of 1.4 (95% CI, 1.2-1.5).
  • The use of a levonorgestrel IUD for 5 years or less was associated with a hazard ratio of 1.3 (95% CI, 1.1-1.5). With 5-10 years of use, the hazard ratio was 1.4 (95% CI, 1.1-1.7). And with 10-15 years of use, the hazard ratio was 1.8 (95% CI, 1.2-2.6). A test for trend was not significant, however, and “risk did not increase with duration of use,” the study authors wrote.

IN PRACTICE:

“Women should be aware that most types of hormonal contraceptive are associated with a small increased risk of breast cancer. This study adds another type of hormonal contraceptive to that list,” Amy Berrington de Gonzalez, DPhil, professor of clinical cancer epidemiology at The Institute of Cancer Research in London, England, said in comments on the research. “That has to be considered with the many benefits from hormonal contraceptives.”

Behaviors such as smoking could have differed between the groups in the study, and it has not been established that LNG-IUS use directly causes an increased risk for breast cancer, said Channa Jayasena, PhD, an endocrinologist at Imperial College London.

“Smoking, alcohol and obesity are much more important risk factors for breast cancer than contraceptive medications,” he said. “My advice for women is that breast cancer risk caused by LNG-IUS is not established but warrants a closer look.”
 

SOURCE:

Lina Steinrud Mørch, MSc, PhD, with the Danish Cancer Institute in Copenhagen, Denmark, was the corresponding author of the study. The researchers published their findings in JAMA.

LIMITATIONS: 

Unmeasured confounding was possible, and the lack of a significant dose-response relationship “could indicate low statistical precision or no causal association,” the researchers noted.

DISCLOSURES:

The study was funded by Sundhedsdonationer.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

The use of a levonorgestrel-releasing intrauterine system (LNG-IUS) is associated with an increased risk for breast cancer. An analysis by Danish researchers found 14 extra cases of breast cancer per 10,000 women using this type of an intrauterine device (IUD) vs women not using hormonal contraceptives.

METHODOLOGY:

  • The investigators used nationwide registries in Denmark to identify all women aged 15-49 years who were first-time initiators of any LNG-IUS between 2000 and 2019.
  • They matched 78,595 new users of LNG-IUS 1:1 with women with the same birth year who were not taking hormonal contraceptives.
  • Participants were followed through 2022 or until a diagnosis of breast cancer or another malignancy, pregnancy, the initiation of postmenopausal hormone therapy, emigration, or death.
  • The investigators used a Cox proportional hazards model to examine the association between the continuous use of LNG-IUS and breast cancer. Their analysis adjusted for variables such as the duration of previous hormonal contraception, fertility drugs, parity, age at first delivery, polycystic ovarian syndrome, endometriosis, and education.

TAKEAWAY:

  • Compared with the nonuse of hormonal contraceptives, the continuous use of LNG-IUS was associated with a hazard ratio for breast cancer of 1.4 (95% CI, 1.2-1.5).
  • The use of a levonorgestrel IUD for 5 years or less was associated with a hazard ratio of 1.3 (95% CI, 1.1-1.5). With 5-10 years of use, the hazard ratio was 1.4 (95% CI, 1.1-1.7). And with 10-15 years of use, the hazard ratio was 1.8 (95% CI, 1.2-2.6). A test for trend was not significant, however, and “risk did not increase with duration of use,” the study authors wrote.

IN PRACTICE:

“Women should be aware that most types of hormonal contraceptive are associated with a small increased risk of breast cancer. This study adds another type of hormonal contraceptive to that list,” Amy Berrington de Gonzalez, DPhil, professor of clinical cancer epidemiology at The Institute of Cancer Research in London, England, said in comments on the research. “That has to be considered with the many benefits from hormonal contraceptives.”

Behaviors such as smoking could have differed between the groups in the study, and it has not been established that LNG-IUS use directly causes an increased risk for breast cancer, said Channa Jayasena, PhD, an endocrinologist at Imperial College London.

“Smoking, alcohol and obesity are much more important risk factors for breast cancer than contraceptive medications,” he said. “My advice for women is that breast cancer risk caused by LNG-IUS is not established but warrants a closer look.”
 

SOURCE:

Lina Steinrud Mørch, MSc, PhD, with the Danish Cancer Institute in Copenhagen, Denmark, was the corresponding author of the study. The researchers published their findings in JAMA.

LIMITATIONS: 

Unmeasured confounding was possible, and the lack of a significant dose-response relationship “could indicate low statistical precision or no causal association,” the researchers noted.

DISCLOSURES:

The study was funded by Sundhedsdonationer.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE: 

The use of a levonorgestrel-releasing intrauterine system (LNG-IUS) is associated with an increased risk for breast cancer. An analysis by Danish researchers found 14 extra cases of breast cancer per 10,000 women using this type of an intrauterine device (IUD) vs women not using hormonal contraceptives.

METHODOLOGY:

  • The investigators used nationwide registries in Denmark to identify all women aged 15-49 years who were first-time initiators of any LNG-IUS between 2000 and 2019.
  • They matched 78,595 new users of LNG-IUS 1:1 with women with the same birth year who were not taking hormonal contraceptives.
  • Participants were followed through 2022 or until a diagnosis of breast cancer or another malignancy, pregnancy, the initiation of postmenopausal hormone therapy, emigration, or death.
  • The investigators used a Cox proportional hazards model to examine the association between the continuous use of LNG-IUS and breast cancer. Their analysis adjusted for variables such as the duration of previous hormonal contraception, fertility drugs, parity, age at first delivery, polycystic ovarian syndrome, endometriosis, and education.

TAKEAWAY:

  • Compared with the nonuse of hormonal contraceptives, the continuous use of LNG-IUS was associated with a hazard ratio for breast cancer of 1.4 (95% CI, 1.2-1.5).
  • The use of a levonorgestrel IUD for 5 years or less was associated with a hazard ratio of 1.3 (95% CI, 1.1-1.5). With 5-10 years of use, the hazard ratio was 1.4 (95% CI, 1.1-1.7). And with 10-15 years of use, the hazard ratio was 1.8 (95% CI, 1.2-2.6). A test for trend was not significant, however, and “risk did not increase with duration of use,” the study authors wrote.

IN PRACTICE:

“Women should be aware that most types of hormonal contraceptive are associated with a small increased risk of breast cancer. This study adds another type of hormonal contraceptive to that list,” Amy Berrington de Gonzalez, DPhil, professor of clinical cancer epidemiology at The Institute of Cancer Research in London, England, said in comments on the research. “That has to be considered with the many benefits from hormonal contraceptives.”

Behaviors such as smoking could have differed between the groups in the study, and it has not been established that LNG-IUS use directly causes an increased risk for breast cancer, said Channa Jayasena, PhD, an endocrinologist at Imperial College London.

“Smoking, alcohol and obesity are much more important risk factors for breast cancer than contraceptive medications,” he said. “My advice for women is that breast cancer risk caused by LNG-IUS is not established but warrants a closer look.”
 

SOURCE:

Lina Steinrud Mørch, MSc, PhD, with the Danish Cancer Institute in Copenhagen, Denmark, was the corresponding author of the study. The researchers published their findings in JAMA.

LIMITATIONS: 

Unmeasured confounding was possible, and the lack of a significant dose-response relationship “could indicate low statistical precision or no causal association,” the researchers noted.

DISCLOSURES:

The study was funded by Sundhedsdonationer.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cancer’s Other Toll: Long-Term Financial Fallout for Survivors

Article Type
Changed
Mon, 10/28/2024 - 14:04

— While the physical toll of cancer is well documented, the financial toll can also be severe and lasting.

Overall, patients with cancer tend to face higher rates of debt collection, medical collections, and bankruptcies, as well as lower credit scores, according to two new studies presented at the American College of Surgeons Clinical Congress 2024.

“These are the first studies to provide numerical evidence of financial toxicity among cancer survivors,” Benjamin C. James, MD, with Beth Israel Deaconess Medical Center and Harvard Medical School, both in Boston, Massachusetts, who worked on both studies, said in a statement. “Previous data on this topic largely relies on subjective survey reviews.”

In one study, researchers used the Massachusetts Cancer Registry to identify 99,175 patients diagnosed with cancer between 2010 and 2019 and matched them with 188,875 control individuals without cancer. Researchers then assessed financial toxicity using Experian credit bureau data for participants.

Overall, patients with cancer faced a range of financial challenges that often lasted years following their diagnosis.

Patients were nearly five times more likely to experience bankruptcy and had average credit scores nearly 80 points lower than control individuals without cancer. The drop in credit scores was more pronounced for survivors of bladder, liver, lung, and colorectal cancer (CRC) and persisted for up to 9.5 years.

For certain cancer types, in particular, “we are looking years after a diagnosis, and we see that the credit score goes down and it never comes back up,” James said.

The other study, which used a sample of 7227 patients with CRC from Massachusetts, identified several factors that correlated with lower credit scores.

Compared with patients who only had surgery, peers who underwent radiation only experienced a 62-point drop in their credit score after their diagnosis, while those who had chemotherapy alone had just over a 14-point drop in their credit score. Among patients who had combination treatments, those who underwent both surgery and radiation experienced a nearly 16-point drop in their credit score and those who had surgery and chemoradiation actually experienced a 2.59 bump, compared with those who had surgery alone.

Financial toxicity was worse for patients younger than 62 years, those identifying as Black or Hispanic individuals, unmarried individuals, those with an annual income below $52,000, and those living in deprived areas.

The studies add to findings from the 2015 North American Thyroid Cancer Survivorship Study, which reported that 50% of thyroid cancer survivors encountered financial toxicity because of their diagnosis.

James said the persistent financial strain of cancer care, even in a state like Massachusetts, which mandates universal healthcare, underscores the need for “broader policy changes and reforms, including reconsidering debt collection practices.”

“Financial security should be a priority in cancer care,” he added.

The studies had no specific funding. The authors have disclosed no relevant conflict of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

— While the physical toll of cancer is well documented, the financial toll can also be severe and lasting.

Overall, patients with cancer tend to face higher rates of debt collection, medical collections, and bankruptcies, as well as lower credit scores, according to two new studies presented at the American College of Surgeons Clinical Congress 2024.

“These are the first studies to provide numerical evidence of financial toxicity among cancer survivors,” Benjamin C. James, MD, with Beth Israel Deaconess Medical Center and Harvard Medical School, both in Boston, Massachusetts, who worked on both studies, said in a statement. “Previous data on this topic largely relies on subjective survey reviews.”

In one study, researchers used the Massachusetts Cancer Registry to identify 99,175 patients diagnosed with cancer between 2010 and 2019 and matched them with 188,875 control individuals without cancer. Researchers then assessed financial toxicity using Experian credit bureau data for participants.

Overall, patients with cancer faced a range of financial challenges that often lasted years following their diagnosis.

Patients were nearly five times more likely to experience bankruptcy and had average credit scores nearly 80 points lower than control individuals without cancer. The drop in credit scores was more pronounced for survivors of bladder, liver, lung, and colorectal cancer (CRC) and persisted for up to 9.5 years.

For certain cancer types, in particular, “we are looking years after a diagnosis, and we see that the credit score goes down and it never comes back up,” James said.

The other study, which used a sample of 7227 patients with CRC from Massachusetts, identified several factors that correlated with lower credit scores.

Compared with patients who only had surgery, peers who underwent radiation only experienced a 62-point drop in their credit score after their diagnosis, while those who had chemotherapy alone had just over a 14-point drop in their credit score. Among patients who had combination treatments, those who underwent both surgery and radiation experienced a nearly 16-point drop in their credit score and those who had surgery and chemoradiation actually experienced a 2.59 bump, compared with those who had surgery alone.

Financial toxicity was worse for patients younger than 62 years, those identifying as Black or Hispanic individuals, unmarried individuals, those with an annual income below $52,000, and those living in deprived areas.

The studies add to findings from the 2015 North American Thyroid Cancer Survivorship Study, which reported that 50% of thyroid cancer survivors encountered financial toxicity because of their diagnosis.

James said the persistent financial strain of cancer care, even in a state like Massachusetts, which mandates universal healthcare, underscores the need for “broader policy changes and reforms, including reconsidering debt collection practices.”

“Financial security should be a priority in cancer care,” he added.

The studies had no specific funding. The authors have disclosed no relevant conflict of interest.

A version of this article first appeared on Medscape.com.

— While the physical toll of cancer is well documented, the financial toll can also be severe and lasting.

Overall, patients with cancer tend to face higher rates of debt collection, medical collections, and bankruptcies, as well as lower credit scores, according to two new studies presented at the American College of Surgeons Clinical Congress 2024.

“These are the first studies to provide numerical evidence of financial toxicity among cancer survivors,” Benjamin C. James, MD, with Beth Israel Deaconess Medical Center and Harvard Medical School, both in Boston, Massachusetts, who worked on both studies, said in a statement. “Previous data on this topic largely relies on subjective survey reviews.”

In one study, researchers used the Massachusetts Cancer Registry to identify 99,175 patients diagnosed with cancer between 2010 and 2019 and matched them with 188,875 control individuals without cancer. Researchers then assessed financial toxicity using Experian credit bureau data for participants.

Overall, patients with cancer faced a range of financial challenges that often lasted years following their diagnosis.

Patients were nearly five times more likely to experience bankruptcy and had average credit scores nearly 80 points lower than control individuals without cancer. The drop in credit scores was more pronounced for survivors of bladder, liver, lung, and colorectal cancer (CRC) and persisted for up to 9.5 years.

For certain cancer types, in particular, “we are looking years after a diagnosis, and we see that the credit score goes down and it never comes back up,” James said.

The other study, which used a sample of 7227 patients with CRC from Massachusetts, identified several factors that correlated with lower credit scores.

Compared with patients who only had surgery, peers who underwent radiation only experienced a 62-point drop in their credit score after their diagnosis, while those who had chemotherapy alone had just over a 14-point drop in their credit score. Among patients who had combination treatments, those who underwent both surgery and radiation experienced a nearly 16-point drop in their credit score and those who had surgery and chemoradiation actually experienced a 2.59 bump, compared with those who had surgery alone.

Financial toxicity was worse for patients younger than 62 years, those identifying as Black or Hispanic individuals, unmarried individuals, those with an annual income below $52,000, and those living in deprived areas.

The studies add to findings from the 2015 North American Thyroid Cancer Survivorship Study, which reported that 50% of thyroid cancer survivors encountered financial toxicity because of their diagnosis.

James said the persistent financial strain of cancer care, even in a state like Massachusetts, which mandates universal healthcare, underscores the need for “broader policy changes and reforms, including reconsidering debt collection practices.”

“Financial security should be a priority in cancer care,” he added.

The studies had no specific funding. The authors have disclosed no relevant conflict of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ACSCS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Air Pollution Exposure Linked to Higher Breast Cancer Risk

Article Type
Changed
Mon, 10/28/2024 - 09:57

 

TOPLINE: 

A recent study found that long-term exposure to fine particulate matter ≤ 2.5 μm (PM2.5) is associated with an increased risk for breast cancer, with the highest risk observed among White women.

METHODOLOGY:

  • Studies have suggested that exposure to air pollution — specifically PM2.5 — may increase the risk for breast cancer, but data are largely in populations of White women.
  • The current analysis explored the potential risk among a more racially and ethnically diverse group.
  • The study included 58,358 women (median age, 60.4 years at enrollment) from the California Cancer Registry, followed over an average of 19.3 years. Overall, 35% were African American, 39% were Latino, 15% were White, and 10% were Japanese American.
  • Researchers measured PM2.5 exposure using satellite-based data and geocoded addresses. Other pollutants, such as PM10, NO2, NOX, and CO, were also tracked using Environmental Protection Agency data.

TAKEAWAY:

  • A total of 3524 invasive breast cancer cases were diagnosed over an average follow-up period of 19.3 years. PM2.5 exposure was associated with a 28% increased risk for breast cancer overall (hazard ratio [HR], 1.28; 95% CI, 1.08-1.51).
  • When looking at risk by racial/ethnic group, the association between PM2.5 exposure and breast cancer risk was strongest among White women (HR, 1.67). PM2.5 exposure was also associated with a higher risk for breast cancer among African American women (HR, 1.14; 95% CI, 0.89-1.46) and Latino women (HR, 1.34; 95% CI, 0.94-1.92), but the associations were not significant.
  • Overall breast cancer incidence was also positively associated with exposure to NO2, NOX, and CO (HRs, 1.09-1.11), but the associations were not significant. A meta-analysis of this study and ten other cohorts estimated a 5% increased breast cancer incidence per 10-unit increase in PM2.5 (HR, 1.05).

IN PRACTICE:

“Collective findings suggest that PM2.5 exposure should be considered a risk factor for breast cancer, and curtailing air pollution exposures at the population level using regulatory strategies should be a priority,” the authors concluded.

SOURCE:

The study, led by Anna H. Wu, PhD, MPH, Keck School of Medicine, University of Southern California, Los Angeles, was published online in the Journal of Clinical Oncology.

LIMITATIONS:

The study did not include data on nonresidential exposures or residential history before cohort entry, which limited the assessment of earlier exposures. The study also lacked information on specific sources of PM emissions, as well as an explanation for why White women had the highest breast cancer risk compared with other racial/ethnic groups.

DISCLOSURES:

The study was supported by grants from the Health Effects Air Pollution Foundation, the National Cancer Institute, USC Environmental Exposures, Host Factors, and Human Disease, and the California Air Resource Board. One author disclosed being an associate editor for the Journal of Clinical Oncology. No other potential conflicts of interest were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE: 

A recent study found that long-term exposure to fine particulate matter ≤ 2.5 μm (PM2.5) is associated with an increased risk for breast cancer, with the highest risk observed among White women.

METHODOLOGY:

  • Studies have suggested that exposure to air pollution — specifically PM2.5 — may increase the risk for breast cancer, but data are largely in populations of White women.
  • The current analysis explored the potential risk among a more racially and ethnically diverse group.
  • The study included 58,358 women (median age, 60.4 years at enrollment) from the California Cancer Registry, followed over an average of 19.3 years. Overall, 35% were African American, 39% were Latino, 15% were White, and 10% were Japanese American.
  • Researchers measured PM2.5 exposure using satellite-based data and geocoded addresses. Other pollutants, such as PM10, NO2, NOX, and CO, were also tracked using Environmental Protection Agency data.

TAKEAWAY:

  • A total of 3524 invasive breast cancer cases were diagnosed over an average follow-up period of 19.3 years. PM2.5 exposure was associated with a 28% increased risk for breast cancer overall (hazard ratio [HR], 1.28; 95% CI, 1.08-1.51).
  • When looking at risk by racial/ethnic group, the association between PM2.5 exposure and breast cancer risk was strongest among White women (HR, 1.67). PM2.5 exposure was also associated with a higher risk for breast cancer among African American women (HR, 1.14; 95% CI, 0.89-1.46) and Latino women (HR, 1.34; 95% CI, 0.94-1.92), but the associations were not significant.
  • Overall breast cancer incidence was also positively associated with exposure to NO2, NOX, and CO (HRs, 1.09-1.11), but the associations were not significant. A meta-analysis of this study and ten other cohorts estimated a 5% increased breast cancer incidence per 10-unit increase in PM2.5 (HR, 1.05).

IN PRACTICE:

“Collective findings suggest that PM2.5 exposure should be considered a risk factor for breast cancer, and curtailing air pollution exposures at the population level using regulatory strategies should be a priority,” the authors concluded.

SOURCE:

The study, led by Anna H. Wu, PhD, MPH, Keck School of Medicine, University of Southern California, Los Angeles, was published online in the Journal of Clinical Oncology.

LIMITATIONS:

The study did not include data on nonresidential exposures or residential history before cohort entry, which limited the assessment of earlier exposures. The study also lacked information on specific sources of PM emissions, as well as an explanation for why White women had the highest breast cancer risk compared with other racial/ethnic groups.

DISCLOSURES:

The study was supported by grants from the Health Effects Air Pollution Foundation, the National Cancer Institute, USC Environmental Exposures, Host Factors, and Human Disease, and the California Air Resource Board. One author disclosed being an associate editor for the Journal of Clinical Oncology. No other potential conflicts of interest were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE: 

A recent study found that long-term exposure to fine particulate matter ≤ 2.5 μm (PM2.5) is associated with an increased risk for breast cancer, with the highest risk observed among White women.

METHODOLOGY:

  • Studies have suggested that exposure to air pollution — specifically PM2.5 — may increase the risk for breast cancer, but data are largely in populations of White women.
  • The current analysis explored the potential risk among a more racially and ethnically diverse group.
  • The study included 58,358 women (median age, 60.4 years at enrollment) from the California Cancer Registry, followed over an average of 19.3 years. Overall, 35% were African American, 39% were Latino, 15% were White, and 10% were Japanese American.
  • Researchers measured PM2.5 exposure using satellite-based data and geocoded addresses. Other pollutants, such as PM10, NO2, NOX, and CO, were also tracked using Environmental Protection Agency data.

TAKEAWAY:

  • A total of 3524 invasive breast cancer cases were diagnosed over an average follow-up period of 19.3 years. PM2.5 exposure was associated with a 28% increased risk for breast cancer overall (hazard ratio [HR], 1.28; 95% CI, 1.08-1.51).
  • When looking at risk by racial/ethnic group, the association between PM2.5 exposure and breast cancer risk was strongest among White women (HR, 1.67). PM2.5 exposure was also associated with a higher risk for breast cancer among African American women (HR, 1.14; 95% CI, 0.89-1.46) and Latino women (HR, 1.34; 95% CI, 0.94-1.92), but the associations were not significant.
  • Overall breast cancer incidence was also positively associated with exposure to NO2, NOX, and CO (HRs, 1.09-1.11), but the associations were not significant. A meta-analysis of this study and ten other cohorts estimated a 5% increased breast cancer incidence per 10-unit increase in PM2.5 (HR, 1.05).

IN PRACTICE:

“Collective findings suggest that PM2.5 exposure should be considered a risk factor for breast cancer, and curtailing air pollution exposures at the population level using regulatory strategies should be a priority,” the authors concluded.

SOURCE:

The study, led by Anna H. Wu, PhD, MPH, Keck School of Medicine, University of Southern California, Los Angeles, was published online in the Journal of Clinical Oncology.

LIMITATIONS:

The study did not include data on nonresidential exposures or residential history before cohort entry, which limited the assessment of earlier exposures. The study also lacked information on specific sources of PM emissions, as well as an explanation for why White women had the highest breast cancer risk compared with other racial/ethnic groups.

DISCLOSURES:

The study was supported by grants from the Health Effects Air Pollution Foundation, the National Cancer Institute, USC Environmental Exposures, Host Factors, and Human Disease, and the California Air Resource Board. One author disclosed being an associate editor for the Journal of Clinical Oncology. No other potential conflicts of interest were reported.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

For Radiation ‘Downwinders,’ Cancer Compensation Is On Hold

Article Type
Changed
Fri, 10/25/2024 - 12:08

For more than three decades, the federal government sought to make amends to countless Americans who developed cancer after being exposed to radiation from nuclear testing in the Southwest or while working in the uranium mining industry.

As of 2022, more than 40,000 patients with cancer successfully applied for $2.6 billion in compensation. Recipients included “downwinders” who were eligible for $50,000 each if they lived in certain areas of Nevada, Utah, and Arizona during specified nuclear testing periods and developed a covered form of cancer.

In June 2024, however, the Radiation Exposure Compensation Program expired amid infighting among Republicans in Congress over whether to expand it. For now, no one can make a claim, even though many downwinders are still alive and continue to be diagnosed with covered cancers decades after they were exposed in the 1940s, 1950s, and 1960s.

There’s a glimmer of good news. The federal government continues to support free medical screenings for eligible people, including certain downwinders and uranium workers. Meanwhile, there are still important roles for clinicians across the country to play as politicians figure out what — if anything — to do next regarding those exposed to radiation.

“We are still here. We can still screen people,” Zachary Davis, program director for the Radiation Exposure Screening and Education Program, The University of New Mexico, in Albuquerque, New Mexico, said in an interview.
 

Still-Unfolding Legacy of Radiation Exposure

No one knew just how far radiation would spread when the first nuclear bomb was tested in New Mexico in July 1945. Would it cover the state? The entire Southwest? The whole nation?

It also wasn’t clear how radiation would affect people’s health. “There was an awareness that some cancers were caused by radiation, but there wasn’t a cohesive understanding of what the problem was,” Joseph Shonka, PhD, a health physicist who studies radiation exposure and has worked for decades in nuclear engineering, said in an interview.

Now, nearly eight decades later, scientists are still figuring out the full extent of radioactive fallout from nuclear testing. Just last year, a study suggested that radiation from 94 nuclear weapon tests in the Southwest from 1945 to 1962 reached 46 states along with Canada and Mexico.

Activists believe the tests triggered untold number of cancer cases in residents who were exposed in downwind areas:

“My brother died of stomach cancer; my mom died of bone cancer. One of my sisters is surviving brain tumors, and the other one is surviving thyroid cancer,” one New Mexico man recently told ABC-TV’s “Nightline.”

In Idaho, a downwinder advocate told Idaho Capital Sun that everyone who attended a reception for her newly married parents in 1952 — just weeks after a nuclear test — developed cancer or “weird medical complications.” That included her parents, who both had cancer. Her two older brothers, born in 1953 and 1955, also developed cancer, and she’s tracked many other cases in the small town of Emmett.

In Utah, another downwinder advocate told Utah News Dispatch that cancer was common in Salt Lake City neighborhood, where she grew up, which was exposed to fallout. She developed thyroid cancer, her younger sister developed stomach cancer, and an older sister died of lupus, which is connected to radiation exposure. But Salt Lake City isn’t in one of the regions of Utah covered by the federal compensation program, so the advocate can’t get a $50,000 payment.

Downwinders who lived in New Mexico, Idaho, and the Salt Lake City area of Utah are not covered by the federal compensation program. That means none of these people or their descendants are eligible for payments — yet.
 

 

 

Decades After Nuclear Testing, the Government Responds

In 1990, Congress passed the Radiation Exposure Compensation Act, which allowed compensation to people with cancer at several levels. It was later expanded. Downwinders — including those who’ve moved elsewhere over the years — were eligible for $50,000. Onsite participants in nuclear testing could get $75,000. Uranium miners, millers, and ore transporters in 11 states west of the Mississippi River could get $100,000.

Among downwinders, eligible cancers included blood cancers (leukemias with the exception of chronic lymphocytic leukemiamultiple myeloma, and non-Hodgkin’s lymphomas) and a long list of solid organ cancers such as thyroid, breast, stomach, brain, lung, colon, and liver cancers.

“When it comes to blood-related cancers, we do see leukemias, lymphomas, and multiple myeloma, but these cancers were more likely to occur sooner after fallout exposure,” said Laura Shaw, MD, principal investigator who oversees the radiation exposure screening program at the University of Nevada, Las Vegas. “At this point, we see more pancreatic, thyroid, lung, stomach, bladder, and breast cancer.”

The compensation program had major limitations, critics said. “It left out a lot of communities that were exposed,” said Lilly Adams, senior outreach coordinator with the Union of Concerned Scientists (UCS), which supports expanding the program. A national nonprofit organization, UCS was founded more than 50 years ago by scientists and students at the Massachusetts Institute of Technology.

“You have this pretty small amount of one-time compensation, and that’s it,” Adams said in an interview. “You can’t get reimbursed for medical costs or lost wages.” Still, “as flawed as the program is, it’s really valuable for the people who are eligible,” she noted.
 

Now Congress Is Divided on Next Steps

Some lawmakers have recognized the need to do more for those who developed cancer that’s potentially linked to radiation exposure. As the June 2024 expiration of the Radiation Exposure Compensation Act loomed, Democrats and Republicans in Congress worked together to extend and expand the program.

They introduced a bill for higher compensation — $100,000 per person — and the widening of covered downwinder areas to all of Arizona, Nevada, and Utah (which had only been partially covered), along with all of Colorado, Idaho, New Mexico, Montana, and Guam. Under the legislation, the program also would expand to cover some uranium workers who were on the job after 1971 and residents exposed to nuclear waste in Kentucky, Missouri, and Tennessee.

In March, the new legislation easily passed the US Senate by a vote of 69-30, with support from both political parties — but the Republican-led House hasn’t taken it up. As a result, the Radiation Exposure Compensation Act expired in June, and no one can submit new applications for compensation.

A spokesman for House Speaker Mike Johnson told Missouri Independent “unfortunately, the current Senate bill is estimated to cost $50-$60 billion in new mandatory spending with no offsets and was supported by only 20 of 49 Republicans in the Senate.”

Adams rejected these arguments. “The government spends literally trillions of dollars on our nuclear weapons. Whether or not you support that spending, the human cost of building those weapons should be factored in,” she said. She added that she hopes the House will act by the end of the year to pass the bill, but that’s uncertain.
 

 

 

As Compensation Is On Hold, Medical Screening Continues

A major benefit is still available for downwinders and uranium workers: Free medical screening and referrals for medical treatment. The Radiation Exposure Screening and Education Program’s funding has not been affected by the congressional impasse, so screenings are continuing for eligible people exposed to radiation.

Radiation exposure clinics offer screening in Arizona, Colorado, Nevada, New Mexico, and Utah, and health providers can get funding to offer screening in other affected states.

In Nevada, “we hold screening clinics throughout the state: Caliente, Ely, and Winnemucca. Also, in Reno and Las Vegas, which are not in designated downwind areas, but many downwinders have migrated there,” said Shaw in an interview. Among downwinders, “our youngest patients are in their 60s and range up to a few in their 90s,” she said.

Patients fill out questionnaires that ask about their medical problems, family history, and medications. “Ely patients in particular seem to have extensive family histories of cancer, and this may be due to their location directly downwind of the Nevada Test Site,” Shaw said. (Ely is a remote town in central eastern Nevada near the Utah border.)

The screenings cover both cancer and noncancer conditions. Shaw said clinicians often diagnose problems other than the covered cancers — new cases of atrial fibrillation, diabetes, and hypertension. “We see a ton of prostate and skin cancer” but don’t make patients eligible for the compensation program because they’re not covered, she said.

Even as compensation is on hold, doctors can get the word out that screenings are still available, Shaw said. “We continue to get contacted by individuals who in these communities who have never heard of this program, even though we’ve been holding clinics since 2005,” Shaw said. “Despite outreach activities and advertising through newspapers and radio, we find the most successful method of reaching these patients is through word of mouth — either from other patients or their doctors. That is why we feel it is so important to reach other physicians as well.”
 

Affected Patients Don’t Just Live in the West

On the outreach front, clinicians in states outside of the western US region can be helpful, too. Shaw urged oncologists nationwide to ask older patients where they lived in the 1950s and 1960s. “Did they live in Nevada, Arizona, Utah, and other Western states that are downwind? They may qualify for needed services and future compensation.”

With regard to compensation, she noted that applicants need to prove that they lived in affected areas many decades ago. And, of course, they must prove that they’ve had cancer. Locating residency records “has often been an enormous challenge.” Old utility bills, pay stubs, and high school annuals can be helpful, “but these records tend to disappear. People and their families throw stuff away.”

Even proving a cancer diagnosis can be a challenge because records can be missing. In Nevada, the law says clinicians only need to keep medical records for 5 years, Shaw said. “Imaging and pathology reports are destroyed. Patients that have been diagnosed with cancer can’t prove it.”

Shaw said she hopes oncologists will offer these messages to patients: “Be an advocate for your own health and keep copies of your own records. Discuss your diagnosis with your family and contact a cancer registry if you are diagnosed with cancer.”
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

For more than three decades, the federal government sought to make amends to countless Americans who developed cancer after being exposed to radiation from nuclear testing in the Southwest or while working in the uranium mining industry.

As of 2022, more than 40,000 patients with cancer successfully applied for $2.6 billion in compensation. Recipients included “downwinders” who were eligible for $50,000 each if they lived in certain areas of Nevada, Utah, and Arizona during specified nuclear testing periods and developed a covered form of cancer.

In June 2024, however, the Radiation Exposure Compensation Program expired amid infighting among Republicans in Congress over whether to expand it. For now, no one can make a claim, even though many downwinders are still alive and continue to be diagnosed with covered cancers decades after they were exposed in the 1940s, 1950s, and 1960s.

There’s a glimmer of good news. The federal government continues to support free medical screenings for eligible people, including certain downwinders and uranium workers. Meanwhile, there are still important roles for clinicians across the country to play as politicians figure out what — if anything — to do next regarding those exposed to radiation.

“We are still here. We can still screen people,” Zachary Davis, program director for the Radiation Exposure Screening and Education Program, The University of New Mexico, in Albuquerque, New Mexico, said in an interview.
 

Still-Unfolding Legacy of Radiation Exposure

No one knew just how far radiation would spread when the first nuclear bomb was tested in New Mexico in July 1945. Would it cover the state? The entire Southwest? The whole nation?

It also wasn’t clear how radiation would affect people’s health. “There was an awareness that some cancers were caused by radiation, but there wasn’t a cohesive understanding of what the problem was,” Joseph Shonka, PhD, a health physicist who studies radiation exposure and has worked for decades in nuclear engineering, said in an interview.

Now, nearly eight decades later, scientists are still figuring out the full extent of radioactive fallout from nuclear testing. Just last year, a study suggested that radiation from 94 nuclear weapon tests in the Southwest from 1945 to 1962 reached 46 states along with Canada and Mexico.

Activists believe the tests triggered untold number of cancer cases in residents who were exposed in downwind areas:

“My brother died of stomach cancer; my mom died of bone cancer. One of my sisters is surviving brain tumors, and the other one is surviving thyroid cancer,” one New Mexico man recently told ABC-TV’s “Nightline.”

In Idaho, a downwinder advocate told Idaho Capital Sun that everyone who attended a reception for her newly married parents in 1952 — just weeks after a nuclear test — developed cancer or “weird medical complications.” That included her parents, who both had cancer. Her two older brothers, born in 1953 and 1955, also developed cancer, and she’s tracked many other cases in the small town of Emmett.

In Utah, another downwinder advocate told Utah News Dispatch that cancer was common in Salt Lake City neighborhood, where she grew up, which was exposed to fallout. She developed thyroid cancer, her younger sister developed stomach cancer, and an older sister died of lupus, which is connected to radiation exposure. But Salt Lake City isn’t in one of the regions of Utah covered by the federal compensation program, so the advocate can’t get a $50,000 payment.

Downwinders who lived in New Mexico, Idaho, and the Salt Lake City area of Utah are not covered by the federal compensation program. That means none of these people or their descendants are eligible for payments — yet.
 

 

 

Decades After Nuclear Testing, the Government Responds

In 1990, Congress passed the Radiation Exposure Compensation Act, which allowed compensation to people with cancer at several levels. It was later expanded. Downwinders — including those who’ve moved elsewhere over the years — were eligible for $50,000. Onsite participants in nuclear testing could get $75,000. Uranium miners, millers, and ore transporters in 11 states west of the Mississippi River could get $100,000.

Among downwinders, eligible cancers included blood cancers (leukemias with the exception of chronic lymphocytic leukemiamultiple myeloma, and non-Hodgkin’s lymphomas) and a long list of solid organ cancers such as thyroid, breast, stomach, brain, lung, colon, and liver cancers.

“When it comes to blood-related cancers, we do see leukemias, lymphomas, and multiple myeloma, but these cancers were more likely to occur sooner after fallout exposure,” said Laura Shaw, MD, principal investigator who oversees the radiation exposure screening program at the University of Nevada, Las Vegas. “At this point, we see more pancreatic, thyroid, lung, stomach, bladder, and breast cancer.”

The compensation program had major limitations, critics said. “It left out a lot of communities that were exposed,” said Lilly Adams, senior outreach coordinator with the Union of Concerned Scientists (UCS), which supports expanding the program. A national nonprofit organization, UCS was founded more than 50 years ago by scientists and students at the Massachusetts Institute of Technology.

“You have this pretty small amount of one-time compensation, and that’s it,” Adams said in an interview. “You can’t get reimbursed for medical costs or lost wages.” Still, “as flawed as the program is, it’s really valuable for the people who are eligible,” she noted.
 

Now Congress Is Divided on Next Steps

Some lawmakers have recognized the need to do more for those who developed cancer that’s potentially linked to radiation exposure. As the June 2024 expiration of the Radiation Exposure Compensation Act loomed, Democrats and Republicans in Congress worked together to extend and expand the program.

They introduced a bill for higher compensation — $100,000 per person — and the widening of covered downwinder areas to all of Arizona, Nevada, and Utah (which had only been partially covered), along with all of Colorado, Idaho, New Mexico, Montana, and Guam. Under the legislation, the program also would expand to cover some uranium workers who were on the job after 1971 and residents exposed to nuclear waste in Kentucky, Missouri, and Tennessee.

In March, the new legislation easily passed the US Senate by a vote of 69-30, with support from both political parties — but the Republican-led House hasn’t taken it up. As a result, the Radiation Exposure Compensation Act expired in June, and no one can submit new applications for compensation.

A spokesman for House Speaker Mike Johnson told Missouri Independent “unfortunately, the current Senate bill is estimated to cost $50-$60 billion in new mandatory spending with no offsets and was supported by only 20 of 49 Republicans in the Senate.”

Adams rejected these arguments. “The government spends literally trillions of dollars on our nuclear weapons. Whether or not you support that spending, the human cost of building those weapons should be factored in,” she said. She added that she hopes the House will act by the end of the year to pass the bill, but that’s uncertain.
 

 

 

As Compensation Is On Hold, Medical Screening Continues

A major benefit is still available for downwinders and uranium workers: Free medical screening and referrals for medical treatment. The Radiation Exposure Screening and Education Program’s funding has not been affected by the congressional impasse, so screenings are continuing for eligible people exposed to radiation.

Radiation exposure clinics offer screening in Arizona, Colorado, Nevada, New Mexico, and Utah, and health providers can get funding to offer screening in other affected states.

In Nevada, “we hold screening clinics throughout the state: Caliente, Ely, and Winnemucca. Also, in Reno and Las Vegas, which are not in designated downwind areas, but many downwinders have migrated there,” said Shaw in an interview. Among downwinders, “our youngest patients are in their 60s and range up to a few in their 90s,” she said.

Patients fill out questionnaires that ask about their medical problems, family history, and medications. “Ely patients in particular seem to have extensive family histories of cancer, and this may be due to their location directly downwind of the Nevada Test Site,” Shaw said. (Ely is a remote town in central eastern Nevada near the Utah border.)

The screenings cover both cancer and noncancer conditions. Shaw said clinicians often diagnose problems other than the covered cancers — new cases of atrial fibrillation, diabetes, and hypertension. “We see a ton of prostate and skin cancer” but don’t make patients eligible for the compensation program because they’re not covered, she said.

Even as compensation is on hold, doctors can get the word out that screenings are still available, Shaw said. “We continue to get contacted by individuals who in these communities who have never heard of this program, even though we’ve been holding clinics since 2005,” Shaw said. “Despite outreach activities and advertising through newspapers and radio, we find the most successful method of reaching these patients is through word of mouth — either from other patients or their doctors. That is why we feel it is so important to reach other physicians as well.”
 

Affected Patients Don’t Just Live in the West

On the outreach front, clinicians in states outside of the western US region can be helpful, too. Shaw urged oncologists nationwide to ask older patients where they lived in the 1950s and 1960s. “Did they live in Nevada, Arizona, Utah, and other Western states that are downwind? They may qualify for needed services and future compensation.”

With regard to compensation, she noted that applicants need to prove that they lived in affected areas many decades ago. And, of course, they must prove that they’ve had cancer. Locating residency records “has often been an enormous challenge.” Old utility bills, pay stubs, and high school annuals can be helpful, “but these records tend to disappear. People and their families throw stuff away.”

Even proving a cancer diagnosis can be a challenge because records can be missing. In Nevada, the law says clinicians only need to keep medical records for 5 years, Shaw said. “Imaging and pathology reports are destroyed. Patients that have been diagnosed with cancer can’t prove it.”

Shaw said she hopes oncologists will offer these messages to patients: “Be an advocate for your own health and keep copies of your own records. Discuss your diagnosis with your family and contact a cancer registry if you are diagnosed with cancer.”
 

A version of this article appeared on Medscape.com.

For more than three decades, the federal government sought to make amends to countless Americans who developed cancer after being exposed to radiation from nuclear testing in the Southwest or while working in the uranium mining industry.

As of 2022, more than 40,000 patients with cancer successfully applied for $2.6 billion in compensation. Recipients included “downwinders” who were eligible for $50,000 each if they lived in certain areas of Nevada, Utah, and Arizona during specified nuclear testing periods and developed a covered form of cancer.

In June 2024, however, the Radiation Exposure Compensation Program expired amid infighting among Republicans in Congress over whether to expand it. For now, no one can make a claim, even though many downwinders are still alive and continue to be diagnosed with covered cancers decades after they were exposed in the 1940s, 1950s, and 1960s.

There’s a glimmer of good news. The federal government continues to support free medical screenings for eligible people, including certain downwinders and uranium workers. Meanwhile, there are still important roles for clinicians across the country to play as politicians figure out what — if anything — to do next regarding those exposed to radiation.

“We are still here. We can still screen people,” Zachary Davis, program director for the Radiation Exposure Screening and Education Program, The University of New Mexico, in Albuquerque, New Mexico, said in an interview.
 

Still-Unfolding Legacy of Radiation Exposure

No one knew just how far radiation would spread when the first nuclear bomb was tested in New Mexico in July 1945. Would it cover the state? The entire Southwest? The whole nation?

It also wasn’t clear how radiation would affect people’s health. “There was an awareness that some cancers were caused by radiation, but there wasn’t a cohesive understanding of what the problem was,” Joseph Shonka, PhD, a health physicist who studies radiation exposure and has worked for decades in nuclear engineering, said in an interview.

Now, nearly eight decades later, scientists are still figuring out the full extent of radioactive fallout from nuclear testing. Just last year, a study suggested that radiation from 94 nuclear weapon tests in the Southwest from 1945 to 1962 reached 46 states along with Canada and Mexico.

Activists believe the tests triggered untold number of cancer cases in residents who were exposed in downwind areas:

“My brother died of stomach cancer; my mom died of bone cancer. One of my sisters is surviving brain tumors, and the other one is surviving thyroid cancer,” one New Mexico man recently told ABC-TV’s “Nightline.”

In Idaho, a downwinder advocate told Idaho Capital Sun that everyone who attended a reception for her newly married parents in 1952 — just weeks after a nuclear test — developed cancer or “weird medical complications.” That included her parents, who both had cancer. Her two older brothers, born in 1953 and 1955, also developed cancer, and she’s tracked many other cases in the small town of Emmett.

In Utah, another downwinder advocate told Utah News Dispatch that cancer was common in Salt Lake City neighborhood, where she grew up, which was exposed to fallout. She developed thyroid cancer, her younger sister developed stomach cancer, and an older sister died of lupus, which is connected to radiation exposure. But Salt Lake City isn’t in one of the regions of Utah covered by the federal compensation program, so the advocate can’t get a $50,000 payment.

Downwinders who lived in New Mexico, Idaho, and the Salt Lake City area of Utah are not covered by the federal compensation program. That means none of these people or their descendants are eligible for payments — yet.
 

 

 

Decades After Nuclear Testing, the Government Responds

In 1990, Congress passed the Radiation Exposure Compensation Act, which allowed compensation to people with cancer at several levels. It was later expanded. Downwinders — including those who’ve moved elsewhere over the years — were eligible for $50,000. Onsite participants in nuclear testing could get $75,000. Uranium miners, millers, and ore transporters in 11 states west of the Mississippi River could get $100,000.

Among downwinders, eligible cancers included blood cancers (leukemias with the exception of chronic lymphocytic leukemiamultiple myeloma, and non-Hodgkin’s lymphomas) and a long list of solid organ cancers such as thyroid, breast, stomach, brain, lung, colon, and liver cancers.

“When it comes to blood-related cancers, we do see leukemias, lymphomas, and multiple myeloma, but these cancers were more likely to occur sooner after fallout exposure,” said Laura Shaw, MD, principal investigator who oversees the radiation exposure screening program at the University of Nevada, Las Vegas. “At this point, we see more pancreatic, thyroid, lung, stomach, bladder, and breast cancer.”

The compensation program had major limitations, critics said. “It left out a lot of communities that were exposed,” said Lilly Adams, senior outreach coordinator with the Union of Concerned Scientists (UCS), which supports expanding the program. A national nonprofit organization, UCS was founded more than 50 years ago by scientists and students at the Massachusetts Institute of Technology.

“You have this pretty small amount of one-time compensation, and that’s it,” Adams said in an interview. “You can’t get reimbursed for medical costs or lost wages.” Still, “as flawed as the program is, it’s really valuable for the people who are eligible,” she noted.
 

Now Congress Is Divided on Next Steps

Some lawmakers have recognized the need to do more for those who developed cancer that’s potentially linked to radiation exposure. As the June 2024 expiration of the Radiation Exposure Compensation Act loomed, Democrats and Republicans in Congress worked together to extend and expand the program.

They introduced a bill for higher compensation — $100,000 per person — and the widening of covered downwinder areas to all of Arizona, Nevada, and Utah (which had only been partially covered), along with all of Colorado, Idaho, New Mexico, Montana, and Guam. Under the legislation, the program also would expand to cover some uranium workers who were on the job after 1971 and residents exposed to nuclear waste in Kentucky, Missouri, and Tennessee.

In March, the new legislation easily passed the US Senate by a vote of 69-30, with support from both political parties — but the Republican-led House hasn’t taken it up. As a result, the Radiation Exposure Compensation Act expired in June, and no one can submit new applications for compensation.

A spokesman for House Speaker Mike Johnson told Missouri Independent “unfortunately, the current Senate bill is estimated to cost $50-$60 billion in new mandatory spending with no offsets and was supported by only 20 of 49 Republicans in the Senate.”

Adams rejected these arguments. “The government spends literally trillions of dollars on our nuclear weapons. Whether or not you support that spending, the human cost of building those weapons should be factored in,” she said. She added that she hopes the House will act by the end of the year to pass the bill, but that’s uncertain.
 

 

 

As Compensation Is On Hold, Medical Screening Continues

A major benefit is still available for downwinders and uranium workers: Free medical screening and referrals for medical treatment. The Radiation Exposure Screening and Education Program’s funding has not been affected by the congressional impasse, so screenings are continuing for eligible people exposed to radiation.

Radiation exposure clinics offer screening in Arizona, Colorado, Nevada, New Mexico, and Utah, and health providers can get funding to offer screening in other affected states.

In Nevada, “we hold screening clinics throughout the state: Caliente, Ely, and Winnemucca. Also, in Reno and Las Vegas, which are not in designated downwind areas, but many downwinders have migrated there,” said Shaw in an interview. Among downwinders, “our youngest patients are in their 60s and range up to a few in their 90s,” she said.

Patients fill out questionnaires that ask about their medical problems, family history, and medications. “Ely patients in particular seem to have extensive family histories of cancer, and this may be due to their location directly downwind of the Nevada Test Site,” Shaw said. (Ely is a remote town in central eastern Nevada near the Utah border.)

The screenings cover both cancer and noncancer conditions. Shaw said clinicians often diagnose problems other than the covered cancers — new cases of atrial fibrillation, diabetes, and hypertension. “We see a ton of prostate and skin cancer” but don’t make patients eligible for the compensation program because they’re not covered, she said.

Even as compensation is on hold, doctors can get the word out that screenings are still available, Shaw said. “We continue to get contacted by individuals who in these communities who have never heard of this program, even though we’ve been holding clinics since 2005,” Shaw said. “Despite outreach activities and advertising through newspapers and radio, we find the most successful method of reaching these patients is through word of mouth — either from other patients or their doctors. That is why we feel it is so important to reach other physicians as well.”
 

Affected Patients Don’t Just Live in the West

On the outreach front, clinicians in states outside of the western US region can be helpful, too. Shaw urged oncologists nationwide to ask older patients where they lived in the 1950s and 1960s. “Did they live in Nevada, Arizona, Utah, and other Western states that are downwind? They may qualify for needed services and future compensation.”

With regard to compensation, she noted that applicants need to prove that they lived in affected areas many decades ago. And, of course, they must prove that they’ve had cancer. Locating residency records “has often been an enormous challenge.” Old utility bills, pay stubs, and high school annuals can be helpful, “but these records tend to disappear. People and their families throw stuff away.”

Even proving a cancer diagnosis can be a challenge because records can be missing. In Nevada, the law says clinicians only need to keep medical records for 5 years, Shaw said. “Imaging and pathology reports are destroyed. Patients that have been diagnosed with cancer can’t prove it.”

Shaw said she hopes oncologists will offer these messages to patients: “Be an advocate for your own health and keep copies of your own records. Discuss your diagnosis with your family and contact a cancer registry if you are diagnosed with cancer.”
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cannabis in Cancer: What Oncologists and Patients Should Know

Article Type
Changed
Wed, 11/06/2024 - 05:20

Many patients use cannabis to manage their cancer-related symptoms. However, research indicates that patients often do so without speaking to their oncologists first, and oncologists may be hesitant to broach the topic with their patients.

Updated guidelines from the American Society of Clinical Oncology (ASCO) on the use of cannabis and cannabinoids in adults with cancer stress that it’s an important conversation to have.

According to the ASCO expert panel, access to and use of cannabis alongside cancer care have outpaced the science on evidence-based indications, and overall high-quality data on the effects of cannabis during cancer care are lacking. While several observational studies support cannabis use to help ease chemotherapy-related nausea and vomiting, the literature remains more divided on other potential benefits, such as alleviating cancer pain and sleep problems, and some evidence points to potential downsides of cannabis use.

Oncologists should “absolutely talk to patients” about cannabis, Brooke Worster, MD, medical director for the Master of Science in Medical Cannabis Science & Business program at Thomas Jefferson University, Philadelphia, told Medscape Medical News.

“Patients are interested, and they are going to find access to information. As a medical professional, it’s our job to help guide them through these spaces in a safe, nonjudgmental way.”

But, Worster noted, oncologists don’t have to be experts on cannabis to begin the conversation with patients.

So, “let yourself off the hook,” Worster urged.

Plus, avoiding the conversation won’t stop patients from using cannabis. In a recent study, Worster and her colleagues found that nearly one third of patients at 12 National Cancer Institute-designated cancer centers had used cannabis since their diagnosis — most often for sleep disturbance, pain, stress, and anxiety. Most (60%) felt somewhat or extremely comfortable talking to their healthcare provider about it, but only 21.5% said they had done so. Even fewer — about 10% — had talked to their treating oncologist.

Because patients may not discuss cannabis use, it’s especially important for oncologists to open up a line of communication, said Worster, also the enterprise director of supportive oncology at the Thomas Jefferson University.
 

Evidence on Cannabis During Cancer Care

A substantial proportion of people with cancer believe cannabis can help manage cancer-related symptoms.

In Worster’s recent survey study, regardless of whether patients had used cannabis, almost 90% of those surveyed reported a perceived benefit. Although 65% also reported perceived risks for cannabis use, including difficulty concentrating, lung damage, and impaired memory, the perceived benefits outweighed the risks.

Despite generally positive perceptions, the overall literature on the benefits of cannabis in patients with cancer paints a less clear picture.

The ASCO guidelines, which were based on 13 systematic reviews and five additional primary studies, reported that cannabis can improve refractory, chemotherapy-induced nausea or vomiting when added to guideline-concordant antiemetic regimens, but that there is no clear evidence of benefit or harm for other supportive care outcomes.

The “certainty of evidence for most outcomes was low or very low,” the ASCO authors wrote.

The ASCO experts explained that, outside the context of a clinical trial, the evidence is not sufficient to recommend cannabis or cannabinoids for managing cancer pain, sleep issues, appetite loss, or anxiety and depression. For these outcomes, some studies indicate a benefit, while others don’t.

Real-world data from a large registry study, for instance, have indicated that medical cannabis is “a safe and effective complementary treatment for pain relief in patients with cancer.” However, a 2020 meta-analysis found that, in studies with a low risk for bias, adding cannabinoids to opioids did not reduce cancer pain in adults with advanced cancer.

There can be downsides to cannabis use, too. In one recent study, some patients reported feeling worse physically and psychologically compared with those who didn’t use cannabis. Another study found that oral cannabis was associated with “bothersome” side effects, including sedation, dizziness, and transient anxiety.

The ASCO guidelines also made it clear that cannabis or cannabinoids should not be used as cancer-directed treatment, outside of a clinical trial.
 

 

 

Talking to Patients About Cannabis

Given the level of evidence and patient interest in cannabis, it is important for oncologists to raise the topic of cannabis use with their patients.

To help inform decision-making and approaches to care, the ASCO guidelines suggest that oncologists can guide care themselves or direct patients to appropriate “unbiased, evidence-based” resources. For those who use cannabis or cannabinoids outside of evidence-based indications or clinician recommendations, it’s important to explore patients’ goals, educate them, and try to minimize harm.

One strategy for broaching the topic, Worster suggested, is to simply ask patients if they have tried or considered trying cannabis to control symptoms like nausea and vomiting, loss of appetite, or cancer pain.

The conversation with patients should then include an overview of the potential benefits and potential risks for cannabis use as well as risk reduction strategies, Worster noted.

But “approach it in an open and nonjudgmental frame of mind,” she said. “Just have a conversation.”

Discussing the formulation and concentration of tetrahydrocannabinol (THC) and cannabidiol (CBD) in products matters as well.

Will the product be inhaled, ingested, or topical? Inhaled cannabis is not ideal but is sometimes what patients have access to, Worster explained. Inhaled formulations tend to have faster onset, which might be preferable for treating chemotherapy-related nausea and vomiting, whereas edible formulations may take a while to start working.

It’s also important to warn patients about taking too much, she said, explaining that inhaling THC at higher doses can increase the risk for cardiovascular effects, anxiety, paranoia, panic, and psychosis.

CBD, on the other hand, is anti-inflammatory, but early data suggest it may blunt immune responses in high doses and should be used cautiously by patients receiving immunotherapy.

Worster noted that as laws change and the science advances, new cannabis products and formulations will emerge, as will artificial intelligence tools for helping to guide patients and clinicians in optimal use of cannabis for cancer care. State websites are a particularly helpful tool for providing state-specific medical education related to cannabis laws and use, as well, she said.

The bottom line, she said, is that talking to patients about the ins and outs of cannabis use “really matters.”

Worster disclosed that she is a medical consultant for EO Care.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Many patients use cannabis to manage their cancer-related symptoms. However, research indicates that patients often do so without speaking to their oncologists first, and oncologists may be hesitant to broach the topic with their patients.

Updated guidelines from the American Society of Clinical Oncology (ASCO) on the use of cannabis and cannabinoids in adults with cancer stress that it’s an important conversation to have.

According to the ASCO expert panel, access to and use of cannabis alongside cancer care have outpaced the science on evidence-based indications, and overall high-quality data on the effects of cannabis during cancer care are lacking. While several observational studies support cannabis use to help ease chemotherapy-related nausea and vomiting, the literature remains more divided on other potential benefits, such as alleviating cancer pain and sleep problems, and some evidence points to potential downsides of cannabis use.

Oncologists should “absolutely talk to patients” about cannabis, Brooke Worster, MD, medical director for the Master of Science in Medical Cannabis Science & Business program at Thomas Jefferson University, Philadelphia, told Medscape Medical News.

“Patients are interested, and they are going to find access to information. As a medical professional, it’s our job to help guide them through these spaces in a safe, nonjudgmental way.”

But, Worster noted, oncologists don’t have to be experts on cannabis to begin the conversation with patients.

So, “let yourself off the hook,” Worster urged.

Plus, avoiding the conversation won’t stop patients from using cannabis. In a recent study, Worster and her colleagues found that nearly one third of patients at 12 National Cancer Institute-designated cancer centers had used cannabis since their diagnosis — most often for sleep disturbance, pain, stress, and anxiety. Most (60%) felt somewhat or extremely comfortable talking to their healthcare provider about it, but only 21.5% said they had done so. Even fewer — about 10% — had talked to their treating oncologist.

Because patients may not discuss cannabis use, it’s especially important for oncologists to open up a line of communication, said Worster, also the enterprise director of supportive oncology at the Thomas Jefferson University.
 

Evidence on Cannabis During Cancer Care

A substantial proportion of people with cancer believe cannabis can help manage cancer-related symptoms.

In Worster’s recent survey study, regardless of whether patients had used cannabis, almost 90% of those surveyed reported a perceived benefit. Although 65% also reported perceived risks for cannabis use, including difficulty concentrating, lung damage, and impaired memory, the perceived benefits outweighed the risks.

Despite generally positive perceptions, the overall literature on the benefits of cannabis in patients with cancer paints a less clear picture.

The ASCO guidelines, which were based on 13 systematic reviews and five additional primary studies, reported that cannabis can improve refractory, chemotherapy-induced nausea or vomiting when added to guideline-concordant antiemetic regimens, but that there is no clear evidence of benefit or harm for other supportive care outcomes.

The “certainty of evidence for most outcomes was low or very low,” the ASCO authors wrote.

The ASCO experts explained that, outside the context of a clinical trial, the evidence is not sufficient to recommend cannabis or cannabinoids for managing cancer pain, sleep issues, appetite loss, or anxiety and depression. For these outcomes, some studies indicate a benefit, while others don’t.

Real-world data from a large registry study, for instance, have indicated that medical cannabis is “a safe and effective complementary treatment for pain relief in patients with cancer.” However, a 2020 meta-analysis found that, in studies with a low risk for bias, adding cannabinoids to opioids did not reduce cancer pain in adults with advanced cancer.

There can be downsides to cannabis use, too. In one recent study, some patients reported feeling worse physically and psychologically compared with those who didn’t use cannabis. Another study found that oral cannabis was associated with “bothersome” side effects, including sedation, dizziness, and transient anxiety.

The ASCO guidelines also made it clear that cannabis or cannabinoids should not be used as cancer-directed treatment, outside of a clinical trial.
 

 

 

Talking to Patients About Cannabis

Given the level of evidence and patient interest in cannabis, it is important for oncologists to raise the topic of cannabis use with their patients.

To help inform decision-making and approaches to care, the ASCO guidelines suggest that oncologists can guide care themselves or direct patients to appropriate “unbiased, evidence-based” resources. For those who use cannabis or cannabinoids outside of evidence-based indications or clinician recommendations, it’s important to explore patients’ goals, educate them, and try to minimize harm.

One strategy for broaching the topic, Worster suggested, is to simply ask patients if they have tried or considered trying cannabis to control symptoms like nausea and vomiting, loss of appetite, or cancer pain.

The conversation with patients should then include an overview of the potential benefits and potential risks for cannabis use as well as risk reduction strategies, Worster noted.

But “approach it in an open and nonjudgmental frame of mind,” she said. “Just have a conversation.”

Discussing the formulation and concentration of tetrahydrocannabinol (THC) and cannabidiol (CBD) in products matters as well.

Will the product be inhaled, ingested, or topical? Inhaled cannabis is not ideal but is sometimes what patients have access to, Worster explained. Inhaled formulations tend to have faster onset, which might be preferable for treating chemotherapy-related nausea and vomiting, whereas edible formulations may take a while to start working.

It’s also important to warn patients about taking too much, she said, explaining that inhaling THC at higher doses can increase the risk for cardiovascular effects, anxiety, paranoia, panic, and psychosis.

CBD, on the other hand, is anti-inflammatory, but early data suggest it may blunt immune responses in high doses and should be used cautiously by patients receiving immunotherapy.

Worster noted that as laws change and the science advances, new cannabis products and formulations will emerge, as will artificial intelligence tools for helping to guide patients and clinicians in optimal use of cannabis for cancer care. State websites are a particularly helpful tool for providing state-specific medical education related to cannabis laws and use, as well, she said.

The bottom line, she said, is that talking to patients about the ins and outs of cannabis use “really matters.”

Worster disclosed that she is a medical consultant for EO Care.
 

A version of this article appeared on Medscape.com.

Many patients use cannabis to manage their cancer-related symptoms. However, research indicates that patients often do so without speaking to their oncologists first, and oncologists may be hesitant to broach the topic with their patients.

Updated guidelines from the American Society of Clinical Oncology (ASCO) on the use of cannabis and cannabinoids in adults with cancer stress that it’s an important conversation to have.

According to the ASCO expert panel, access to and use of cannabis alongside cancer care have outpaced the science on evidence-based indications, and overall high-quality data on the effects of cannabis during cancer care are lacking. While several observational studies support cannabis use to help ease chemotherapy-related nausea and vomiting, the literature remains more divided on other potential benefits, such as alleviating cancer pain and sleep problems, and some evidence points to potential downsides of cannabis use.

Oncologists should “absolutely talk to patients” about cannabis, Brooke Worster, MD, medical director for the Master of Science in Medical Cannabis Science & Business program at Thomas Jefferson University, Philadelphia, told Medscape Medical News.

“Patients are interested, and they are going to find access to information. As a medical professional, it’s our job to help guide them through these spaces in a safe, nonjudgmental way.”

But, Worster noted, oncologists don’t have to be experts on cannabis to begin the conversation with patients.

So, “let yourself off the hook,” Worster urged.

Plus, avoiding the conversation won’t stop patients from using cannabis. In a recent study, Worster and her colleagues found that nearly one third of patients at 12 National Cancer Institute-designated cancer centers had used cannabis since their diagnosis — most often for sleep disturbance, pain, stress, and anxiety. Most (60%) felt somewhat or extremely comfortable talking to their healthcare provider about it, but only 21.5% said they had done so. Even fewer — about 10% — had talked to their treating oncologist.

Because patients may not discuss cannabis use, it’s especially important for oncologists to open up a line of communication, said Worster, also the enterprise director of supportive oncology at the Thomas Jefferson University.
 

Evidence on Cannabis During Cancer Care

A substantial proportion of people with cancer believe cannabis can help manage cancer-related symptoms.

In Worster’s recent survey study, regardless of whether patients had used cannabis, almost 90% of those surveyed reported a perceived benefit. Although 65% also reported perceived risks for cannabis use, including difficulty concentrating, lung damage, and impaired memory, the perceived benefits outweighed the risks.

Despite generally positive perceptions, the overall literature on the benefits of cannabis in patients with cancer paints a less clear picture.

The ASCO guidelines, which were based on 13 systematic reviews and five additional primary studies, reported that cannabis can improve refractory, chemotherapy-induced nausea or vomiting when added to guideline-concordant antiemetic regimens, but that there is no clear evidence of benefit or harm for other supportive care outcomes.

The “certainty of evidence for most outcomes was low or very low,” the ASCO authors wrote.

The ASCO experts explained that, outside the context of a clinical trial, the evidence is not sufficient to recommend cannabis or cannabinoids for managing cancer pain, sleep issues, appetite loss, or anxiety and depression. For these outcomes, some studies indicate a benefit, while others don’t.

Real-world data from a large registry study, for instance, have indicated that medical cannabis is “a safe and effective complementary treatment for pain relief in patients with cancer.” However, a 2020 meta-analysis found that, in studies with a low risk for bias, adding cannabinoids to opioids did not reduce cancer pain in adults with advanced cancer.

There can be downsides to cannabis use, too. In one recent study, some patients reported feeling worse physically and psychologically compared with those who didn’t use cannabis. Another study found that oral cannabis was associated with “bothersome” side effects, including sedation, dizziness, and transient anxiety.

The ASCO guidelines also made it clear that cannabis or cannabinoids should not be used as cancer-directed treatment, outside of a clinical trial.
 

 

 

Talking to Patients About Cannabis

Given the level of evidence and patient interest in cannabis, it is important for oncologists to raise the topic of cannabis use with their patients.

To help inform decision-making and approaches to care, the ASCO guidelines suggest that oncologists can guide care themselves or direct patients to appropriate “unbiased, evidence-based” resources. For those who use cannabis or cannabinoids outside of evidence-based indications or clinician recommendations, it’s important to explore patients’ goals, educate them, and try to minimize harm.

One strategy for broaching the topic, Worster suggested, is to simply ask patients if they have tried or considered trying cannabis to control symptoms like nausea and vomiting, loss of appetite, or cancer pain.

The conversation with patients should then include an overview of the potential benefits and potential risks for cannabis use as well as risk reduction strategies, Worster noted.

But “approach it in an open and nonjudgmental frame of mind,” she said. “Just have a conversation.”

Discussing the formulation and concentration of tetrahydrocannabinol (THC) and cannabidiol (CBD) in products matters as well.

Will the product be inhaled, ingested, or topical? Inhaled cannabis is not ideal but is sometimes what patients have access to, Worster explained. Inhaled formulations tend to have faster onset, which might be preferable for treating chemotherapy-related nausea and vomiting, whereas edible formulations may take a while to start working.

It’s also important to warn patients about taking too much, she said, explaining that inhaling THC at higher doses can increase the risk for cardiovascular effects, anxiety, paranoia, panic, and psychosis.

CBD, on the other hand, is anti-inflammatory, but early data suggest it may blunt immune responses in high doses and should be used cautiously by patients receiving immunotherapy.

Worster noted that as laws change and the science advances, new cannabis products and formulations will emerge, as will artificial intelligence tools for helping to guide patients and clinicians in optimal use of cannabis for cancer care. State websites are a particularly helpful tool for providing state-specific medical education related to cannabis laws and use, as well, she said.

The bottom line, she said, is that talking to patients about the ins and outs of cannabis use “really matters.”

Worster disclosed that she is a medical consultant for EO Care.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Adjuvant Chemo Beneficial in TNBC With High Immune Infiltration

Article Type
Changed
Tue, 10/22/2024 - 13:04

 

TOPLINE:

Patients with early-stage triple-negative breast cancer (TNBC) and high immune infiltration showed improved disease-free survival (DFS) with adjuvant capecitabine. These “immune-hot” patients had a 5-year DFS rate of 96.9% compared with 79.4% in the control group.

METHODOLOGY:

  • In some studies, adding extended capecitabine to standard adjuvant chemotherapy has been shown to improve DFS in patients with early-stage TNBC, and one subset analysis suggested improved outcomes were most strongly associated with high immune infiltration.
  • Researchers conducted a retrospective analysis of CBCSG010, a randomized phase 3 clinical trial, to identify the specific population that benefited from adjuvant capecitabine by analyzing the immune infiltration status of the tumors.
  • The CBCSGO10 study of 585 patients originally found adjuvant capecitabine improved 5-year survival in patients with TNBC by 5.9%.
  • This analysis included 207 patients (capecitabine arm, n = 104; control arm, n = 103) with serial formalin-fixed, paraffin-embedded tumor specimens, of which RNA sequencing data were available from 36 patients (capecitabine, n = 24; control, n = 12).
  • Transcriptome data on the tumor microenvironment were validated with immunohistochemical staining of two markers, programmed death-ligand 1 (PD-L1) and CD8, as well as stromal tumor-infiltrating lymphocytes (sTILs); patients with high PD-L1, CD8, and sTIL expression levels were defined as “immune hot.”

TAKEAWAY:

  • Patients with TNBC and high immune infiltration treated with capecitabine had a 5-year DFS rate of 96.9% compared with 79.4% in the control group (hazard ratio [HR], 0.13; 95% CI, 0.03-0.52; P = .049).
  • In the capecitabine group, the immune-hot patients had a higher 5-year DFS rate (96.9%) compared with immune-cold patients (76.4%; HR, 0.11; 95% CI, 0.04-0.29; P = .028).
  • Gene ontology analysis showed greater enrichment of immune-related pathways in patients without recurrence in the capecitabine group, as well as higher expression of TYMP, a key liver enzyme in the metabolism of capecitabine.
  • High expression levels of immune biomarkers PD-L1, CD8, and sTILs were associated with significantly improved DFS in the capecitabine group.

IN PRACTICE:

“Our study suggested that immune-hot patients with TNBC are more likely to benefit from adjuvant capecitabine and that combining immunotherapy with chemotherapy may be expected to be more effective in immune-hot patients,” wrote the study authors.

SOURCE:

The study was led by Wenya Wu, MMed, and Yunsong Yang, MD, at the Department of Breast Surgery, Fudan University Shanghai Cancer Center in Shanghai, People’s Republic of China. It was published online October 2024 in JNCCN — Journal of the National Comprehensive Cancer Network.

LIMITATIONS:

The retrospective nature of the sample collection limited the availability of RNA sequencing data. External verification was challenging due to limited accessibility of transcriptome data from patients treated with additional adjuvant capecitabine or standard chemotherapy alone. The criteria for identifying immune-hot tumors require further exploration and determination.

DISCLOSURES:

This study was funded by the National Natural Science Foundation of China, China Postdoctoral Science Foundation, and Shanghai Science and Technology Development Foundation. The authors disclosed no relevant conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Patients with early-stage triple-negative breast cancer (TNBC) and high immune infiltration showed improved disease-free survival (DFS) with adjuvant capecitabine. These “immune-hot” patients had a 5-year DFS rate of 96.9% compared with 79.4% in the control group.

METHODOLOGY:

  • In some studies, adding extended capecitabine to standard adjuvant chemotherapy has been shown to improve DFS in patients with early-stage TNBC, and one subset analysis suggested improved outcomes were most strongly associated with high immune infiltration.
  • Researchers conducted a retrospective analysis of CBCSG010, a randomized phase 3 clinical trial, to identify the specific population that benefited from adjuvant capecitabine by analyzing the immune infiltration status of the tumors.
  • The CBCSGO10 study of 585 patients originally found adjuvant capecitabine improved 5-year survival in patients with TNBC by 5.9%.
  • This analysis included 207 patients (capecitabine arm, n = 104; control arm, n = 103) with serial formalin-fixed, paraffin-embedded tumor specimens, of which RNA sequencing data were available from 36 patients (capecitabine, n = 24; control, n = 12).
  • Transcriptome data on the tumor microenvironment were validated with immunohistochemical staining of two markers, programmed death-ligand 1 (PD-L1) and CD8, as well as stromal tumor-infiltrating lymphocytes (sTILs); patients with high PD-L1, CD8, and sTIL expression levels were defined as “immune hot.”

TAKEAWAY:

  • Patients with TNBC and high immune infiltration treated with capecitabine had a 5-year DFS rate of 96.9% compared with 79.4% in the control group (hazard ratio [HR], 0.13; 95% CI, 0.03-0.52; P = .049).
  • In the capecitabine group, the immune-hot patients had a higher 5-year DFS rate (96.9%) compared with immune-cold patients (76.4%; HR, 0.11; 95% CI, 0.04-0.29; P = .028).
  • Gene ontology analysis showed greater enrichment of immune-related pathways in patients without recurrence in the capecitabine group, as well as higher expression of TYMP, a key liver enzyme in the metabolism of capecitabine.
  • High expression levels of immune biomarkers PD-L1, CD8, and sTILs were associated with significantly improved DFS in the capecitabine group.

IN PRACTICE:

“Our study suggested that immune-hot patients with TNBC are more likely to benefit from adjuvant capecitabine and that combining immunotherapy with chemotherapy may be expected to be more effective in immune-hot patients,” wrote the study authors.

SOURCE:

The study was led by Wenya Wu, MMed, and Yunsong Yang, MD, at the Department of Breast Surgery, Fudan University Shanghai Cancer Center in Shanghai, People’s Republic of China. It was published online October 2024 in JNCCN — Journal of the National Comprehensive Cancer Network.

LIMITATIONS:

The retrospective nature of the sample collection limited the availability of RNA sequencing data. External verification was challenging due to limited accessibility of transcriptome data from patients treated with additional adjuvant capecitabine or standard chemotherapy alone. The criteria for identifying immune-hot tumors require further exploration and determination.

DISCLOSURES:

This study was funded by the National Natural Science Foundation of China, China Postdoctoral Science Foundation, and Shanghai Science and Technology Development Foundation. The authors disclosed no relevant conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

Patients with early-stage triple-negative breast cancer (TNBC) and high immune infiltration showed improved disease-free survival (DFS) with adjuvant capecitabine. These “immune-hot” patients had a 5-year DFS rate of 96.9% compared with 79.4% in the control group.

METHODOLOGY:

  • In some studies, adding extended capecitabine to standard adjuvant chemotherapy has been shown to improve DFS in patients with early-stage TNBC, and one subset analysis suggested improved outcomes were most strongly associated with high immune infiltration.
  • Researchers conducted a retrospective analysis of CBCSG010, a randomized phase 3 clinical trial, to identify the specific population that benefited from adjuvant capecitabine by analyzing the immune infiltration status of the tumors.
  • The CBCSGO10 study of 585 patients originally found adjuvant capecitabine improved 5-year survival in patients with TNBC by 5.9%.
  • This analysis included 207 patients (capecitabine arm, n = 104; control arm, n = 103) with serial formalin-fixed, paraffin-embedded tumor specimens, of which RNA sequencing data were available from 36 patients (capecitabine, n = 24; control, n = 12).
  • Transcriptome data on the tumor microenvironment were validated with immunohistochemical staining of two markers, programmed death-ligand 1 (PD-L1) and CD8, as well as stromal tumor-infiltrating lymphocytes (sTILs); patients with high PD-L1, CD8, and sTIL expression levels were defined as “immune hot.”

TAKEAWAY:

  • Patients with TNBC and high immune infiltration treated with capecitabine had a 5-year DFS rate of 96.9% compared with 79.4% in the control group (hazard ratio [HR], 0.13; 95% CI, 0.03-0.52; P = .049).
  • In the capecitabine group, the immune-hot patients had a higher 5-year DFS rate (96.9%) compared with immune-cold patients (76.4%; HR, 0.11; 95% CI, 0.04-0.29; P = .028).
  • Gene ontology analysis showed greater enrichment of immune-related pathways in patients without recurrence in the capecitabine group, as well as higher expression of TYMP, a key liver enzyme in the metabolism of capecitabine.
  • High expression levels of immune biomarkers PD-L1, CD8, and sTILs were associated with significantly improved DFS in the capecitabine group.

IN PRACTICE:

“Our study suggested that immune-hot patients with TNBC are more likely to benefit from adjuvant capecitabine and that combining immunotherapy with chemotherapy may be expected to be more effective in immune-hot patients,” wrote the study authors.

SOURCE:

The study was led by Wenya Wu, MMed, and Yunsong Yang, MD, at the Department of Breast Surgery, Fudan University Shanghai Cancer Center in Shanghai, People’s Republic of China. It was published online October 2024 in JNCCN — Journal of the National Comprehensive Cancer Network.

LIMITATIONS:

The retrospective nature of the sample collection limited the availability of RNA sequencing data. External verification was challenging due to limited accessibility of transcriptome data from patients treated with additional adjuvant capecitabine or standard chemotherapy alone. The criteria for identifying immune-hot tumors require further exploration and determination.

DISCLOSURES:

This study was funded by the National Natural Science Foundation of China, China Postdoctoral Science Foundation, and Shanghai Science and Technology Development Foundation. The authors disclosed no relevant conflicts of interest.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Risk Assessment Tool Can Help Predict Fractures in Cancer

Article Type
Changed
Wed, 10/23/2024 - 08:22

 

TOPLINE:

The Fracture Risk Assessment Tool (FRAX), with bone mineral density, predicts the risk for major osteoporotic fractures and hip fractures in patients with cancer, but FRAX without bone mineral density slightly overestimates these risks, a new analysis found.

METHODOLOGY:

  • Cancer-specific guidelines recommend using FRAX to assess fracture risk, but its applicability in patients with cancer remains unclear.
  • This retrospective cohort study included 9877 patients with cancer (mean age, 67.1 years) and 45,875 matched control individuals without cancer (mean age, 66.2 years). All participants had dual-energy x-ray absorptiometry (DXA) scans.
  • Researchers collected data on bone mineral density and fractures. The 10-year probabilities of major osteoporotic fractures and hip fractures were calculated using FRAX, and the observed 10-year probabilities of these fractures were compared with FRAX-derived probabilities.
  • Compared with individuals without cancer, patients with cancer had a shorter mean follow-up duration (8.5 vs 7.6 years), a slightly higher mean body mass index, and a higher percentage of parental hip fractures (7.0% vs 8.2%); additionally, patients with cancer were more likely to have secondary causes of osteoporosis (10% vs 38.4%) and less likely to receive osteoporosis medication (9.9% vs 4.2%).

TAKEAWAY:

  • Compared with individuals without cancer, patients with cancer had a significantly higher incidence rate of major fractures (12.9 vs 14.5 per 1000 person-years) and hip fractures (3.5 vs 4.2 per 1000 person-years).
  • FRAX with bone mineral density exhibited excellent calibration for predicting major osteoporotic fractures (slope, 1.03) and hip fractures (0.97) in patients with cancer, regardless of the site of cancer diagnosis. FRAX without bone mineral density, however, underestimated the risk for both major (0.87) and hip fractures (0.72).
  • In patients with cancer, FRAX with bone mineral density findings were associated with incident major osteoporotic fractures (hazard ratio [HR] per SD, 1.84) and hip fractures (HR per SD, 3.61).
  • When models were adjusted for FRAX with bone mineral density, patients with cancer had an increased risk for both major osteoporotic fractures (HR, 1.17) and hip fractures (HR, 1.30). No difference was found in the risk for fracture between patients with and individuals without cancer when the models were adjusted for FRAX without bone mineral density, even when considering osteoporosis medication use.

IN PRACTICE:

“This retrospective cohort study demonstrates that individuals with cancer are at higher risk of fracture than individuals without cancer and that FRAX, particularly with BMD [bone mineral density], may accurately predict fracture risk in this population. These results, along with the known mortality risk of osteoporotic fractures among cancer survivors, further emphasize the clinical importance of closing the current osteoporosis care gap among cancer survivors,” the authors wrote.

SOURCE:

This study, led by Carrie Ye, MD, MPH, University of Alberta, Edmonton, Alberta, Canada, was published online in JAMA Oncology.

LIMITATIONS:

This study cohort included a selected group of cancer survivors who were referred for DXA scans and may not represent the general cancer population. The cohort consisted predominantly of women, limiting the generalizability to men with cancer. Given the heterogeneity of the population, the findings may not be applicable to all cancer subgroups. Information on cancer stage or the presence of bone metastases at the time of fracture risk assessment was lacking, which could have affected the findings.

DISCLOSURES:

This study was funded by the CancerCare Manitoba Foundation. Three authors reported having ties with various sources, including two who received grants from various organizations.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The Fracture Risk Assessment Tool (FRAX), with bone mineral density, predicts the risk for major osteoporotic fractures and hip fractures in patients with cancer, but FRAX without bone mineral density slightly overestimates these risks, a new analysis found.

METHODOLOGY:

  • Cancer-specific guidelines recommend using FRAX to assess fracture risk, but its applicability in patients with cancer remains unclear.
  • This retrospective cohort study included 9877 patients with cancer (mean age, 67.1 years) and 45,875 matched control individuals without cancer (mean age, 66.2 years). All participants had dual-energy x-ray absorptiometry (DXA) scans.
  • Researchers collected data on bone mineral density and fractures. The 10-year probabilities of major osteoporotic fractures and hip fractures were calculated using FRAX, and the observed 10-year probabilities of these fractures were compared with FRAX-derived probabilities.
  • Compared with individuals without cancer, patients with cancer had a shorter mean follow-up duration (8.5 vs 7.6 years), a slightly higher mean body mass index, and a higher percentage of parental hip fractures (7.0% vs 8.2%); additionally, patients with cancer were more likely to have secondary causes of osteoporosis (10% vs 38.4%) and less likely to receive osteoporosis medication (9.9% vs 4.2%).

TAKEAWAY:

  • Compared with individuals without cancer, patients with cancer had a significantly higher incidence rate of major fractures (12.9 vs 14.5 per 1000 person-years) and hip fractures (3.5 vs 4.2 per 1000 person-years).
  • FRAX with bone mineral density exhibited excellent calibration for predicting major osteoporotic fractures (slope, 1.03) and hip fractures (0.97) in patients with cancer, regardless of the site of cancer diagnosis. FRAX without bone mineral density, however, underestimated the risk for both major (0.87) and hip fractures (0.72).
  • In patients with cancer, FRAX with bone mineral density findings were associated with incident major osteoporotic fractures (hazard ratio [HR] per SD, 1.84) and hip fractures (HR per SD, 3.61).
  • When models were adjusted for FRAX with bone mineral density, patients with cancer had an increased risk for both major osteoporotic fractures (HR, 1.17) and hip fractures (HR, 1.30). No difference was found in the risk for fracture between patients with and individuals without cancer when the models were adjusted for FRAX without bone mineral density, even when considering osteoporosis medication use.

IN PRACTICE:

“This retrospective cohort study demonstrates that individuals with cancer are at higher risk of fracture than individuals without cancer and that FRAX, particularly with BMD [bone mineral density], may accurately predict fracture risk in this population. These results, along with the known mortality risk of osteoporotic fractures among cancer survivors, further emphasize the clinical importance of closing the current osteoporosis care gap among cancer survivors,” the authors wrote.

SOURCE:

This study, led by Carrie Ye, MD, MPH, University of Alberta, Edmonton, Alberta, Canada, was published online in JAMA Oncology.

LIMITATIONS:

This study cohort included a selected group of cancer survivors who were referred for DXA scans and may not represent the general cancer population. The cohort consisted predominantly of women, limiting the generalizability to men with cancer. Given the heterogeneity of the population, the findings may not be applicable to all cancer subgroups. Information on cancer stage or the presence of bone metastases at the time of fracture risk assessment was lacking, which could have affected the findings.

DISCLOSURES:

This study was funded by the CancerCare Manitoba Foundation. Three authors reported having ties with various sources, including two who received grants from various organizations.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

The Fracture Risk Assessment Tool (FRAX), with bone mineral density, predicts the risk for major osteoporotic fractures and hip fractures in patients with cancer, but FRAX without bone mineral density slightly overestimates these risks, a new analysis found.

METHODOLOGY:

  • Cancer-specific guidelines recommend using FRAX to assess fracture risk, but its applicability in patients with cancer remains unclear.
  • This retrospective cohort study included 9877 patients with cancer (mean age, 67.1 years) and 45,875 matched control individuals without cancer (mean age, 66.2 years). All participants had dual-energy x-ray absorptiometry (DXA) scans.
  • Researchers collected data on bone mineral density and fractures. The 10-year probabilities of major osteoporotic fractures and hip fractures were calculated using FRAX, and the observed 10-year probabilities of these fractures were compared with FRAX-derived probabilities.
  • Compared with individuals without cancer, patients with cancer had a shorter mean follow-up duration (8.5 vs 7.6 years), a slightly higher mean body mass index, and a higher percentage of parental hip fractures (7.0% vs 8.2%); additionally, patients with cancer were more likely to have secondary causes of osteoporosis (10% vs 38.4%) and less likely to receive osteoporosis medication (9.9% vs 4.2%).

TAKEAWAY:

  • Compared with individuals without cancer, patients with cancer had a significantly higher incidence rate of major fractures (12.9 vs 14.5 per 1000 person-years) and hip fractures (3.5 vs 4.2 per 1000 person-years).
  • FRAX with bone mineral density exhibited excellent calibration for predicting major osteoporotic fractures (slope, 1.03) and hip fractures (0.97) in patients with cancer, regardless of the site of cancer diagnosis. FRAX without bone mineral density, however, underestimated the risk for both major (0.87) and hip fractures (0.72).
  • In patients with cancer, FRAX with bone mineral density findings were associated with incident major osteoporotic fractures (hazard ratio [HR] per SD, 1.84) and hip fractures (HR per SD, 3.61).
  • When models were adjusted for FRAX with bone mineral density, patients with cancer had an increased risk for both major osteoporotic fractures (HR, 1.17) and hip fractures (HR, 1.30). No difference was found in the risk for fracture between patients with and individuals without cancer when the models were adjusted for FRAX without bone mineral density, even when considering osteoporosis medication use.

IN PRACTICE:

“This retrospective cohort study demonstrates that individuals with cancer are at higher risk of fracture than individuals without cancer and that FRAX, particularly with BMD [bone mineral density], may accurately predict fracture risk in this population. These results, along with the known mortality risk of osteoporotic fractures among cancer survivors, further emphasize the clinical importance of closing the current osteoporosis care gap among cancer survivors,” the authors wrote.

SOURCE:

This study, led by Carrie Ye, MD, MPH, University of Alberta, Edmonton, Alberta, Canada, was published online in JAMA Oncology.

LIMITATIONS:

This study cohort included a selected group of cancer survivors who were referred for DXA scans and may not represent the general cancer population. The cohort consisted predominantly of women, limiting the generalizability to men with cancer. Given the heterogeneity of the population, the findings may not be applicable to all cancer subgroups. Information on cancer stage or the presence of bone metastases at the time of fracture risk assessment was lacking, which could have affected the findings.

DISCLOSURES:

This study was funded by the CancerCare Manitoba Foundation. Three authors reported having ties with various sources, including two who received grants from various organizations.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article