From Mexico City to the Heights of Leukemia Medicine

Article Type
Changed
Fri, 11/15/2024 - 15:03

If the name of leukemia specialist Jorge Cortes, MD, appears any more often in PubMed, they’ll need to name a wing after him. 

Over 30 years, Cortes has led or coauthored hundreds of studies, including many trials of landmark drugs to treat chronic myeloid leukemia (CML). His work has helped transform CML into an often-survivable disease instead of one that took the lives of most patients within 5 years.

“It’s been remarkable to see the evolution in CML and to be part of that transition as a fellow, as faculty, and as leader of some of the trials,” said Cortes, who directs the Georgia Cancer Center at Augusta University. “I’m the luckiest person in the world.”

In an interview, Cortes talked about his youth in Mexico, his research path, and his close connections to cancer medicine in Latin America.

Q: You grew up in Mexico City. What was your family like?

A: “My father grew up very poor in a small town in Michoacán in the southwest part of Mexico. In Mexico City, he had a tiny grocery store in an old-fashioned market, and we were lower middle class.

One of the things I learned was to work hard. There’s nobody I know who worked as hard as my father. He opened his store every day of the year, [Mexican] Independence Day or New Year’s or Christmas. He worked hard so we could have a better life than he did.

We learned English from a very young age. My elementary school was called Westminster School because he wanted a school where we would learn English.

As for my mother, she stayed with us [at home] and made sure we did our homework and were taken care of. I learned about being honest and dedicating to what you were doing.”

Q: You trained at the Salvador Zubirán National Institute of Health Sciences and Nutrition in Mexico City. Then what happened? 

A: “Through encouragement by my dermatologist older brother and a mentor at the institution where I was training as a hematologist, I decided to come to the United States.

My initial focus was going to be on coagulation and thrombosis. I came to Houston (Texas) for a fellowship at the University of Texas Health Science Center.

Then I started doing my rotation for the malignant part of the fellowship at MD Anderson Cancer Center [Houston]. One of my first rotations was with Susan M. O’Brien, [MD,] who became my greatest mentor throughout my career. I really enjoyed my rotation. I thought she was great clinically, and she was doing research and teaching. That’s what I wanted for my career.”

Q: What drew you to leukemia specifically?

A: “Dr O’Brien worked in leukemia during my initial rotation, and I really loved it. It was hard work, but it was very inspiring to see the clinical research and the things you could for patients. She had a lot of joy doing that. 

I told my program director I’d change and transfer to MD Anderson, and I ended up staying at MD Anderson for 23 years.”

Q: What was leukemia research like in those days?

A: “We didn’t have the understanding of the biology and the new drugs that we have now. When I started in Mexico, we didn’t even have hydroxyurea. What we were doing was much more basic. But still, the field sounded like a great field to be involved with because they were doing so many trials and had an outstanding database. 

Because of the influence of Dr [Moshe] Talpaz, [MD,] I started getting very involved with CML. In my initial years as a young faculty, I started working with him on interferon. Then imatinib appeared. I saw even from the phase 1 study how impressive the outcomes were in patients who had no response to anything and were in bad shape.”

Q: What CML medications have you worked on?

A: “I’ve been involved with all of them. Imatinib early on, then I led trials with dasatinib and nilotinib. Then, I led the registration trials of bosutinib and ponatinib. More recently, I was part of the development of asciminib.”

Q: What were some of the biggest challenges in CML research?

A: “We had an opportunity to do a lot of analysis about TKIs [tyrosine kinase inhibitors] when these were new drugs. It was a very steep curve of learning, how to monitor and manage side effects.

Then patients were starting to have resistance to two to three TKIs. Ponatinib came along, and it was an incredibly effective drug. But after it was approved, we started to recognize the occurrence of heart attacks and strokes.

That was unexpected and not something that was known for any TKI. It was a big challenge. The drug was taken off the market for some time, and trials were put on hold by the FDA [US Food and Drug Administration].

We scrambled to understand the mechanism of action. For a year or two, it was a stressful time. But eventually we moved past it, and we learned a lot.”

Q: What sort of work have you done in Latin America?

A: “I’ve always been very close to Latin America. I have many good friends and colleagues there, and I’ve always been interested in working with them. 

We’ve done research and studies and created an organization called Latin American Leukemia Net to develop more trials in Latin America. The most rewarding thing has been the educational programs for patients that we’ve done, helping them understand the disease, the treatments, and the goals of treatment. 

We’ve conducted a number of programs, and they have been effective, well-attended, and well received. I still work with my colleagues to develop local guidelines and do collaborative research.”

Q: What convinced you to leave MD Anderson for Georgia?

A: “I never thought I’d leave MD Anderson. I had my well-oiled machine of clinical trials, my clinic, and my fellowship program. But the one thing that I wanted to see if I could try next was to develop an institution.

That was the goal here, to take the Georgia Cancer Center to NCI [National Cancer Institute] designation. So, I thought, ‘That’s a nice challenge.’ It may be a good opportunity to try a different aspect of what it means to be an oncologist.

There are days that you think, ‘What am I doing here?’ when you have to deal with budgets and personnel and all these things. But it’s part of the process. It’s still good to know that we have a goal, and that we’re going to make it. 

Also, I still see my patients, and I enjoy that I still do some research and mentoring.”

Q: What’s the current state of CML treatment?

A: “Many patients have a pretty much normal life expectancy while [on therapy]. Still, one of the goals of many patients is to stop therapy. But that’s a reality only for a small percentage of patients. How can we make that happen for more patients?”

Q: By stopping therapy, do you mean curing the cancer?

A: “Yes, pretty much. You have a good response, you stop the therapy, and it doesn’t come back.

There are also patients who really don’t do well. We hear about CML being with a disease with such a good outcome, but we have patients for whom nothing works. Is it a matter of [needing] another TKI, or do we need to look at something else?”

Q: What do you see on the horizon?

A: “We are developing new approaches like combination therapies. We’re scratching the surface on that. We need to understand which combinations work, and where and when.

And we can make more efficient uses of the drugs we have now in terms of which ones to use when, the doses, the safety profiles. I think we can do better.”

Cortes disclosed consulting for Amphivena, Astellas, Bio-Path, BioLineRx, Bristol Myers Squibb, Daiichi Sankyo, Jazz, Novartis, Pfizer, and Takeda and research funding from Astellas Pharma, Bristol Myers Squibb, Daiichi Sankyo, Immunogen, Jazz, Merus, Novartis, Pfizer, Sun Pharma, Takeda, Tolero and Trovagene.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

If the name of leukemia specialist Jorge Cortes, MD, appears any more often in PubMed, they’ll need to name a wing after him. 

Over 30 years, Cortes has led or coauthored hundreds of studies, including many trials of landmark drugs to treat chronic myeloid leukemia (CML). His work has helped transform CML into an often-survivable disease instead of one that took the lives of most patients within 5 years.

“It’s been remarkable to see the evolution in CML and to be part of that transition as a fellow, as faculty, and as leader of some of the trials,” said Cortes, who directs the Georgia Cancer Center at Augusta University. “I’m the luckiest person in the world.”

In an interview, Cortes talked about his youth in Mexico, his research path, and his close connections to cancer medicine in Latin America.

Q: You grew up in Mexico City. What was your family like?

A: “My father grew up very poor in a small town in Michoacán in the southwest part of Mexico. In Mexico City, he had a tiny grocery store in an old-fashioned market, and we were lower middle class.

One of the things I learned was to work hard. There’s nobody I know who worked as hard as my father. He opened his store every day of the year, [Mexican] Independence Day or New Year’s or Christmas. He worked hard so we could have a better life than he did.

We learned English from a very young age. My elementary school was called Westminster School because he wanted a school where we would learn English.

As for my mother, she stayed with us [at home] and made sure we did our homework and were taken care of. I learned about being honest and dedicating to what you were doing.”

Q: You trained at the Salvador Zubirán National Institute of Health Sciences and Nutrition in Mexico City. Then what happened? 

A: “Through encouragement by my dermatologist older brother and a mentor at the institution where I was training as a hematologist, I decided to come to the United States.

My initial focus was going to be on coagulation and thrombosis. I came to Houston (Texas) for a fellowship at the University of Texas Health Science Center.

Then I started doing my rotation for the malignant part of the fellowship at MD Anderson Cancer Center [Houston]. One of my first rotations was with Susan M. O’Brien, [MD,] who became my greatest mentor throughout my career. I really enjoyed my rotation. I thought she was great clinically, and she was doing research and teaching. That’s what I wanted for my career.”

Q: What drew you to leukemia specifically?

A: “Dr O’Brien worked in leukemia during my initial rotation, and I really loved it. It was hard work, but it was very inspiring to see the clinical research and the things you could for patients. She had a lot of joy doing that. 

I told my program director I’d change and transfer to MD Anderson, and I ended up staying at MD Anderson for 23 years.”

Q: What was leukemia research like in those days?

A: “We didn’t have the understanding of the biology and the new drugs that we have now. When I started in Mexico, we didn’t even have hydroxyurea. What we were doing was much more basic. But still, the field sounded like a great field to be involved with because they were doing so many trials and had an outstanding database. 

Because of the influence of Dr [Moshe] Talpaz, [MD,] I started getting very involved with CML. In my initial years as a young faculty, I started working with him on interferon. Then imatinib appeared. I saw even from the phase 1 study how impressive the outcomes were in patients who had no response to anything and were in bad shape.”

Q: What CML medications have you worked on?

A: “I’ve been involved with all of them. Imatinib early on, then I led trials with dasatinib and nilotinib. Then, I led the registration trials of bosutinib and ponatinib. More recently, I was part of the development of asciminib.”

Q: What were some of the biggest challenges in CML research?

A: “We had an opportunity to do a lot of analysis about TKIs [tyrosine kinase inhibitors] when these were new drugs. It was a very steep curve of learning, how to monitor and manage side effects.

Then patients were starting to have resistance to two to three TKIs. Ponatinib came along, and it was an incredibly effective drug. But after it was approved, we started to recognize the occurrence of heart attacks and strokes.

That was unexpected and not something that was known for any TKI. It was a big challenge. The drug was taken off the market for some time, and trials were put on hold by the FDA [US Food and Drug Administration].

We scrambled to understand the mechanism of action. For a year or two, it was a stressful time. But eventually we moved past it, and we learned a lot.”

Q: What sort of work have you done in Latin America?

A: “I’ve always been very close to Latin America. I have many good friends and colleagues there, and I’ve always been interested in working with them. 

We’ve done research and studies and created an organization called Latin American Leukemia Net to develop more trials in Latin America. The most rewarding thing has been the educational programs for patients that we’ve done, helping them understand the disease, the treatments, and the goals of treatment. 

We’ve conducted a number of programs, and they have been effective, well-attended, and well received. I still work with my colleagues to develop local guidelines and do collaborative research.”

Q: What convinced you to leave MD Anderson for Georgia?

A: “I never thought I’d leave MD Anderson. I had my well-oiled machine of clinical trials, my clinic, and my fellowship program. But the one thing that I wanted to see if I could try next was to develop an institution.

That was the goal here, to take the Georgia Cancer Center to NCI [National Cancer Institute] designation. So, I thought, ‘That’s a nice challenge.’ It may be a good opportunity to try a different aspect of what it means to be an oncologist.

There are days that you think, ‘What am I doing here?’ when you have to deal with budgets and personnel and all these things. But it’s part of the process. It’s still good to know that we have a goal, and that we’re going to make it. 

Also, I still see my patients, and I enjoy that I still do some research and mentoring.”

Q: What’s the current state of CML treatment?

A: “Many patients have a pretty much normal life expectancy while [on therapy]. Still, one of the goals of many patients is to stop therapy. But that’s a reality only for a small percentage of patients. How can we make that happen for more patients?”

Q: By stopping therapy, do you mean curing the cancer?

A: “Yes, pretty much. You have a good response, you stop the therapy, and it doesn’t come back.

There are also patients who really don’t do well. We hear about CML being with a disease with such a good outcome, but we have patients for whom nothing works. Is it a matter of [needing] another TKI, or do we need to look at something else?”

Q: What do you see on the horizon?

A: “We are developing new approaches like combination therapies. We’re scratching the surface on that. We need to understand which combinations work, and where and when.

And we can make more efficient uses of the drugs we have now in terms of which ones to use when, the doses, the safety profiles. I think we can do better.”

Cortes disclosed consulting for Amphivena, Astellas, Bio-Path, BioLineRx, Bristol Myers Squibb, Daiichi Sankyo, Jazz, Novartis, Pfizer, and Takeda and research funding from Astellas Pharma, Bristol Myers Squibb, Daiichi Sankyo, Immunogen, Jazz, Merus, Novartis, Pfizer, Sun Pharma, Takeda, Tolero and Trovagene.
 

A version of this article appeared on Medscape.com.

If the name of leukemia specialist Jorge Cortes, MD, appears any more often in PubMed, they’ll need to name a wing after him. 

Over 30 years, Cortes has led or coauthored hundreds of studies, including many trials of landmark drugs to treat chronic myeloid leukemia (CML). His work has helped transform CML into an often-survivable disease instead of one that took the lives of most patients within 5 years.

“It’s been remarkable to see the evolution in CML and to be part of that transition as a fellow, as faculty, and as leader of some of the trials,” said Cortes, who directs the Georgia Cancer Center at Augusta University. “I’m the luckiest person in the world.”

In an interview, Cortes talked about his youth in Mexico, his research path, and his close connections to cancer medicine in Latin America.

Q: You grew up in Mexico City. What was your family like?

A: “My father grew up very poor in a small town in Michoacán in the southwest part of Mexico. In Mexico City, he had a tiny grocery store in an old-fashioned market, and we were lower middle class.

One of the things I learned was to work hard. There’s nobody I know who worked as hard as my father. He opened his store every day of the year, [Mexican] Independence Day or New Year’s or Christmas. He worked hard so we could have a better life than he did.

We learned English from a very young age. My elementary school was called Westminster School because he wanted a school where we would learn English.

As for my mother, she stayed with us [at home] and made sure we did our homework and were taken care of. I learned about being honest and dedicating to what you were doing.”

Q: You trained at the Salvador Zubirán National Institute of Health Sciences and Nutrition in Mexico City. Then what happened? 

A: “Through encouragement by my dermatologist older brother and a mentor at the institution where I was training as a hematologist, I decided to come to the United States.

My initial focus was going to be on coagulation and thrombosis. I came to Houston (Texas) for a fellowship at the University of Texas Health Science Center.

Then I started doing my rotation for the malignant part of the fellowship at MD Anderson Cancer Center [Houston]. One of my first rotations was with Susan M. O’Brien, [MD,] who became my greatest mentor throughout my career. I really enjoyed my rotation. I thought she was great clinically, and she was doing research and teaching. That’s what I wanted for my career.”

Q: What drew you to leukemia specifically?

A: “Dr O’Brien worked in leukemia during my initial rotation, and I really loved it. It was hard work, but it was very inspiring to see the clinical research and the things you could for patients. She had a lot of joy doing that. 

I told my program director I’d change and transfer to MD Anderson, and I ended up staying at MD Anderson for 23 years.”

Q: What was leukemia research like in those days?

A: “We didn’t have the understanding of the biology and the new drugs that we have now. When I started in Mexico, we didn’t even have hydroxyurea. What we were doing was much more basic. But still, the field sounded like a great field to be involved with because they were doing so many trials and had an outstanding database. 

Because of the influence of Dr [Moshe] Talpaz, [MD,] I started getting very involved with CML. In my initial years as a young faculty, I started working with him on interferon. Then imatinib appeared. I saw even from the phase 1 study how impressive the outcomes were in patients who had no response to anything and were in bad shape.”

Q: What CML medications have you worked on?

A: “I’ve been involved with all of them. Imatinib early on, then I led trials with dasatinib and nilotinib. Then, I led the registration trials of bosutinib and ponatinib. More recently, I was part of the development of asciminib.”

Q: What were some of the biggest challenges in CML research?

A: “We had an opportunity to do a lot of analysis about TKIs [tyrosine kinase inhibitors] when these were new drugs. It was a very steep curve of learning, how to monitor and manage side effects.

Then patients were starting to have resistance to two to three TKIs. Ponatinib came along, and it was an incredibly effective drug. But after it was approved, we started to recognize the occurrence of heart attacks and strokes.

That was unexpected and not something that was known for any TKI. It was a big challenge. The drug was taken off the market for some time, and trials were put on hold by the FDA [US Food and Drug Administration].

We scrambled to understand the mechanism of action. For a year or two, it was a stressful time. But eventually we moved past it, and we learned a lot.”

Q: What sort of work have you done in Latin America?

A: “I’ve always been very close to Latin America. I have many good friends and colleagues there, and I’ve always been interested in working with them. 

We’ve done research and studies and created an organization called Latin American Leukemia Net to develop more trials in Latin America. The most rewarding thing has been the educational programs for patients that we’ve done, helping them understand the disease, the treatments, and the goals of treatment. 

We’ve conducted a number of programs, and they have been effective, well-attended, and well received. I still work with my colleagues to develop local guidelines and do collaborative research.”

Q: What convinced you to leave MD Anderson for Georgia?

A: “I never thought I’d leave MD Anderson. I had my well-oiled machine of clinical trials, my clinic, and my fellowship program. But the one thing that I wanted to see if I could try next was to develop an institution.

That was the goal here, to take the Georgia Cancer Center to NCI [National Cancer Institute] designation. So, I thought, ‘That’s a nice challenge.’ It may be a good opportunity to try a different aspect of what it means to be an oncologist.

There are days that you think, ‘What am I doing here?’ when you have to deal with budgets and personnel and all these things. But it’s part of the process. It’s still good to know that we have a goal, and that we’re going to make it. 

Also, I still see my patients, and I enjoy that I still do some research and mentoring.”

Q: What’s the current state of CML treatment?

A: “Many patients have a pretty much normal life expectancy while [on therapy]. Still, one of the goals of many patients is to stop therapy. But that’s a reality only for a small percentage of patients. How can we make that happen for more patients?”

Q: By stopping therapy, do you mean curing the cancer?

A: “Yes, pretty much. You have a good response, you stop the therapy, and it doesn’t come back.

There are also patients who really don’t do well. We hear about CML being with a disease with such a good outcome, but we have patients for whom nothing works. Is it a matter of [needing] another TKI, or do we need to look at something else?”

Q: What do you see on the horizon?

A: “We are developing new approaches like combination therapies. We’re scratching the surface on that. We need to understand which combinations work, and where and when.

And we can make more efficient uses of the drugs we have now in terms of which ones to use when, the doses, the safety profiles. I think we can do better.”

Cortes disclosed consulting for Amphivena, Astellas, Bio-Path, BioLineRx, Bristol Myers Squibb, Daiichi Sankyo, Jazz, Novartis, Pfizer, and Takeda and research funding from Astellas Pharma, Bristol Myers Squibb, Daiichi Sankyo, Immunogen, Jazz, Merus, Novartis, Pfizer, Sun Pharma, Takeda, Tolero and Trovagene.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Fri, 11/15/2024 - 15:02
Un-Gate On Date
Fri, 11/15/2024 - 15:02
Use ProPublica
CFC Schedule Remove Status
Fri, 11/15/2024 - 15:02
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Fri, 11/15/2024 - 15:02

Registered Dieticians Sparse in VA Cancer Care

Article Type
Changed
Mon, 11/11/2024 - 13:00

Veterans Health Administration cancer centers are lacking registered dieticians (RDs), and patients are more likely to be diagnosed with malnutrition when they are on staff, according to a new study.

The average number of full-time RDs across 13 cancer centers was just 1 per 1,065 patients, advanced practice oncology dietitian Katherine Petersen, MS, RDN, CSO, of the Phoenix VA Health Care System, reported at the AVAHO annual meeting.

However, patients treated by RDs were more likely to be diagnosed with malnutrition (odds ratio [OR], 2.9, 95% CI, 1.6-5.1). And patients were more likely to maintain weight if their clinic had a higher ratio of RDs to oncologists (OR, 1.6 for each 10% increase in ratio, 95% CI, 2.0-127.5).

Petersen told Federal Practitioner that dieticians came up with the idea for the study after attending AVAHO meetings. “A lot of the questions we were getting from physicians and other providers were: How do we get dietitians in our clinic?”

There is currently no standard staffing model for dieticians in oncology centers, Petersen said, and they are not reimbursed through Medicare or Medicaid. “We thought, ‘What do we add to the cancer center by having adequate staffing levels and seeing cancer patients?’ We designed a study to try and get to the heart of that.”

Petersen and her team focused on malnutrition. Nutrition impairment impacts an estimated 40% to 80% of patients with gastrointestinal, head and neck, pancreas, and colorectal cancer at diagnosis, she said.

Petersen discussed the published evidence that outlines how physicians recognize malnutrition at a lower rate than RDs. Dietary counseling from an RD is linked to better nutritional outcomes, physical function, and quality of life.

The study authors examined 2016 and 2017 VA registry data and reviewed charts of 681 veterans treated by 207 oncologists. Oncology clinics had a mean of 0.5 full-time equivalent (FTE) RD. The mean ratio of full-time RDs to oncologists was 1 per 48.5 and ranged from 1 per 4 to 1 per 850.

“It's almost like somebody randomly assigned [RDs] to cancer centers, and it has nothing to do with how many patients are seen in that particular center,” Petersen said. “Some clinics only have .1 or .2 FTEs assigned, and that may be a larger cancer center where they have maybe 85 cancer oncology providers, which includes surgical, medical, and radiation oncology and trainees.”

Why would a clinic have a .1 FTE RD, which suggests someone may be working 4 hours a week? In this kind of situation, an RD may cover a variety of areas and only work in cancer care when they receive a referral, Petersen said.

“That is just vastly underserving veterans,” she said. “You're missing so many veterans whom you could help with preventative care if you're only getting patients referred based on consults.”

As for the findings regarding higher RD staffing and higher detection of malnutrition, the study text notes “there was not a ‘high enough’ level of RD staffing at which we stopped seeing this trend. This is probably because – at least at the time of this study – no VA cancer center was adequately staffed for nutrition.”

Petersen hopes the findings will convince VA cancer center leadership to boost better patient outcomes by prioritizing the hiring of RDs.

 

Katherine Petersen, MS, RDN, CSO has no disclosures.

 

Publications
Topics
Sections

Veterans Health Administration cancer centers are lacking registered dieticians (RDs), and patients are more likely to be diagnosed with malnutrition when they are on staff, according to a new study.

The average number of full-time RDs across 13 cancer centers was just 1 per 1,065 patients, advanced practice oncology dietitian Katherine Petersen, MS, RDN, CSO, of the Phoenix VA Health Care System, reported at the AVAHO annual meeting.

However, patients treated by RDs were more likely to be diagnosed with malnutrition (odds ratio [OR], 2.9, 95% CI, 1.6-5.1). And patients were more likely to maintain weight if their clinic had a higher ratio of RDs to oncologists (OR, 1.6 for each 10% increase in ratio, 95% CI, 2.0-127.5).

Petersen told Federal Practitioner that dieticians came up with the idea for the study after attending AVAHO meetings. “A lot of the questions we were getting from physicians and other providers were: How do we get dietitians in our clinic?”

There is currently no standard staffing model for dieticians in oncology centers, Petersen said, and they are not reimbursed through Medicare or Medicaid. “We thought, ‘What do we add to the cancer center by having adequate staffing levels and seeing cancer patients?’ We designed a study to try and get to the heart of that.”

Petersen and her team focused on malnutrition. Nutrition impairment impacts an estimated 40% to 80% of patients with gastrointestinal, head and neck, pancreas, and colorectal cancer at diagnosis, she said.

Petersen discussed the published evidence that outlines how physicians recognize malnutrition at a lower rate than RDs. Dietary counseling from an RD is linked to better nutritional outcomes, physical function, and quality of life.

The study authors examined 2016 and 2017 VA registry data and reviewed charts of 681 veterans treated by 207 oncologists. Oncology clinics had a mean of 0.5 full-time equivalent (FTE) RD. The mean ratio of full-time RDs to oncologists was 1 per 48.5 and ranged from 1 per 4 to 1 per 850.

“It's almost like somebody randomly assigned [RDs] to cancer centers, and it has nothing to do with how many patients are seen in that particular center,” Petersen said. “Some clinics only have .1 or .2 FTEs assigned, and that may be a larger cancer center where they have maybe 85 cancer oncology providers, which includes surgical, medical, and radiation oncology and trainees.”

Why would a clinic have a .1 FTE RD, which suggests someone may be working 4 hours a week? In this kind of situation, an RD may cover a variety of areas and only work in cancer care when they receive a referral, Petersen said.

“That is just vastly underserving veterans,” she said. “You're missing so many veterans whom you could help with preventative care if you're only getting patients referred based on consults.”

As for the findings regarding higher RD staffing and higher detection of malnutrition, the study text notes “there was not a ‘high enough’ level of RD staffing at which we stopped seeing this trend. This is probably because – at least at the time of this study – no VA cancer center was adequately staffed for nutrition.”

Petersen hopes the findings will convince VA cancer center leadership to boost better patient outcomes by prioritizing the hiring of RDs.

 

Katherine Petersen, MS, RDN, CSO has no disclosures.

 

Veterans Health Administration cancer centers are lacking registered dieticians (RDs), and patients are more likely to be diagnosed with malnutrition when they are on staff, according to a new study.

The average number of full-time RDs across 13 cancer centers was just 1 per 1,065 patients, advanced practice oncology dietitian Katherine Petersen, MS, RDN, CSO, of the Phoenix VA Health Care System, reported at the AVAHO annual meeting.

However, patients treated by RDs were more likely to be diagnosed with malnutrition (odds ratio [OR], 2.9, 95% CI, 1.6-5.1). And patients were more likely to maintain weight if their clinic had a higher ratio of RDs to oncologists (OR, 1.6 for each 10% increase in ratio, 95% CI, 2.0-127.5).

Petersen told Federal Practitioner that dieticians came up with the idea for the study after attending AVAHO meetings. “A lot of the questions we were getting from physicians and other providers were: How do we get dietitians in our clinic?”

There is currently no standard staffing model for dieticians in oncology centers, Petersen said, and they are not reimbursed through Medicare or Medicaid. “We thought, ‘What do we add to the cancer center by having adequate staffing levels and seeing cancer patients?’ We designed a study to try and get to the heart of that.”

Petersen and her team focused on malnutrition. Nutrition impairment impacts an estimated 40% to 80% of patients with gastrointestinal, head and neck, pancreas, and colorectal cancer at diagnosis, she said.

Petersen discussed the published evidence that outlines how physicians recognize malnutrition at a lower rate than RDs. Dietary counseling from an RD is linked to better nutritional outcomes, physical function, and quality of life.

The study authors examined 2016 and 2017 VA registry data and reviewed charts of 681 veterans treated by 207 oncologists. Oncology clinics had a mean of 0.5 full-time equivalent (FTE) RD. The mean ratio of full-time RDs to oncologists was 1 per 48.5 and ranged from 1 per 4 to 1 per 850.

“It's almost like somebody randomly assigned [RDs] to cancer centers, and it has nothing to do with how many patients are seen in that particular center,” Petersen said. “Some clinics only have .1 or .2 FTEs assigned, and that may be a larger cancer center where they have maybe 85 cancer oncology providers, which includes surgical, medical, and radiation oncology and trainees.”

Why would a clinic have a .1 FTE RD, which suggests someone may be working 4 hours a week? In this kind of situation, an RD may cover a variety of areas and only work in cancer care when they receive a referral, Petersen said.

“That is just vastly underserving veterans,” she said. “You're missing so many veterans whom you could help with preventative care if you're only getting patients referred based on consults.”

As for the findings regarding higher RD staffing and higher detection of malnutrition, the study text notes “there was not a ‘high enough’ level of RD staffing at which we stopped seeing this trend. This is probably because – at least at the time of this study – no VA cancer center was adequately staffed for nutrition.”

Petersen hopes the findings will convince VA cancer center leadership to boost better patient outcomes by prioritizing the hiring of RDs.

 

Katherine Petersen, MS, RDN, CSO has no disclosures.

 

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 07/09/2024 - 17:45
Un-Gate On Date
Tue, 07/09/2024 - 17:45
Use ProPublica
CFC Schedule Remove Status
Tue, 07/09/2024 - 17:45
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Myasthenia Gravis: Where Does Traditional Therapy Fit In?

Article Type
Changed
Wed, 11/06/2024 - 11:19

Should patients with myasthenia gravis continue to undergo the traditional therapy of immunosuppression with drugs like corticosteroids and nonsteroidal agents? Or is it time to embrace a new generation of medications?

In a debate at American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024, a pair of neurologists who specialize in neuromuscular disorders laid out opposing evidence for each approach.

On one hand, Benjamin Claytor, MD, of Cleveland Clinic, Cleveland, argued that “traditional therapy is very effective for the majority of myasthenia gravis patients,” and he said it should be considered first-line.

But Amanda C. Guidon, MD, MPH, of Massachusetts General Hospital and Harvard Medical School, both in Boston, responded that “the immunosuppression of traditional therapies is too broad: The time to benefit is too long, the burden of side effects is too high, and the cancer risk is too elevated.”
 

Traditional Therapy: Affordable, Tolerable, and Safe?

Claytor said ideal myasthenia gravis therapies are effective, tolerable, and safe. They’re also affordable, convenient (such as a pill), lead to sustained remission, and can have dosages reduced.

Only traditional therapies — corticosteroids, azathioprinemycophenolate, and rituximab — meet those last three criteria, he said. Newer therapies, he said, do not.

Claytor highlighted a 2023 Duke University study that tracked 367 patients with MG who were treated with traditional therapies after the year 2000. Of those, 72% reached the treatment goal of minimal manifestations in a median of less than 2 years.

In addition, Claytor noted that the percentage of patients with myasthenia gravis who reach minimal symptom expression ranges from 45% (6 months) to 60% or more (2 years), while studies suggest that newer treatments such as eculizumab (Soliris), efgartigimod (Vyvgart), rozanolixizumab (Rystiggo), and zilucoplan (Zilbrysq) haven’t reached those levels.

As for specific traditional therapies, Claytor said the corticosteroid prednisone is “extremely affordable,” effective, and takes fewer than 2 weeks to work. All patients with myasthenia gravis can take it, he said, and at least 75% of those with mild/moderate disease respond to low doses.
 

Nonsteroidal Agents, Immune Globulin, Rituximab

He acknowledged side effects from corticosteroids but said doses can be tapered once severity improves. Calcium and vitamin D can be helpful to support bone health, he added.

As for nonsteroidal immunosuppressive treatments, he said they’re easy to administer, increase the likelihood of reaching minimal manifestation status, can be effective at lower doses, and may allow patients to discontinue steroids.

Two other traditional therapies, immune globulin and plasmapheresis, can be appropriate in crisis or impending crisis situations, he said, or as an add-on therapy if steroids and nonsteroidal immunosuppressive therapies don’t work.

What about rituximab? “We’re learning that patients with new-onset disease and younger patients seem to respond better,” Claytor said. While rituximab is expensive, it’s “not even in the same realm” as newer agents if only a dose or two are given, he said.
 

Steroids Are Ideal in MG? Not So Fast

In her response, Guidon noted that she was assigned to offer a counter-perspective in her presentation, and “personal opinions are not being represented here fully.” She then listed the weaknesses of traditional therapy in myasthenia gravis.

For one thing, she said the drugs don’t work well. She highlighted a 2019 registry study that found “many myasthenia gravis patients remain negatively impacted despite treatment.”

In addition, “we can’t predict who will respond to which therapy. ... We start drugs and don’t know if we’ll have benefit from 6 months up to 18 months. We also can’t determine minimally effective dose a priori. Some patients require higher doses, and some subtherapeutic doses are actually therapeutic for our patients.”

Broad immunosuppression, she added, boosts the risk for serious infections. “We’ve all heard from our patients that the side effects can be worse than the myasthenia, and next we’re going to talk about the role of corticosteroids in myasthenia.”

As for corticosteroids in particular, “they’re really the best treatment and also the worst treatment.” Efficacy and side effects battle for supremacy in patients, she said, “and you don’t know which is going to win out.”
 

Kicking Traditional Therapy to the Curb

There are many possible side effects from steroids, she said, including steroid-induced diabetes, which is “profound.” Some patients never recover from it.

On top of all these risks, she said, 20%-30% of patients are resistant to steroids.

As for other treatments, immune globulin and plasmapheresis “aren’t really benign,” Guidon said. They come with potentially serious side effects of their own, as do nonsteroidal immunosuppressive treatments.

Guidon said better treatments are needed to minimize the risks from traditional therapies. “We need targeted therapies that drive disease into remission, can be tapered, are delivered orally or with infrequent self-injections, and don’t require frequent lab monitoring.”

In addition, ideal treatments should “have a good safety data in pregnancy and for breastfeeding and have a favorable side effect profile with no significant long-term cancer risks.”

Claytor had no disclosures. Guidon disclosed consulting/medical advisory board (Alexion Pharmaceuticals, argenx, Regeneron, and UCB), publishing royalties (Oakstone), and other research support (Myasthenia Gravis Foundation of America, Myasthenia Gravis Rare Disease Network, National Institutes of Health, and National Institute of Neurological Disorders and Stroke/BioSensics).

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Should patients with myasthenia gravis continue to undergo the traditional therapy of immunosuppression with drugs like corticosteroids and nonsteroidal agents? Or is it time to embrace a new generation of medications?

In a debate at American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024, a pair of neurologists who specialize in neuromuscular disorders laid out opposing evidence for each approach.

On one hand, Benjamin Claytor, MD, of Cleveland Clinic, Cleveland, argued that “traditional therapy is very effective for the majority of myasthenia gravis patients,” and he said it should be considered first-line.

But Amanda C. Guidon, MD, MPH, of Massachusetts General Hospital and Harvard Medical School, both in Boston, responded that “the immunosuppression of traditional therapies is too broad: The time to benefit is too long, the burden of side effects is too high, and the cancer risk is too elevated.”
 

Traditional Therapy: Affordable, Tolerable, and Safe?

Claytor said ideal myasthenia gravis therapies are effective, tolerable, and safe. They’re also affordable, convenient (such as a pill), lead to sustained remission, and can have dosages reduced.

Only traditional therapies — corticosteroids, azathioprinemycophenolate, and rituximab — meet those last three criteria, he said. Newer therapies, he said, do not.

Claytor highlighted a 2023 Duke University study that tracked 367 patients with MG who were treated with traditional therapies after the year 2000. Of those, 72% reached the treatment goal of minimal manifestations in a median of less than 2 years.

In addition, Claytor noted that the percentage of patients with myasthenia gravis who reach minimal symptom expression ranges from 45% (6 months) to 60% or more (2 years), while studies suggest that newer treatments such as eculizumab (Soliris), efgartigimod (Vyvgart), rozanolixizumab (Rystiggo), and zilucoplan (Zilbrysq) haven’t reached those levels.

As for specific traditional therapies, Claytor said the corticosteroid prednisone is “extremely affordable,” effective, and takes fewer than 2 weeks to work. All patients with myasthenia gravis can take it, he said, and at least 75% of those with mild/moderate disease respond to low doses.
 

Nonsteroidal Agents, Immune Globulin, Rituximab

He acknowledged side effects from corticosteroids but said doses can be tapered once severity improves. Calcium and vitamin D can be helpful to support bone health, he added.

As for nonsteroidal immunosuppressive treatments, he said they’re easy to administer, increase the likelihood of reaching minimal manifestation status, can be effective at lower doses, and may allow patients to discontinue steroids.

Two other traditional therapies, immune globulin and plasmapheresis, can be appropriate in crisis or impending crisis situations, he said, or as an add-on therapy if steroids and nonsteroidal immunosuppressive therapies don’t work.

What about rituximab? “We’re learning that patients with new-onset disease and younger patients seem to respond better,” Claytor said. While rituximab is expensive, it’s “not even in the same realm” as newer agents if only a dose or two are given, he said.
 

Steroids Are Ideal in MG? Not So Fast

In her response, Guidon noted that she was assigned to offer a counter-perspective in her presentation, and “personal opinions are not being represented here fully.” She then listed the weaknesses of traditional therapy in myasthenia gravis.

For one thing, she said the drugs don’t work well. She highlighted a 2019 registry study that found “many myasthenia gravis patients remain negatively impacted despite treatment.”

In addition, “we can’t predict who will respond to which therapy. ... We start drugs and don’t know if we’ll have benefit from 6 months up to 18 months. We also can’t determine minimally effective dose a priori. Some patients require higher doses, and some subtherapeutic doses are actually therapeutic for our patients.”

Broad immunosuppression, she added, boosts the risk for serious infections. “We’ve all heard from our patients that the side effects can be worse than the myasthenia, and next we’re going to talk about the role of corticosteroids in myasthenia.”

As for corticosteroids in particular, “they’re really the best treatment and also the worst treatment.” Efficacy and side effects battle for supremacy in patients, she said, “and you don’t know which is going to win out.”
 

Kicking Traditional Therapy to the Curb

There are many possible side effects from steroids, she said, including steroid-induced diabetes, which is “profound.” Some patients never recover from it.

On top of all these risks, she said, 20%-30% of patients are resistant to steroids.

As for other treatments, immune globulin and plasmapheresis “aren’t really benign,” Guidon said. They come with potentially serious side effects of their own, as do nonsteroidal immunosuppressive treatments.

Guidon said better treatments are needed to minimize the risks from traditional therapies. “We need targeted therapies that drive disease into remission, can be tapered, are delivered orally or with infrequent self-injections, and don’t require frequent lab monitoring.”

In addition, ideal treatments should “have a good safety data in pregnancy and for breastfeeding and have a favorable side effect profile with no significant long-term cancer risks.”

Claytor had no disclosures. Guidon disclosed consulting/medical advisory board (Alexion Pharmaceuticals, argenx, Regeneron, and UCB), publishing royalties (Oakstone), and other research support (Myasthenia Gravis Foundation of America, Myasthenia Gravis Rare Disease Network, National Institutes of Health, and National Institute of Neurological Disorders and Stroke/BioSensics).

A version of this article appeared on Medscape.com.

Should patients with myasthenia gravis continue to undergo the traditional therapy of immunosuppression with drugs like corticosteroids and nonsteroidal agents? Or is it time to embrace a new generation of medications?

In a debate at American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024, a pair of neurologists who specialize in neuromuscular disorders laid out opposing evidence for each approach.

On one hand, Benjamin Claytor, MD, of Cleveland Clinic, Cleveland, argued that “traditional therapy is very effective for the majority of myasthenia gravis patients,” and he said it should be considered first-line.

But Amanda C. Guidon, MD, MPH, of Massachusetts General Hospital and Harvard Medical School, both in Boston, responded that “the immunosuppression of traditional therapies is too broad: The time to benefit is too long, the burden of side effects is too high, and the cancer risk is too elevated.”
 

Traditional Therapy: Affordable, Tolerable, and Safe?

Claytor said ideal myasthenia gravis therapies are effective, tolerable, and safe. They’re also affordable, convenient (such as a pill), lead to sustained remission, and can have dosages reduced.

Only traditional therapies — corticosteroids, azathioprinemycophenolate, and rituximab — meet those last three criteria, he said. Newer therapies, he said, do not.

Claytor highlighted a 2023 Duke University study that tracked 367 patients with MG who were treated with traditional therapies after the year 2000. Of those, 72% reached the treatment goal of minimal manifestations in a median of less than 2 years.

In addition, Claytor noted that the percentage of patients with myasthenia gravis who reach minimal symptom expression ranges from 45% (6 months) to 60% or more (2 years), while studies suggest that newer treatments such as eculizumab (Soliris), efgartigimod (Vyvgart), rozanolixizumab (Rystiggo), and zilucoplan (Zilbrysq) haven’t reached those levels.

As for specific traditional therapies, Claytor said the corticosteroid prednisone is “extremely affordable,” effective, and takes fewer than 2 weeks to work. All patients with myasthenia gravis can take it, he said, and at least 75% of those with mild/moderate disease respond to low doses.
 

Nonsteroidal Agents, Immune Globulin, Rituximab

He acknowledged side effects from corticosteroids but said doses can be tapered once severity improves. Calcium and vitamin D can be helpful to support bone health, he added.

As for nonsteroidal immunosuppressive treatments, he said they’re easy to administer, increase the likelihood of reaching minimal manifestation status, can be effective at lower doses, and may allow patients to discontinue steroids.

Two other traditional therapies, immune globulin and plasmapheresis, can be appropriate in crisis or impending crisis situations, he said, or as an add-on therapy if steroids and nonsteroidal immunosuppressive therapies don’t work.

What about rituximab? “We’re learning that patients with new-onset disease and younger patients seem to respond better,” Claytor said. While rituximab is expensive, it’s “not even in the same realm” as newer agents if only a dose or two are given, he said.
 

Steroids Are Ideal in MG? Not So Fast

In her response, Guidon noted that she was assigned to offer a counter-perspective in her presentation, and “personal opinions are not being represented here fully.” She then listed the weaknesses of traditional therapy in myasthenia gravis.

For one thing, she said the drugs don’t work well. She highlighted a 2019 registry study that found “many myasthenia gravis patients remain negatively impacted despite treatment.”

In addition, “we can’t predict who will respond to which therapy. ... We start drugs and don’t know if we’ll have benefit from 6 months up to 18 months. We also can’t determine minimally effective dose a priori. Some patients require higher doses, and some subtherapeutic doses are actually therapeutic for our patients.”

Broad immunosuppression, she added, boosts the risk for serious infections. “We’ve all heard from our patients that the side effects can be worse than the myasthenia, and next we’re going to talk about the role of corticosteroids in myasthenia.”

As for corticosteroids in particular, “they’re really the best treatment and also the worst treatment.” Efficacy and side effects battle for supremacy in patients, she said, “and you don’t know which is going to win out.”
 

Kicking Traditional Therapy to the Curb

There are many possible side effects from steroids, she said, including steroid-induced diabetes, which is “profound.” Some patients never recover from it.

On top of all these risks, she said, 20%-30% of patients are resistant to steroids.

As for other treatments, immune globulin and plasmapheresis “aren’t really benign,” Guidon said. They come with potentially serious side effects of their own, as do nonsteroidal immunosuppressive treatments.

Guidon said better treatments are needed to minimize the risks from traditional therapies. “We need targeted therapies that drive disease into remission, can be tapered, are delivered orally or with infrequent self-injections, and don’t require frequent lab monitoring.”

In addition, ideal treatments should “have a good safety data in pregnancy and for breastfeeding and have a favorable side effect profile with no significant long-term cancer risks.”

Claytor had no disclosures. Guidon disclosed consulting/medical advisory board (Alexion Pharmaceuticals, argenx, Regeneron, and UCB), publishing royalties (Oakstone), and other research support (Myasthenia Gravis Foundation of America, Myasthenia Gravis Rare Disease Network, National Institutes of Health, and National Institute of Neurological Disorders and Stroke/BioSensics).

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANEM 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Drug Options Abound for Duchenne Muscular Dystrophy

Article Type
Changed
Wed, 11/06/2024 - 11:15

— When Ann & Robert H. Lurie Children’s Hospital of Chicago pediatric neurologist Nancy L. Kuntz, MD, was a fellow about 45 years ago, there were few more devastating diagnoses than Duchenne muscular dystrophy (DMD).

“The rule of thumb was that they would stop walking by age 10 and probably die around age 20, and there was not much we could do,” Kuntz told colleagues at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

Now, the landscape of DMD therapy is transforming at a rapid pace. “In the last 8 years, we’ve seen eight different therapies that are FDA-approved specifically for Duchenne, and many more are in the pipeline,” said session moderator Kathryn Mosher, MD, a pediatric physical medicine and rehabilitation physician at Akron Children’s Hospital, Akron, Ohio.

This is both good news and a new challenge for clinicians: Which of these treatments are best for which patients? Kuntz said the traditional therapy of corticosteroids is still crucial. However, “there are still families begging to not use steroids, or refusing to use steroids, just not filling the prescriptions,” she said.
 

Beware of Parents Who Reject Steroids

The failure to use steroids “breaks your heart” because data show their impact on “really important functions like walking and being able to get up from the ground,” she said. “You can add months and years to life with this treatment.”

However, “while we have shown that using corticosteroids makes a difference, I don’t think that we’ve really worked out the best age at which to start the steroids, or the dosing schedule, or even the type of steroids,” she cautioned.

In an accompanying presentation about therapy for DMD, pediatric neurologist Craig M. Zaidman, MD, of Washington University in St. Louis, Missouri, cautioned that “daily steroids make a big impact on your growth and particularly on your height.”

In particular, the corticosteroid deflazacort has been linked to more cataracts than prednisone and less weight gain and height growth. “They really don’t grow, they don’t get taller, and they also don’t gain weight. They look like little boys when they’re 13 years old.”
 

Deflazacort or Vamorolone?

Vamorolone (Agamree) is a cheaper corticosteroid alternative to deflazacort (Emflaza), and a 2024 study showed no difference in functional outcomes over 48 weeks, he said. Also, daily vamorolone does a better job of preserving height growth than daily prednisone, he said, and he’s seen less risk for vertebral fractures.

Where do newer drugs fit in? One crucial thing to know about the new generation of targeted therapies is that they’re often mutation-dependent, Kuntz said. They may only work in patients with certain mutations, or mutations may lead to more side effects.

“You should have the exact mutation of your patient, and then you can look and see what they’re eligible for,” she said.

$700,000 a Year for Givinostat

Zaidman highlighted the newly approved givinostat (Duvyzat), a histone deacetylase inhibitor approved for boys 6 years or older. The cost is $700,000 a year, he said, and it’s been linked to less decline in four-stair climb per a double-blind, placebo-controlled, phase 3 trial.

The drug can cause side effects such as reducing platelets, boosting triglycerides, and inducing gastrointestinal problems. “When you drop the dose, these problems go away,” he said.

Does givinostat work? While trial data are challenging to interpret, they do suggest that patients “will lose skill, but they might not lose two or three skills they otherwise would have,” Zaidman said. “To me, that’s quite compelling.”

As for exon-skipping therapies, another new-generation option for DMD, he noted that “these drugs are on the market based on their accelerated approval. We will never have the perfect phase 3, randomized, controlled, long-term trial for these. It’s just not going to come. This is what we get.”

Mosher disclosed the advisory board (Sarepta Therapeutics, Pfizer, Reata Pharmaceuticals, and PTC). Kuntz disclosed advisory board (Astellas Pharma, Inc., argenx, Catalyst, Entrada Therapeutics, Genentech, and Novartis), exchange expert on-demand program (Sarepta Therapeutics), speaker (Genentech, Sarepta Therapeutics, and Solid), and research funding (Astellas Pharma, Inc., argenx, Biogen, Catalyst, Genentech, Novartis, and Sarepta Therapeutics). Zaidman disclosed speaking/advisor/consulting (Sarepta Therapeutics and Optum) and research funding (Novartis and Biogen).
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

— When Ann & Robert H. Lurie Children’s Hospital of Chicago pediatric neurologist Nancy L. Kuntz, MD, was a fellow about 45 years ago, there were few more devastating diagnoses than Duchenne muscular dystrophy (DMD).

“The rule of thumb was that they would stop walking by age 10 and probably die around age 20, and there was not much we could do,” Kuntz told colleagues at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

Now, the landscape of DMD therapy is transforming at a rapid pace. “In the last 8 years, we’ve seen eight different therapies that are FDA-approved specifically for Duchenne, and many more are in the pipeline,” said session moderator Kathryn Mosher, MD, a pediatric physical medicine and rehabilitation physician at Akron Children’s Hospital, Akron, Ohio.

This is both good news and a new challenge for clinicians: Which of these treatments are best for which patients? Kuntz said the traditional therapy of corticosteroids is still crucial. However, “there are still families begging to not use steroids, or refusing to use steroids, just not filling the prescriptions,” she said.
 

Beware of Parents Who Reject Steroids

The failure to use steroids “breaks your heart” because data show their impact on “really important functions like walking and being able to get up from the ground,” she said. “You can add months and years to life with this treatment.”

However, “while we have shown that using corticosteroids makes a difference, I don’t think that we’ve really worked out the best age at which to start the steroids, or the dosing schedule, or even the type of steroids,” she cautioned.

In an accompanying presentation about therapy for DMD, pediatric neurologist Craig M. Zaidman, MD, of Washington University in St. Louis, Missouri, cautioned that “daily steroids make a big impact on your growth and particularly on your height.”

In particular, the corticosteroid deflazacort has been linked to more cataracts than prednisone and less weight gain and height growth. “They really don’t grow, they don’t get taller, and they also don’t gain weight. They look like little boys when they’re 13 years old.”
 

Deflazacort or Vamorolone?

Vamorolone (Agamree) is a cheaper corticosteroid alternative to deflazacort (Emflaza), and a 2024 study showed no difference in functional outcomes over 48 weeks, he said. Also, daily vamorolone does a better job of preserving height growth than daily prednisone, he said, and he’s seen less risk for vertebral fractures.

Where do newer drugs fit in? One crucial thing to know about the new generation of targeted therapies is that they’re often mutation-dependent, Kuntz said. They may only work in patients with certain mutations, or mutations may lead to more side effects.

“You should have the exact mutation of your patient, and then you can look and see what they’re eligible for,” she said.

$700,000 a Year for Givinostat

Zaidman highlighted the newly approved givinostat (Duvyzat), a histone deacetylase inhibitor approved for boys 6 years or older. The cost is $700,000 a year, he said, and it’s been linked to less decline in four-stair climb per a double-blind, placebo-controlled, phase 3 trial.

The drug can cause side effects such as reducing platelets, boosting triglycerides, and inducing gastrointestinal problems. “When you drop the dose, these problems go away,” he said.

Does givinostat work? While trial data are challenging to interpret, they do suggest that patients “will lose skill, but they might not lose two or three skills they otherwise would have,” Zaidman said. “To me, that’s quite compelling.”

As for exon-skipping therapies, another new-generation option for DMD, he noted that “these drugs are on the market based on their accelerated approval. We will never have the perfect phase 3, randomized, controlled, long-term trial for these. It’s just not going to come. This is what we get.”

Mosher disclosed the advisory board (Sarepta Therapeutics, Pfizer, Reata Pharmaceuticals, and PTC). Kuntz disclosed advisory board (Astellas Pharma, Inc., argenx, Catalyst, Entrada Therapeutics, Genentech, and Novartis), exchange expert on-demand program (Sarepta Therapeutics), speaker (Genentech, Sarepta Therapeutics, and Solid), and research funding (Astellas Pharma, Inc., argenx, Biogen, Catalyst, Genentech, Novartis, and Sarepta Therapeutics). Zaidman disclosed speaking/advisor/consulting (Sarepta Therapeutics and Optum) and research funding (Novartis and Biogen).
 

A version of this article appeared on Medscape.com.

— When Ann & Robert H. Lurie Children’s Hospital of Chicago pediatric neurologist Nancy L. Kuntz, MD, was a fellow about 45 years ago, there were few more devastating diagnoses than Duchenne muscular dystrophy (DMD).

“The rule of thumb was that they would stop walking by age 10 and probably die around age 20, and there was not much we could do,” Kuntz told colleagues at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

Now, the landscape of DMD therapy is transforming at a rapid pace. “In the last 8 years, we’ve seen eight different therapies that are FDA-approved specifically for Duchenne, and many more are in the pipeline,” said session moderator Kathryn Mosher, MD, a pediatric physical medicine and rehabilitation physician at Akron Children’s Hospital, Akron, Ohio.

This is both good news and a new challenge for clinicians: Which of these treatments are best for which patients? Kuntz said the traditional therapy of corticosteroids is still crucial. However, “there are still families begging to not use steroids, or refusing to use steroids, just not filling the prescriptions,” she said.
 

Beware of Parents Who Reject Steroids

The failure to use steroids “breaks your heart” because data show their impact on “really important functions like walking and being able to get up from the ground,” she said. “You can add months and years to life with this treatment.”

However, “while we have shown that using corticosteroids makes a difference, I don’t think that we’ve really worked out the best age at which to start the steroids, or the dosing schedule, or even the type of steroids,” she cautioned.

In an accompanying presentation about therapy for DMD, pediatric neurologist Craig M. Zaidman, MD, of Washington University in St. Louis, Missouri, cautioned that “daily steroids make a big impact on your growth and particularly on your height.”

In particular, the corticosteroid deflazacort has been linked to more cataracts than prednisone and less weight gain and height growth. “They really don’t grow, they don’t get taller, and they also don’t gain weight. They look like little boys when they’re 13 years old.”
 

Deflazacort or Vamorolone?

Vamorolone (Agamree) is a cheaper corticosteroid alternative to deflazacort (Emflaza), and a 2024 study showed no difference in functional outcomes over 48 weeks, he said. Also, daily vamorolone does a better job of preserving height growth than daily prednisone, he said, and he’s seen less risk for vertebral fractures.

Where do newer drugs fit in? One crucial thing to know about the new generation of targeted therapies is that they’re often mutation-dependent, Kuntz said. They may only work in patients with certain mutations, or mutations may lead to more side effects.

“You should have the exact mutation of your patient, and then you can look and see what they’re eligible for,” she said.

$700,000 a Year for Givinostat

Zaidman highlighted the newly approved givinostat (Duvyzat), a histone deacetylase inhibitor approved for boys 6 years or older. The cost is $700,000 a year, he said, and it’s been linked to less decline in four-stair climb per a double-blind, placebo-controlled, phase 3 trial.

The drug can cause side effects such as reducing platelets, boosting triglycerides, and inducing gastrointestinal problems. “When you drop the dose, these problems go away,” he said.

Does givinostat work? While trial data are challenging to interpret, they do suggest that patients “will lose skill, but they might not lose two or three skills they otherwise would have,” Zaidman said. “To me, that’s quite compelling.”

As for exon-skipping therapies, another new-generation option for DMD, he noted that “these drugs are on the market based on their accelerated approval. We will never have the perfect phase 3, randomized, controlled, long-term trial for these. It’s just not going to come. This is what we get.”

Mosher disclosed the advisory board (Sarepta Therapeutics, Pfizer, Reata Pharmaceuticals, and PTC). Kuntz disclosed advisory board (Astellas Pharma, Inc., argenx, Catalyst, Entrada Therapeutics, Genentech, and Novartis), exchange expert on-demand program (Sarepta Therapeutics), speaker (Genentech, Sarepta Therapeutics, and Solid), and research funding (Astellas Pharma, Inc., argenx, Biogen, Catalyst, Genentech, Novartis, and Sarepta Therapeutics). Zaidman disclosed speaking/advisor/consulting (Sarepta Therapeutics and Optum) and research funding (Novartis and Biogen).
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANEM 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Outpatient CAR T: Safe, Effective, Accessible

Article Type
Changed
Fri, 11/15/2024 - 10:09

A growing body of research suggests that clinicians can offer chimeric antigen receptor (CAR) T-cell therapy safely and effectively on an outpatient basis — a positive development as clinicians strive to expand access beyond metropolitan areas.

In one recent study, an industry-funded phase 2 trial, researchers found similar outcomes from outpatient and inpatient CAR T-cell therapy for relapsed/refractory large B-cell lymphoma with lisocabtagene maraleucel (Breyanzi). 

Another recent study reported that outpatient treatment of B cell non-Hodgkin lymphoma with tisagenlecleucel (Kymriah) had similar efficacy to inpatient treatment. Meanwhile, a 2023 review of CAR T-cell therapy in various settings found similar outcomes in outpatient and inpatient treatment. 

“The future of CAR T-cell therapy lies in balancing safety with accessibility,” said Rayne Rouce, MD, a pediatric oncologist at Texas Children’s Cancer Center in Houston, Texas, in an interview. “Expanding CAR T-cell therapy beyond large medical centers is a critical next step.” 
 

Great Outcomes, Low Access

Since 2017, the FDA has approved six CAR T-cell therapies, which target cancer by harnessing the power of a patient’s own T cells. As an Oregon Health & Sciences University/Knight Cancer Center website explains, T cells are removed from the patient’s body, “genetically modified to make the chimeric antigen receptor, or CAR, [which] protein binds to specific proteins on the surface of cancer cells.”

Modified cells are grown and then infused back into the body, where they “multiply and may be able to destroy all the cancer cells.”

As Rouce puts it, “CAR T-cells have revolutionized the treatment of relapsed or refractory blood cancers.” One or more of the therapies have been approved to treat types of lymphoblastic leukemia, B-cell lymphoma, follicular lymphomamantle cell lymphoma, and multiple myeloma.

2023 review of clinical trial data reported complete response rates of 40%-54% in aggressive B-cell lymphoma, 67% in mantle cell lymphoma, and 69%-74% in indolent B cell lymphoma.

“Commercialization of CAR T-cell therapy brought hope that access would expand beyond the major academic medical centers with the highly specialized infrastructure and advanced laboratories required to manufacture and ultimately treat patients,” Rouce said. “However, it quickly became clear that patients who are underinsured or uninsured — or who live outside the network of the well-resourced institutions that house these therapies — are still unable to access these potentially life-saving therapies.”

2024 report estimated the cost of CAR T-cell therapy as $700,000-$1 million and said only a small percentage of those who could benefit from the treatment actually get it. For example, an estimated 10,000 patients with diffuse large B-cell lymphoma alone could benefit from CAR T therapy annually, but a survey of 200 US healthcare centers in 2021 found that 1900 procedures were performed overall for all indications. 
 

Distance to Treatment Is a Major Obstacle

Even if patients have insurance plans willing to cover CAR T-cell therapy, they may not be able get care. While more than 150 US centers are certified to administer the therapy, “distance to major medical centers with CAR T capabilities is a major obstacle,” Yuliya Linhares, MD, chief of lymphoma at Miami Cancer Institute in Miami, Florida, said in an interview. 

“I have had patients who chose to not proceed with CAR T therapy due to inability to travel the distance to the medical center for pre-CAR T appointments and assessments and a lack of caretakers who are available to stay nearby,” Linhares said.

Indeed, the challenges facing patients in rural and underserved urban areas can be overwhelming, Hoda Badr, PhD, professor of medicine at Baylor College of Medicine in Houston, Texas, said in an interview.

“They must take time off work, arrange accommodations near treatment sites, and manage travel costs, all of which strain limited financial resources. The inability to afford these additional expenses can lead to delays in receiving care or patients forgoing the treatment altogether,” Badr said. She added that “the psychological and social burden of being away from family and community support systems during treatment can intensify the stress of an already difficult situation.”

A statistic tells the story of the urban/community divide. CAR T-cell therapy administration at academic centers after leukapheresis — the separation and collection of white blood cells — is reported to be at around 90%, while it’s only 47% in community-based practices that have to refer patients elsewhere, Linhares noted. 
 

 

 

Researchers Explore CAR T-Cell Therapy in the Community 

Linhares is lead author of the phase 2 trial that explored administration of lisocabtagene maraleucel in 82 patients with relapsed/refractory large B-cell lymphoma. The findings were published Sept. 30 in Blood Advances.

The OUTREACH trial, funded by Juno/Bristol-Myers Squibb, treated patients in the third line and beyond at community medical centers (outpatient-monitored, 70%; inpatient-monitored, 30%). The trial didn’t require facilities to be certified by the Foundation for the Accreditation of Cellular Therapy (FACT); all had to be non-tertiary cancer centers that weren’t associated with a university. In order to administer therapy on the outpatient basis, the centers had to have phase 1 or hematopoietic stem cell transplant capabilities.

As Linhares explained, 72% of participating centers hadn’t provided CAR T-cell therapy before, and 44% did not have FACT accreditation. “About 32% of patients received CAR T at CAR T naive sites, while 70% of patients received CAR T as outpatients. Investigators had to decide whether patients qualified for the outpatient observation or had to be admitted for the inpatient observation,” she noted.
 

Community Outcomes Were Comparable to Major Trial

As for the results, grade 3 or higher adverse events occurred at a similar frequency among outpatients and inpatients at 74% and 76%, Linhares said. There were no grade 5 adverse events, and 25% of patients treated as outpatients were never hospitalized. 

Response rates were similar to those in the major TRANSCEND trial with the objective response rates rate of 80% and complete response rates of 54%.

“Overall,” Linhares said, “our study demonstrated that with the availability of standard operating procedures, specially trained staff and a multidisciplinary team trained in CAR T toxicity management, inpatient and outpatient CAR T administration is feasible at specialized community medical centers.”

In 2023, another study examined patients with B-cell non-Hodgkin lymphoma who were treated on an outpatient basis with tisagenlecleucel. Researchers reported that outpatient therapy was “feasible and associated with similar efficacy outcomes as inpatient treatment.”

And a 2023 systematic literature review identified 11 studies that reported outpatient vs inpatient outcomes in CAR T-cell therapy and found “comparable response rates (80-82% in outpatient and 72-80% in inpatient).” Costs were cheaper in the outpatient setting. 

Research findings like these are good news, Baylor College of Medicine’s Badr said. “Outpatient administration could help to scale the availability of this therapy to a broader range of healthcare settings, including those serving underserved populations. Findings indicate promising safety profiles, which is encouraging for expanding access.”
 

Not Every Patient Can Tolerate Outpatient Care

Linhares noted that the patients who received outpatient care in the lisocabtagene maraleucel study were in better shape than those in the inpatient group. Those selected for inpatient care had “higher disease risk characteristics, including high grade B cell lymphoma histology, higher disease burden, and having received bridging therapy. This points to the fact that the investigators properly selected patients who were at a higher risk of complications for inpatient observation. Additionally, some patients stayed as inpatient due to social factors, which increases length of stay independently of disease characteristics.”

Specifically, reasons for inpatient monitoring were disease characteristics (48%) including tumor burden and risk of adverse events; psychosocial factors (32%) including lack of caregiver support or transportation; COVID-19 precautions (8%); pre-infusion adverse events (8%) of fever and vasovagal reaction; and principal investigator decision (4%) due to limited hospital experience with CAR T-cell therapy.

Texas Children’s Cancer Center’s Rouce said “certain patients, particularly those with higher risk for complications or those who require intensive monitoring, may not be suited for outpatient CAR T-cell therapy. This may be due to other comorbidities or baseline factors known to predispose to CAR T-related toxicities. However, evidence-based risk mitigation algorithms may still allow closely monitored outpatient treatment, with recognition that hospital admission for incipient side effects may be necessary.”
 

 

 

What’s Next for Access to Therapy?

Rouce noted that her institution, like many others, is offering CAR T-cell therapy on an outpatient basis. “Additionally, continued scientific innovation, such as immediately available, off-the-shelf cell therapies and inducible safety switches, will ultimately improve access,” she said. 

Linhares noted a recent advance and highlighted research that’s now in progress. “CAR Ts now have an indication as a second-line therapy in relapsed/refractory large B-cell lymphoma, and there are ongoing clinical trials that will potentially move CAR Ts into the first line,” she said. “Some trials are exploring allogeneic, readily available off-the-shelf CAR T for the treatment of minimal residual disease positive large B-cell lymphoma after completion of first-line therapy.”

These potential advances “are increasing the need for CAR T-capable medical centers,” Linhares noted. “More and more medical centers with expert hematology teams are becoming CAR T-certified, with more patients having access to CAR T.”

Still, she said, “I don’t think access is nearly as good as it should be. Many patients in rural areas are still unable to get this life-saving treatment. “However, “it is very possible that other novel targeted therapies, such as bispecific antibodies, will be used in place of CAR T in areas with poor CAR T access. Bispecific antibody efficacy in various B cell lymphoma histologies are being currently explored.”

Rouce discloses relationships with Novartis and Pfizer. Linhares reports ties with Kyowa Kirin, AbbVie, ADC, BeiGene, Genentech, Gilead, GlaxoSmithKline, Seagen, and TG. Badr has no disclosures. 
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

A growing body of research suggests that clinicians can offer chimeric antigen receptor (CAR) T-cell therapy safely and effectively on an outpatient basis — a positive development as clinicians strive to expand access beyond metropolitan areas.

In one recent study, an industry-funded phase 2 trial, researchers found similar outcomes from outpatient and inpatient CAR T-cell therapy for relapsed/refractory large B-cell lymphoma with lisocabtagene maraleucel (Breyanzi). 

Another recent study reported that outpatient treatment of B cell non-Hodgkin lymphoma with tisagenlecleucel (Kymriah) had similar efficacy to inpatient treatment. Meanwhile, a 2023 review of CAR T-cell therapy in various settings found similar outcomes in outpatient and inpatient treatment. 

“The future of CAR T-cell therapy lies in balancing safety with accessibility,” said Rayne Rouce, MD, a pediatric oncologist at Texas Children’s Cancer Center in Houston, Texas, in an interview. “Expanding CAR T-cell therapy beyond large medical centers is a critical next step.” 
 

Great Outcomes, Low Access

Since 2017, the FDA has approved six CAR T-cell therapies, which target cancer by harnessing the power of a patient’s own T cells. As an Oregon Health & Sciences University/Knight Cancer Center website explains, T cells are removed from the patient’s body, “genetically modified to make the chimeric antigen receptor, or CAR, [which] protein binds to specific proteins on the surface of cancer cells.”

Modified cells are grown and then infused back into the body, where they “multiply and may be able to destroy all the cancer cells.”

As Rouce puts it, “CAR T-cells have revolutionized the treatment of relapsed or refractory blood cancers.” One or more of the therapies have been approved to treat types of lymphoblastic leukemia, B-cell lymphoma, follicular lymphomamantle cell lymphoma, and multiple myeloma.

2023 review of clinical trial data reported complete response rates of 40%-54% in aggressive B-cell lymphoma, 67% in mantle cell lymphoma, and 69%-74% in indolent B cell lymphoma.

“Commercialization of CAR T-cell therapy brought hope that access would expand beyond the major academic medical centers with the highly specialized infrastructure and advanced laboratories required to manufacture and ultimately treat patients,” Rouce said. “However, it quickly became clear that patients who are underinsured or uninsured — or who live outside the network of the well-resourced institutions that house these therapies — are still unable to access these potentially life-saving therapies.”

2024 report estimated the cost of CAR T-cell therapy as $700,000-$1 million and said only a small percentage of those who could benefit from the treatment actually get it. For example, an estimated 10,000 patients with diffuse large B-cell lymphoma alone could benefit from CAR T therapy annually, but a survey of 200 US healthcare centers in 2021 found that 1900 procedures were performed overall for all indications. 
 

Distance to Treatment Is a Major Obstacle

Even if patients have insurance plans willing to cover CAR T-cell therapy, they may not be able get care. While more than 150 US centers are certified to administer the therapy, “distance to major medical centers with CAR T capabilities is a major obstacle,” Yuliya Linhares, MD, chief of lymphoma at Miami Cancer Institute in Miami, Florida, said in an interview. 

“I have had patients who chose to not proceed with CAR T therapy due to inability to travel the distance to the medical center for pre-CAR T appointments and assessments and a lack of caretakers who are available to stay nearby,” Linhares said.

Indeed, the challenges facing patients in rural and underserved urban areas can be overwhelming, Hoda Badr, PhD, professor of medicine at Baylor College of Medicine in Houston, Texas, said in an interview.

“They must take time off work, arrange accommodations near treatment sites, and manage travel costs, all of which strain limited financial resources. The inability to afford these additional expenses can lead to delays in receiving care or patients forgoing the treatment altogether,” Badr said. She added that “the psychological and social burden of being away from family and community support systems during treatment can intensify the stress of an already difficult situation.”

A statistic tells the story of the urban/community divide. CAR T-cell therapy administration at academic centers after leukapheresis — the separation and collection of white blood cells — is reported to be at around 90%, while it’s only 47% in community-based practices that have to refer patients elsewhere, Linhares noted. 
 

 

 

Researchers Explore CAR T-Cell Therapy in the Community 

Linhares is lead author of the phase 2 trial that explored administration of lisocabtagene maraleucel in 82 patients with relapsed/refractory large B-cell lymphoma. The findings were published Sept. 30 in Blood Advances.

The OUTREACH trial, funded by Juno/Bristol-Myers Squibb, treated patients in the third line and beyond at community medical centers (outpatient-monitored, 70%; inpatient-monitored, 30%). The trial didn’t require facilities to be certified by the Foundation for the Accreditation of Cellular Therapy (FACT); all had to be non-tertiary cancer centers that weren’t associated with a university. In order to administer therapy on the outpatient basis, the centers had to have phase 1 or hematopoietic stem cell transplant capabilities.

As Linhares explained, 72% of participating centers hadn’t provided CAR T-cell therapy before, and 44% did not have FACT accreditation. “About 32% of patients received CAR T at CAR T naive sites, while 70% of patients received CAR T as outpatients. Investigators had to decide whether patients qualified for the outpatient observation or had to be admitted for the inpatient observation,” she noted.
 

Community Outcomes Were Comparable to Major Trial

As for the results, grade 3 or higher adverse events occurred at a similar frequency among outpatients and inpatients at 74% and 76%, Linhares said. There were no grade 5 adverse events, and 25% of patients treated as outpatients were never hospitalized. 

Response rates were similar to those in the major TRANSCEND trial with the objective response rates rate of 80% and complete response rates of 54%.

“Overall,” Linhares said, “our study demonstrated that with the availability of standard operating procedures, specially trained staff and a multidisciplinary team trained in CAR T toxicity management, inpatient and outpatient CAR T administration is feasible at specialized community medical centers.”

In 2023, another study examined patients with B-cell non-Hodgkin lymphoma who were treated on an outpatient basis with tisagenlecleucel. Researchers reported that outpatient therapy was “feasible and associated with similar efficacy outcomes as inpatient treatment.”

And a 2023 systematic literature review identified 11 studies that reported outpatient vs inpatient outcomes in CAR T-cell therapy and found “comparable response rates (80-82% in outpatient and 72-80% in inpatient).” Costs were cheaper in the outpatient setting. 

Research findings like these are good news, Baylor College of Medicine’s Badr said. “Outpatient administration could help to scale the availability of this therapy to a broader range of healthcare settings, including those serving underserved populations. Findings indicate promising safety profiles, which is encouraging for expanding access.”
 

Not Every Patient Can Tolerate Outpatient Care

Linhares noted that the patients who received outpatient care in the lisocabtagene maraleucel study were in better shape than those in the inpatient group. Those selected for inpatient care had “higher disease risk characteristics, including high grade B cell lymphoma histology, higher disease burden, and having received bridging therapy. This points to the fact that the investigators properly selected patients who were at a higher risk of complications for inpatient observation. Additionally, some patients stayed as inpatient due to social factors, which increases length of stay independently of disease characteristics.”

Specifically, reasons for inpatient monitoring were disease characteristics (48%) including tumor burden and risk of adverse events; psychosocial factors (32%) including lack of caregiver support or transportation; COVID-19 precautions (8%); pre-infusion adverse events (8%) of fever and vasovagal reaction; and principal investigator decision (4%) due to limited hospital experience with CAR T-cell therapy.

Texas Children’s Cancer Center’s Rouce said “certain patients, particularly those with higher risk for complications or those who require intensive monitoring, may not be suited for outpatient CAR T-cell therapy. This may be due to other comorbidities or baseline factors known to predispose to CAR T-related toxicities. However, evidence-based risk mitigation algorithms may still allow closely monitored outpatient treatment, with recognition that hospital admission for incipient side effects may be necessary.”
 

 

 

What’s Next for Access to Therapy?

Rouce noted that her institution, like many others, is offering CAR T-cell therapy on an outpatient basis. “Additionally, continued scientific innovation, such as immediately available, off-the-shelf cell therapies and inducible safety switches, will ultimately improve access,” she said. 

Linhares noted a recent advance and highlighted research that’s now in progress. “CAR Ts now have an indication as a second-line therapy in relapsed/refractory large B-cell lymphoma, and there are ongoing clinical trials that will potentially move CAR Ts into the first line,” she said. “Some trials are exploring allogeneic, readily available off-the-shelf CAR T for the treatment of minimal residual disease positive large B-cell lymphoma after completion of first-line therapy.”

These potential advances “are increasing the need for CAR T-capable medical centers,” Linhares noted. “More and more medical centers with expert hematology teams are becoming CAR T-certified, with more patients having access to CAR T.”

Still, she said, “I don’t think access is nearly as good as it should be. Many patients in rural areas are still unable to get this life-saving treatment. “However, “it is very possible that other novel targeted therapies, such as bispecific antibodies, will be used in place of CAR T in areas with poor CAR T access. Bispecific antibody efficacy in various B cell lymphoma histologies are being currently explored.”

Rouce discloses relationships with Novartis and Pfizer. Linhares reports ties with Kyowa Kirin, AbbVie, ADC, BeiGene, Genentech, Gilead, GlaxoSmithKline, Seagen, and TG. Badr has no disclosures. 
 

A version of this article appeared on Medscape.com.

A growing body of research suggests that clinicians can offer chimeric antigen receptor (CAR) T-cell therapy safely and effectively on an outpatient basis — a positive development as clinicians strive to expand access beyond metropolitan areas.

In one recent study, an industry-funded phase 2 trial, researchers found similar outcomes from outpatient and inpatient CAR T-cell therapy for relapsed/refractory large B-cell lymphoma with lisocabtagene maraleucel (Breyanzi). 

Another recent study reported that outpatient treatment of B cell non-Hodgkin lymphoma with tisagenlecleucel (Kymriah) had similar efficacy to inpatient treatment. Meanwhile, a 2023 review of CAR T-cell therapy in various settings found similar outcomes in outpatient and inpatient treatment. 

“The future of CAR T-cell therapy lies in balancing safety with accessibility,” said Rayne Rouce, MD, a pediatric oncologist at Texas Children’s Cancer Center in Houston, Texas, in an interview. “Expanding CAR T-cell therapy beyond large medical centers is a critical next step.” 
 

Great Outcomes, Low Access

Since 2017, the FDA has approved six CAR T-cell therapies, which target cancer by harnessing the power of a patient’s own T cells. As an Oregon Health & Sciences University/Knight Cancer Center website explains, T cells are removed from the patient’s body, “genetically modified to make the chimeric antigen receptor, or CAR, [which] protein binds to specific proteins on the surface of cancer cells.”

Modified cells are grown and then infused back into the body, where they “multiply and may be able to destroy all the cancer cells.”

As Rouce puts it, “CAR T-cells have revolutionized the treatment of relapsed or refractory blood cancers.” One or more of the therapies have been approved to treat types of lymphoblastic leukemia, B-cell lymphoma, follicular lymphomamantle cell lymphoma, and multiple myeloma.

2023 review of clinical trial data reported complete response rates of 40%-54% in aggressive B-cell lymphoma, 67% in mantle cell lymphoma, and 69%-74% in indolent B cell lymphoma.

“Commercialization of CAR T-cell therapy brought hope that access would expand beyond the major academic medical centers with the highly specialized infrastructure and advanced laboratories required to manufacture and ultimately treat patients,” Rouce said. “However, it quickly became clear that patients who are underinsured or uninsured — or who live outside the network of the well-resourced institutions that house these therapies — are still unable to access these potentially life-saving therapies.”

2024 report estimated the cost of CAR T-cell therapy as $700,000-$1 million and said only a small percentage of those who could benefit from the treatment actually get it. For example, an estimated 10,000 patients with diffuse large B-cell lymphoma alone could benefit from CAR T therapy annually, but a survey of 200 US healthcare centers in 2021 found that 1900 procedures were performed overall for all indications. 
 

Distance to Treatment Is a Major Obstacle

Even if patients have insurance plans willing to cover CAR T-cell therapy, they may not be able get care. While more than 150 US centers are certified to administer the therapy, “distance to major medical centers with CAR T capabilities is a major obstacle,” Yuliya Linhares, MD, chief of lymphoma at Miami Cancer Institute in Miami, Florida, said in an interview. 

“I have had patients who chose to not proceed with CAR T therapy due to inability to travel the distance to the medical center for pre-CAR T appointments and assessments and a lack of caretakers who are available to stay nearby,” Linhares said.

Indeed, the challenges facing patients in rural and underserved urban areas can be overwhelming, Hoda Badr, PhD, professor of medicine at Baylor College of Medicine in Houston, Texas, said in an interview.

“They must take time off work, arrange accommodations near treatment sites, and manage travel costs, all of which strain limited financial resources. The inability to afford these additional expenses can lead to delays in receiving care or patients forgoing the treatment altogether,” Badr said. She added that “the psychological and social burden of being away from family and community support systems during treatment can intensify the stress of an already difficult situation.”

A statistic tells the story of the urban/community divide. CAR T-cell therapy administration at academic centers after leukapheresis — the separation and collection of white blood cells — is reported to be at around 90%, while it’s only 47% in community-based practices that have to refer patients elsewhere, Linhares noted. 
 

 

 

Researchers Explore CAR T-Cell Therapy in the Community 

Linhares is lead author of the phase 2 trial that explored administration of lisocabtagene maraleucel in 82 patients with relapsed/refractory large B-cell lymphoma. The findings were published Sept. 30 in Blood Advances.

The OUTREACH trial, funded by Juno/Bristol-Myers Squibb, treated patients in the third line and beyond at community medical centers (outpatient-monitored, 70%; inpatient-monitored, 30%). The trial didn’t require facilities to be certified by the Foundation for the Accreditation of Cellular Therapy (FACT); all had to be non-tertiary cancer centers that weren’t associated with a university. In order to administer therapy on the outpatient basis, the centers had to have phase 1 or hematopoietic stem cell transplant capabilities.

As Linhares explained, 72% of participating centers hadn’t provided CAR T-cell therapy before, and 44% did not have FACT accreditation. “About 32% of patients received CAR T at CAR T naive sites, while 70% of patients received CAR T as outpatients. Investigators had to decide whether patients qualified for the outpatient observation or had to be admitted for the inpatient observation,” she noted.
 

Community Outcomes Were Comparable to Major Trial

As for the results, grade 3 or higher adverse events occurred at a similar frequency among outpatients and inpatients at 74% and 76%, Linhares said. There were no grade 5 adverse events, and 25% of patients treated as outpatients were never hospitalized. 

Response rates were similar to those in the major TRANSCEND trial with the objective response rates rate of 80% and complete response rates of 54%.

“Overall,” Linhares said, “our study demonstrated that with the availability of standard operating procedures, specially trained staff and a multidisciplinary team trained in CAR T toxicity management, inpatient and outpatient CAR T administration is feasible at specialized community medical centers.”

In 2023, another study examined patients with B-cell non-Hodgkin lymphoma who were treated on an outpatient basis with tisagenlecleucel. Researchers reported that outpatient therapy was “feasible and associated with similar efficacy outcomes as inpatient treatment.”

And a 2023 systematic literature review identified 11 studies that reported outpatient vs inpatient outcomes in CAR T-cell therapy and found “comparable response rates (80-82% in outpatient and 72-80% in inpatient).” Costs were cheaper in the outpatient setting. 

Research findings like these are good news, Baylor College of Medicine’s Badr said. “Outpatient administration could help to scale the availability of this therapy to a broader range of healthcare settings, including those serving underserved populations. Findings indicate promising safety profiles, which is encouraging for expanding access.”
 

Not Every Patient Can Tolerate Outpatient Care

Linhares noted that the patients who received outpatient care in the lisocabtagene maraleucel study were in better shape than those in the inpatient group. Those selected for inpatient care had “higher disease risk characteristics, including high grade B cell lymphoma histology, higher disease burden, and having received bridging therapy. This points to the fact that the investigators properly selected patients who were at a higher risk of complications for inpatient observation. Additionally, some patients stayed as inpatient due to social factors, which increases length of stay independently of disease characteristics.”

Specifically, reasons for inpatient monitoring were disease characteristics (48%) including tumor burden and risk of adverse events; psychosocial factors (32%) including lack of caregiver support or transportation; COVID-19 precautions (8%); pre-infusion adverse events (8%) of fever and vasovagal reaction; and principal investigator decision (4%) due to limited hospital experience with CAR T-cell therapy.

Texas Children’s Cancer Center’s Rouce said “certain patients, particularly those with higher risk for complications or those who require intensive monitoring, may not be suited for outpatient CAR T-cell therapy. This may be due to other comorbidities or baseline factors known to predispose to CAR T-related toxicities. However, evidence-based risk mitigation algorithms may still allow closely monitored outpatient treatment, with recognition that hospital admission for incipient side effects may be necessary.”
 

 

 

What’s Next for Access to Therapy?

Rouce noted that her institution, like many others, is offering CAR T-cell therapy on an outpatient basis. “Additionally, continued scientific innovation, such as immediately available, off-the-shelf cell therapies and inducible safety switches, will ultimately improve access,” she said. 

Linhares noted a recent advance and highlighted research that’s now in progress. “CAR Ts now have an indication as a second-line therapy in relapsed/refractory large B-cell lymphoma, and there are ongoing clinical trials that will potentially move CAR Ts into the first line,” she said. “Some trials are exploring allogeneic, readily available off-the-shelf CAR T for the treatment of minimal residual disease positive large B-cell lymphoma after completion of first-line therapy.”

These potential advances “are increasing the need for CAR T-capable medical centers,” Linhares noted. “More and more medical centers with expert hematology teams are becoming CAR T-certified, with more patients having access to CAR T.”

Still, she said, “I don’t think access is nearly as good as it should be. Many patients in rural areas are still unable to get this life-saving treatment. “However, “it is very possible that other novel targeted therapies, such as bispecific antibodies, will be used in place of CAR T in areas with poor CAR T access. Bispecific antibody efficacy in various B cell lymphoma histologies are being currently explored.”

Rouce discloses relationships with Novartis and Pfizer. Linhares reports ties with Kyowa Kirin, AbbVie, ADC, BeiGene, Genentech, Gilead, GlaxoSmithKline, Seagen, and TG. Badr has no disclosures. 
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Fri, 11/15/2024 - 10:09
Un-Gate On Date
Fri, 11/15/2024 - 10:09
Use ProPublica
CFC Schedule Remove Status
Fri, 11/15/2024 - 10:09
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Fri, 11/15/2024 - 10:09

Cybersecurity Concerns Continue to Rise With Ransom, Data Manipulation, AI Risks

Article Type
Changed
Tue, 10/29/2024 - 10:00

From the largest healthcare companies to solo practices, just every organization in medicine faces a risk for costly cyberattacks. In recent years, hackers have threatened to release the personal information of patients and employees — or paralyze online systems — unless they’re paid a ransom.

Should companies pay? It’s not an easy answer, a pair of experts told colleagues in an American Medical Association (AMA) cybersecurity webinar on October 18. It turns out that each choice — pay or don’t pay — can end up being costly.

This is just one of the new challenges facing the American medical system on the cybersecurity front, the speakers said. Others include the possibility that hackers will manipulate patient data — turning a medical test negative, for example, when it’s actually positive — and take advantage of the powers of artificial intelligence (AI).

The AMA held the webinar to educate physicians about cybersecurity risks and defenses, an especially hot topic in the wake of February’s Change Healthcare hack, which cost UnitedHealth Group an estimated $2.5 billion — so far — and deeply disrupted the American healthcare system.

Cautionary tales abound. Greg Garcia, executive director for cybersecurity of the Health Sector Coordinating Council, a coalition of medical industry organizations, pointed to a Pennsylvania clinic that refused to pay a ransom to prevent the release of hundreds of images of patients with breast cancer undressed from the waist up. Garcia told webinar participants that the ransom was $5 million.
 

Risky Choices

While the Federal Bureau of Investigation recommends against paying a ransom, this can be a risky choice, Garcia said. Hackers released the images, and the center has reportedly agreed to settle a class-action lawsuit for $65 million. “They traded $5 million for $60 million,” Garcia added, slightly misstating the settlement amount.

Health systems have been cagey about whether they’ve paid ransoms to prevent private data from being made public in cyberattacks. If a ransom is demanded, “it’s every organization for itself,” Garcia said.

He highlighted the case of a chain of psychiatry practices in Finland that suffered a ransomware attack in 2020. The hackers “contacted the patients and said: ‘Hey, call your clinic and tell them to pay the ransom. Otherwise, we’re going to release all your psychiatric notes to the public.’ ”

Cyberattacks continue. In October, Boston Children’s Health Physicians announced that it had suffered a “ recent security incident” involving data — possibly including Social Security numbers and treatment information — regarding patients and employees. A hacker group reportedly claimed responsibility and wants the system, which boasts more than 300 clinicians, to pay a ransom or else it will release the stolen information.
 

Should Paying Ransom Be a Crime?

Christian Dameff, MD, MS, an emergency medicine physician and director of the Center for Healthcare Cybersecurity at the University of California (UC), San Diego, noted that there are efforts to turn paying ransom into a crime. “If people aren’t paying ransoms, then ransomware operators will move to something else that makes them money.”

Dameff urged colleagues to understand we no longer live in a world where clinicians only bother to think of technology when they call the IT department to help them reset their password.

New challenges face clinicians, he said. “How do we develop better strategies, downtime procedures, and safe clinical care in an era where our vital technology may be gone, not just for an hour or 2, but as is the case with these ransomware attacks, sometimes weeks to months.”

Garcia said “cybersecurity is everybody’s responsibility, including frontline clinicians. Because you’re touching data, you’re touching technology, you’re touching patients, and all of those things combine to present some vulnerabilities in the digital world.”
 

 

 

Next Frontier: Hackers May Manipulate Patient Data

Dameff said future hackers may use AI to manipulate individual patient data in ways that threaten patient health. AI makes this easier to accomplish.

“What if I delete your allergies in your electronic health record, or I manipulate your chest x-ray, or I change your lab values so it looks like you’re in diabetic ketoacidosis when you’re not so a clinician gives you insulin when you don’t need it?”

Garcia highlighted another new threat: Phishing efforts that are harder to ignore thanks to AI.

“One of the most successful way that hackers get in, disrupt systems, and steal data is through email phishing, and it’s only going to get better because of artificial intelligence,” he said. “No longer are you going to have typos in that email written by a hacking group in Nigeria or in China. It’s going to be perfect looking.”

What can practices and healthcare systems do? Garcia highlighted federal health agency efforts to encourage organizations to adopt best practices in cybersecurity.

“If you’ve got a data breach, and you can show to the US Department of Health & Human Services [HHS] you have implemented generally recognized cybersecurity controls over the past year, that you have done your best, you did the right thing, and you still got hit, HHS is directed to essentially take it easy on you,” he said. “That’s a positive incentive.”
 

Ransomware Guide in the Works

Dameff said UC San Diego’s Center for Healthcare Cybersecurity plans to publish a free cybersecurity guide in 2025 that will include specific information about ransomware attacks for medical specialties such as cardiology, trauma surgery, and pediatrics.

“Then, should you ever be ransomed, you can pull out this guide. You’ll know what’s going to kind of happen, and you can better prepare for those effects.”

Will the future president prioritize healthcare cybersecurity? That remains to be seen, but crises do have the capacity to concentrate the mind, experts said.

The nation’s capital “has a very short memory, a short attention span. The policymakers tend to be reactive,” Dameff said. “All it takes is yet another Change Healthcare–like attack that disrupts 30% or more of the nation’s healthcare system for the policymakers to sit up, take notice, and try to come up with solutions.”

In addition, he said, an estimated two data breaches/ransomware attacks are occurring per day. “The fact is that we’re all patients, up to the President of the United States and every member of the Congress is a patient.”

There’s a “very existential, very palpable understanding that cyber safety is patient safety and cyber insecurity is patient insecurity,” Dameff said.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

From the largest healthcare companies to solo practices, just every organization in medicine faces a risk for costly cyberattacks. In recent years, hackers have threatened to release the personal information of patients and employees — or paralyze online systems — unless they’re paid a ransom.

Should companies pay? It’s not an easy answer, a pair of experts told colleagues in an American Medical Association (AMA) cybersecurity webinar on October 18. It turns out that each choice — pay or don’t pay — can end up being costly.

This is just one of the new challenges facing the American medical system on the cybersecurity front, the speakers said. Others include the possibility that hackers will manipulate patient data — turning a medical test negative, for example, when it’s actually positive — and take advantage of the powers of artificial intelligence (AI).

The AMA held the webinar to educate physicians about cybersecurity risks and defenses, an especially hot topic in the wake of February’s Change Healthcare hack, which cost UnitedHealth Group an estimated $2.5 billion — so far — and deeply disrupted the American healthcare system.

Cautionary tales abound. Greg Garcia, executive director for cybersecurity of the Health Sector Coordinating Council, a coalition of medical industry organizations, pointed to a Pennsylvania clinic that refused to pay a ransom to prevent the release of hundreds of images of patients with breast cancer undressed from the waist up. Garcia told webinar participants that the ransom was $5 million.
 

Risky Choices

While the Federal Bureau of Investigation recommends against paying a ransom, this can be a risky choice, Garcia said. Hackers released the images, and the center has reportedly agreed to settle a class-action lawsuit for $65 million. “They traded $5 million for $60 million,” Garcia added, slightly misstating the settlement amount.

Health systems have been cagey about whether they’ve paid ransoms to prevent private data from being made public in cyberattacks. If a ransom is demanded, “it’s every organization for itself,” Garcia said.

He highlighted the case of a chain of psychiatry practices in Finland that suffered a ransomware attack in 2020. The hackers “contacted the patients and said: ‘Hey, call your clinic and tell them to pay the ransom. Otherwise, we’re going to release all your psychiatric notes to the public.’ ”

Cyberattacks continue. In October, Boston Children’s Health Physicians announced that it had suffered a “ recent security incident” involving data — possibly including Social Security numbers and treatment information — regarding patients and employees. A hacker group reportedly claimed responsibility and wants the system, which boasts more than 300 clinicians, to pay a ransom or else it will release the stolen information.
 

Should Paying Ransom Be a Crime?

Christian Dameff, MD, MS, an emergency medicine physician and director of the Center for Healthcare Cybersecurity at the University of California (UC), San Diego, noted that there are efforts to turn paying ransom into a crime. “If people aren’t paying ransoms, then ransomware operators will move to something else that makes them money.”

Dameff urged colleagues to understand we no longer live in a world where clinicians only bother to think of technology when they call the IT department to help them reset their password.

New challenges face clinicians, he said. “How do we develop better strategies, downtime procedures, and safe clinical care in an era where our vital technology may be gone, not just for an hour or 2, but as is the case with these ransomware attacks, sometimes weeks to months.”

Garcia said “cybersecurity is everybody’s responsibility, including frontline clinicians. Because you’re touching data, you’re touching technology, you’re touching patients, and all of those things combine to present some vulnerabilities in the digital world.”
 

 

 

Next Frontier: Hackers May Manipulate Patient Data

Dameff said future hackers may use AI to manipulate individual patient data in ways that threaten patient health. AI makes this easier to accomplish.

“What if I delete your allergies in your electronic health record, or I manipulate your chest x-ray, or I change your lab values so it looks like you’re in diabetic ketoacidosis when you’re not so a clinician gives you insulin when you don’t need it?”

Garcia highlighted another new threat: Phishing efforts that are harder to ignore thanks to AI.

“One of the most successful way that hackers get in, disrupt systems, and steal data is through email phishing, and it’s only going to get better because of artificial intelligence,” he said. “No longer are you going to have typos in that email written by a hacking group in Nigeria or in China. It’s going to be perfect looking.”

What can practices and healthcare systems do? Garcia highlighted federal health agency efforts to encourage organizations to adopt best practices in cybersecurity.

“If you’ve got a data breach, and you can show to the US Department of Health & Human Services [HHS] you have implemented generally recognized cybersecurity controls over the past year, that you have done your best, you did the right thing, and you still got hit, HHS is directed to essentially take it easy on you,” he said. “That’s a positive incentive.”
 

Ransomware Guide in the Works

Dameff said UC San Diego’s Center for Healthcare Cybersecurity plans to publish a free cybersecurity guide in 2025 that will include specific information about ransomware attacks for medical specialties such as cardiology, trauma surgery, and pediatrics.

“Then, should you ever be ransomed, you can pull out this guide. You’ll know what’s going to kind of happen, and you can better prepare for those effects.”

Will the future president prioritize healthcare cybersecurity? That remains to be seen, but crises do have the capacity to concentrate the mind, experts said.

The nation’s capital “has a very short memory, a short attention span. The policymakers tend to be reactive,” Dameff said. “All it takes is yet another Change Healthcare–like attack that disrupts 30% or more of the nation’s healthcare system for the policymakers to sit up, take notice, and try to come up with solutions.”

In addition, he said, an estimated two data breaches/ransomware attacks are occurring per day. “The fact is that we’re all patients, up to the President of the United States and every member of the Congress is a patient.”

There’s a “very existential, very palpable understanding that cyber safety is patient safety and cyber insecurity is patient insecurity,” Dameff said.

A version of this article appeared on Medscape.com.

From the largest healthcare companies to solo practices, just every organization in medicine faces a risk for costly cyberattacks. In recent years, hackers have threatened to release the personal information of patients and employees — or paralyze online systems — unless they’re paid a ransom.

Should companies pay? It’s not an easy answer, a pair of experts told colleagues in an American Medical Association (AMA) cybersecurity webinar on October 18. It turns out that each choice — pay or don’t pay — can end up being costly.

This is just one of the new challenges facing the American medical system on the cybersecurity front, the speakers said. Others include the possibility that hackers will manipulate patient data — turning a medical test negative, for example, when it’s actually positive — and take advantage of the powers of artificial intelligence (AI).

The AMA held the webinar to educate physicians about cybersecurity risks and defenses, an especially hot topic in the wake of February’s Change Healthcare hack, which cost UnitedHealth Group an estimated $2.5 billion — so far — and deeply disrupted the American healthcare system.

Cautionary tales abound. Greg Garcia, executive director for cybersecurity of the Health Sector Coordinating Council, a coalition of medical industry organizations, pointed to a Pennsylvania clinic that refused to pay a ransom to prevent the release of hundreds of images of patients with breast cancer undressed from the waist up. Garcia told webinar participants that the ransom was $5 million.
 

Risky Choices

While the Federal Bureau of Investigation recommends against paying a ransom, this can be a risky choice, Garcia said. Hackers released the images, and the center has reportedly agreed to settle a class-action lawsuit for $65 million. “They traded $5 million for $60 million,” Garcia added, slightly misstating the settlement amount.

Health systems have been cagey about whether they’ve paid ransoms to prevent private data from being made public in cyberattacks. If a ransom is demanded, “it’s every organization for itself,” Garcia said.

He highlighted the case of a chain of psychiatry practices in Finland that suffered a ransomware attack in 2020. The hackers “contacted the patients and said: ‘Hey, call your clinic and tell them to pay the ransom. Otherwise, we’re going to release all your psychiatric notes to the public.’ ”

Cyberattacks continue. In October, Boston Children’s Health Physicians announced that it had suffered a “ recent security incident” involving data — possibly including Social Security numbers and treatment information — regarding patients and employees. A hacker group reportedly claimed responsibility and wants the system, which boasts more than 300 clinicians, to pay a ransom or else it will release the stolen information.
 

Should Paying Ransom Be a Crime?

Christian Dameff, MD, MS, an emergency medicine physician and director of the Center for Healthcare Cybersecurity at the University of California (UC), San Diego, noted that there are efforts to turn paying ransom into a crime. “If people aren’t paying ransoms, then ransomware operators will move to something else that makes them money.”

Dameff urged colleagues to understand we no longer live in a world where clinicians only bother to think of technology when they call the IT department to help them reset their password.

New challenges face clinicians, he said. “How do we develop better strategies, downtime procedures, and safe clinical care in an era where our vital technology may be gone, not just for an hour or 2, but as is the case with these ransomware attacks, sometimes weeks to months.”

Garcia said “cybersecurity is everybody’s responsibility, including frontline clinicians. Because you’re touching data, you’re touching technology, you’re touching patients, and all of those things combine to present some vulnerabilities in the digital world.”
 

 

 

Next Frontier: Hackers May Manipulate Patient Data

Dameff said future hackers may use AI to manipulate individual patient data in ways that threaten patient health. AI makes this easier to accomplish.

“What if I delete your allergies in your electronic health record, or I manipulate your chest x-ray, or I change your lab values so it looks like you’re in diabetic ketoacidosis when you’re not so a clinician gives you insulin when you don’t need it?”

Garcia highlighted another new threat: Phishing efforts that are harder to ignore thanks to AI.

“One of the most successful way that hackers get in, disrupt systems, and steal data is through email phishing, and it’s only going to get better because of artificial intelligence,” he said. “No longer are you going to have typos in that email written by a hacking group in Nigeria or in China. It’s going to be perfect looking.”

What can practices and healthcare systems do? Garcia highlighted federal health agency efforts to encourage organizations to adopt best practices in cybersecurity.

“If you’ve got a data breach, and you can show to the US Department of Health & Human Services [HHS] you have implemented generally recognized cybersecurity controls over the past year, that you have done your best, you did the right thing, and you still got hit, HHS is directed to essentially take it easy on you,” he said. “That’s a positive incentive.”
 

Ransomware Guide in the Works

Dameff said UC San Diego’s Center for Healthcare Cybersecurity plans to publish a free cybersecurity guide in 2025 that will include specific information about ransomware attacks for medical specialties such as cardiology, trauma surgery, and pediatrics.

“Then, should you ever be ransomed, you can pull out this guide. You’ll know what’s going to kind of happen, and you can better prepare for those effects.”

Will the future president prioritize healthcare cybersecurity? That remains to be seen, but crises do have the capacity to concentrate the mind, experts said.

The nation’s capital “has a very short memory, a short attention span. The policymakers tend to be reactive,” Dameff said. “All it takes is yet another Change Healthcare–like attack that disrupts 30% or more of the nation’s healthcare system for the policymakers to sit up, take notice, and try to come up with solutions.”

In addition, he said, an estimated two data breaches/ransomware attacks are occurring per day. “The fact is that we’re all patients, up to the President of the United States and every member of the Congress is a patient.”

There’s a “very existential, very palpable understanding that cyber safety is patient safety and cyber insecurity is patient insecurity,” Dameff said.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

For Radiation ‘Downwinders,’ Cancer Compensation Is On Hold

Article Type
Changed
Fri, 10/25/2024 - 12:08

For more than three decades, the federal government sought to make amends to countless Americans who developed cancer after being exposed to radiation from nuclear testing in the Southwest or while working in the uranium mining industry.

As of 2022, more than 40,000 patients with cancer successfully applied for $2.6 billion in compensation. Recipients included “downwinders” who were eligible for $50,000 each if they lived in certain areas of Nevada, Utah, and Arizona during specified nuclear testing periods and developed a covered form of cancer.

In June 2024, however, the Radiation Exposure Compensation Program expired amid infighting among Republicans in Congress over whether to expand it. For now, no one can make a claim, even though many downwinders are still alive and continue to be diagnosed with covered cancers decades after they were exposed in the 1940s, 1950s, and 1960s.

There’s a glimmer of good news. The federal government continues to support free medical screenings for eligible people, including certain downwinders and uranium workers. Meanwhile, there are still important roles for clinicians across the country to play as politicians figure out what — if anything — to do next regarding those exposed to radiation.

“We are still here. We can still screen people,” Zachary Davis, program director for the Radiation Exposure Screening and Education Program, The University of New Mexico, in Albuquerque, New Mexico, said in an interview.
 

Still-Unfolding Legacy of Radiation Exposure

No one knew just how far radiation would spread when the first nuclear bomb was tested in New Mexico in July 1945. Would it cover the state? The entire Southwest? The whole nation?

It also wasn’t clear how radiation would affect people’s health. “There was an awareness that some cancers were caused by radiation, but there wasn’t a cohesive understanding of what the problem was,” Joseph Shonka, PhD, a health physicist who studies radiation exposure and has worked for decades in nuclear engineering, said in an interview.

Now, nearly eight decades later, scientists are still figuring out the full extent of radioactive fallout from nuclear testing. Just last year, a study suggested that radiation from 94 nuclear weapon tests in the Southwest from 1945 to 1962 reached 46 states along with Canada and Mexico.

Activists believe the tests triggered untold number of cancer cases in residents who were exposed in downwind areas:

“My brother died of stomach cancer; my mom died of bone cancer. One of my sisters is surviving brain tumors, and the other one is surviving thyroid cancer,” one New Mexico man recently told ABC-TV’s “Nightline.”

In Idaho, a downwinder advocate told Idaho Capital Sun that everyone who attended a reception for her newly married parents in 1952 — just weeks after a nuclear test — developed cancer or “weird medical complications.” That included her parents, who both had cancer. Her two older brothers, born in 1953 and 1955, also developed cancer, and she’s tracked many other cases in the small town of Emmett.

In Utah, another downwinder advocate told Utah News Dispatch that cancer was common in Salt Lake City neighborhood, where she grew up, which was exposed to fallout. She developed thyroid cancer, her younger sister developed stomach cancer, and an older sister died of lupus, which is connected to radiation exposure. But Salt Lake City isn’t in one of the regions of Utah covered by the federal compensation program, so the advocate can’t get a $50,000 payment.

Downwinders who lived in New Mexico, Idaho, and the Salt Lake City area of Utah are not covered by the federal compensation program. That means none of these people or their descendants are eligible for payments — yet.
 

 

 

Decades After Nuclear Testing, the Government Responds

In 1990, Congress passed the Radiation Exposure Compensation Act, which allowed compensation to people with cancer at several levels. It was later expanded. Downwinders — including those who’ve moved elsewhere over the years — were eligible for $50,000. Onsite participants in nuclear testing could get $75,000. Uranium miners, millers, and ore transporters in 11 states west of the Mississippi River could get $100,000.

Among downwinders, eligible cancers included blood cancers (leukemias with the exception of chronic lymphocytic leukemiamultiple myeloma, and non-Hodgkin’s lymphomas) and a long list of solid organ cancers such as thyroid, breast, stomach, brain, lung, colon, and liver cancers.

“When it comes to blood-related cancers, we do see leukemias, lymphomas, and multiple myeloma, but these cancers were more likely to occur sooner after fallout exposure,” said Laura Shaw, MD, principal investigator who oversees the radiation exposure screening program at the University of Nevada, Las Vegas. “At this point, we see more pancreatic, thyroid, lung, stomach, bladder, and breast cancer.”

The compensation program had major limitations, critics said. “It left out a lot of communities that were exposed,” said Lilly Adams, senior outreach coordinator with the Union of Concerned Scientists (UCS), which supports expanding the program. A national nonprofit organization, UCS was founded more than 50 years ago by scientists and students at the Massachusetts Institute of Technology.

“You have this pretty small amount of one-time compensation, and that’s it,” Adams said in an interview. “You can’t get reimbursed for medical costs or lost wages.” Still, “as flawed as the program is, it’s really valuable for the people who are eligible,” she noted.
 

Now Congress Is Divided on Next Steps

Some lawmakers have recognized the need to do more for those who developed cancer that’s potentially linked to radiation exposure. As the June 2024 expiration of the Radiation Exposure Compensation Act loomed, Democrats and Republicans in Congress worked together to extend and expand the program.

They introduced a bill for higher compensation — $100,000 per person — and the widening of covered downwinder areas to all of Arizona, Nevada, and Utah (which had only been partially covered), along with all of Colorado, Idaho, New Mexico, Montana, and Guam. Under the legislation, the program also would expand to cover some uranium workers who were on the job after 1971 and residents exposed to nuclear waste in Kentucky, Missouri, and Tennessee.

In March, the new legislation easily passed the US Senate by a vote of 69-30, with support from both political parties — but the Republican-led House hasn’t taken it up. As a result, the Radiation Exposure Compensation Act expired in June, and no one can submit new applications for compensation.

A spokesman for House Speaker Mike Johnson told Missouri Independent “unfortunately, the current Senate bill is estimated to cost $50-$60 billion in new mandatory spending with no offsets and was supported by only 20 of 49 Republicans in the Senate.”

Adams rejected these arguments. “The government spends literally trillions of dollars on our nuclear weapons. Whether or not you support that spending, the human cost of building those weapons should be factored in,” she said. She added that she hopes the House will act by the end of the year to pass the bill, but that’s uncertain.
 

 

 

As Compensation Is On Hold, Medical Screening Continues

A major benefit is still available for downwinders and uranium workers: Free medical screening and referrals for medical treatment. The Radiation Exposure Screening and Education Program’s funding has not been affected by the congressional impasse, so screenings are continuing for eligible people exposed to radiation.

Radiation exposure clinics offer screening in Arizona, Colorado, Nevada, New Mexico, and Utah, and health providers can get funding to offer screening in other affected states.

In Nevada, “we hold screening clinics throughout the state: Caliente, Ely, and Winnemucca. Also, in Reno and Las Vegas, which are not in designated downwind areas, but many downwinders have migrated there,” said Shaw in an interview. Among downwinders, “our youngest patients are in their 60s and range up to a few in their 90s,” she said.

Patients fill out questionnaires that ask about their medical problems, family history, and medications. “Ely patients in particular seem to have extensive family histories of cancer, and this may be due to their location directly downwind of the Nevada Test Site,” Shaw said. (Ely is a remote town in central eastern Nevada near the Utah border.)

The screenings cover both cancer and noncancer conditions. Shaw said clinicians often diagnose problems other than the covered cancers — new cases of atrial fibrillation, diabetes, and hypertension. “We see a ton of prostate and skin cancer” but don’t make patients eligible for the compensation program because they’re not covered, she said.

Even as compensation is on hold, doctors can get the word out that screenings are still available, Shaw said. “We continue to get contacted by individuals who in these communities who have never heard of this program, even though we’ve been holding clinics since 2005,” Shaw said. “Despite outreach activities and advertising through newspapers and radio, we find the most successful method of reaching these patients is through word of mouth — either from other patients or their doctors. That is why we feel it is so important to reach other physicians as well.”
 

Affected Patients Don’t Just Live in the West

On the outreach front, clinicians in states outside of the western US region can be helpful, too. Shaw urged oncologists nationwide to ask older patients where they lived in the 1950s and 1960s. “Did they live in Nevada, Arizona, Utah, and other Western states that are downwind? They may qualify for needed services and future compensation.”

With regard to compensation, she noted that applicants need to prove that they lived in affected areas many decades ago. And, of course, they must prove that they’ve had cancer. Locating residency records “has often been an enormous challenge.” Old utility bills, pay stubs, and high school annuals can be helpful, “but these records tend to disappear. People and their families throw stuff away.”

Even proving a cancer diagnosis can be a challenge because records can be missing. In Nevada, the law says clinicians only need to keep medical records for 5 years, Shaw said. “Imaging and pathology reports are destroyed. Patients that have been diagnosed with cancer can’t prove it.”

Shaw said she hopes oncologists will offer these messages to patients: “Be an advocate for your own health and keep copies of your own records. Discuss your diagnosis with your family and contact a cancer registry if you are diagnosed with cancer.”
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

For more than three decades, the federal government sought to make amends to countless Americans who developed cancer after being exposed to radiation from nuclear testing in the Southwest or while working in the uranium mining industry.

As of 2022, more than 40,000 patients with cancer successfully applied for $2.6 billion in compensation. Recipients included “downwinders” who were eligible for $50,000 each if they lived in certain areas of Nevada, Utah, and Arizona during specified nuclear testing periods and developed a covered form of cancer.

In June 2024, however, the Radiation Exposure Compensation Program expired amid infighting among Republicans in Congress over whether to expand it. For now, no one can make a claim, even though many downwinders are still alive and continue to be diagnosed with covered cancers decades after they were exposed in the 1940s, 1950s, and 1960s.

There’s a glimmer of good news. The federal government continues to support free medical screenings for eligible people, including certain downwinders and uranium workers. Meanwhile, there are still important roles for clinicians across the country to play as politicians figure out what — if anything — to do next regarding those exposed to radiation.

“We are still here. We can still screen people,” Zachary Davis, program director for the Radiation Exposure Screening and Education Program, The University of New Mexico, in Albuquerque, New Mexico, said in an interview.
 

Still-Unfolding Legacy of Radiation Exposure

No one knew just how far radiation would spread when the first nuclear bomb was tested in New Mexico in July 1945. Would it cover the state? The entire Southwest? The whole nation?

It also wasn’t clear how radiation would affect people’s health. “There was an awareness that some cancers were caused by radiation, but there wasn’t a cohesive understanding of what the problem was,” Joseph Shonka, PhD, a health physicist who studies radiation exposure and has worked for decades in nuclear engineering, said in an interview.

Now, nearly eight decades later, scientists are still figuring out the full extent of radioactive fallout from nuclear testing. Just last year, a study suggested that radiation from 94 nuclear weapon tests in the Southwest from 1945 to 1962 reached 46 states along with Canada and Mexico.

Activists believe the tests triggered untold number of cancer cases in residents who were exposed in downwind areas:

“My brother died of stomach cancer; my mom died of bone cancer. One of my sisters is surviving brain tumors, and the other one is surviving thyroid cancer,” one New Mexico man recently told ABC-TV’s “Nightline.”

In Idaho, a downwinder advocate told Idaho Capital Sun that everyone who attended a reception for her newly married parents in 1952 — just weeks after a nuclear test — developed cancer or “weird medical complications.” That included her parents, who both had cancer. Her two older brothers, born in 1953 and 1955, also developed cancer, and she’s tracked many other cases in the small town of Emmett.

In Utah, another downwinder advocate told Utah News Dispatch that cancer was common in Salt Lake City neighborhood, where she grew up, which was exposed to fallout. She developed thyroid cancer, her younger sister developed stomach cancer, and an older sister died of lupus, which is connected to radiation exposure. But Salt Lake City isn’t in one of the regions of Utah covered by the federal compensation program, so the advocate can’t get a $50,000 payment.

Downwinders who lived in New Mexico, Idaho, and the Salt Lake City area of Utah are not covered by the federal compensation program. That means none of these people or their descendants are eligible for payments — yet.
 

 

 

Decades After Nuclear Testing, the Government Responds

In 1990, Congress passed the Radiation Exposure Compensation Act, which allowed compensation to people with cancer at several levels. It was later expanded. Downwinders — including those who’ve moved elsewhere over the years — were eligible for $50,000. Onsite participants in nuclear testing could get $75,000. Uranium miners, millers, and ore transporters in 11 states west of the Mississippi River could get $100,000.

Among downwinders, eligible cancers included blood cancers (leukemias with the exception of chronic lymphocytic leukemiamultiple myeloma, and non-Hodgkin’s lymphomas) and a long list of solid organ cancers such as thyroid, breast, stomach, brain, lung, colon, and liver cancers.

“When it comes to blood-related cancers, we do see leukemias, lymphomas, and multiple myeloma, but these cancers were more likely to occur sooner after fallout exposure,” said Laura Shaw, MD, principal investigator who oversees the radiation exposure screening program at the University of Nevada, Las Vegas. “At this point, we see more pancreatic, thyroid, lung, stomach, bladder, and breast cancer.”

The compensation program had major limitations, critics said. “It left out a lot of communities that were exposed,” said Lilly Adams, senior outreach coordinator with the Union of Concerned Scientists (UCS), which supports expanding the program. A national nonprofit organization, UCS was founded more than 50 years ago by scientists and students at the Massachusetts Institute of Technology.

“You have this pretty small amount of one-time compensation, and that’s it,” Adams said in an interview. “You can’t get reimbursed for medical costs or lost wages.” Still, “as flawed as the program is, it’s really valuable for the people who are eligible,” she noted.
 

Now Congress Is Divided on Next Steps

Some lawmakers have recognized the need to do more for those who developed cancer that’s potentially linked to radiation exposure. As the June 2024 expiration of the Radiation Exposure Compensation Act loomed, Democrats and Republicans in Congress worked together to extend and expand the program.

They introduced a bill for higher compensation — $100,000 per person — and the widening of covered downwinder areas to all of Arizona, Nevada, and Utah (which had only been partially covered), along with all of Colorado, Idaho, New Mexico, Montana, and Guam. Under the legislation, the program also would expand to cover some uranium workers who were on the job after 1971 and residents exposed to nuclear waste in Kentucky, Missouri, and Tennessee.

In March, the new legislation easily passed the US Senate by a vote of 69-30, with support from both political parties — but the Republican-led House hasn’t taken it up. As a result, the Radiation Exposure Compensation Act expired in June, and no one can submit new applications for compensation.

A spokesman for House Speaker Mike Johnson told Missouri Independent “unfortunately, the current Senate bill is estimated to cost $50-$60 billion in new mandatory spending with no offsets and was supported by only 20 of 49 Republicans in the Senate.”

Adams rejected these arguments. “The government spends literally trillions of dollars on our nuclear weapons. Whether or not you support that spending, the human cost of building those weapons should be factored in,” she said. She added that she hopes the House will act by the end of the year to pass the bill, but that’s uncertain.
 

 

 

As Compensation Is On Hold, Medical Screening Continues

A major benefit is still available for downwinders and uranium workers: Free medical screening and referrals for medical treatment. The Radiation Exposure Screening and Education Program’s funding has not been affected by the congressional impasse, so screenings are continuing for eligible people exposed to radiation.

Radiation exposure clinics offer screening in Arizona, Colorado, Nevada, New Mexico, and Utah, and health providers can get funding to offer screening in other affected states.

In Nevada, “we hold screening clinics throughout the state: Caliente, Ely, and Winnemucca. Also, in Reno and Las Vegas, which are not in designated downwind areas, but many downwinders have migrated there,” said Shaw in an interview. Among downwinders, “our youngest patients are in their 60s and range up to a few in their 90s,” she said.

Patients fill out questionnaires that ask about their medical problems, family history, and medications. “Ely patients in particular seem to have extensive family histories of cancer, and this may be due to their location directly downwind of the Nevada Test Site,” Shaw said. (Ely is a remote town in central eastern Nevada near the Utah border.)

The screenings cover both cancer and noncancer conditions. Shaw said clinicians often diagnose problems other than the covered cancers — new cases of atrial fibrillation, diabetes, and hypertension. “We see a ton of prostate and skin cancer” but don’t make patients eligible for the compensation program because they’re not covered, she said.

Even as compensation is on hold, doctors can get the word out that screenings are still available, Shaw said. “We continue to get contacted by individuals who in these communities who have never heard of this program, even though we’ve been holding clinics since 2005,” Shaw said. “Despite outreach activities and advertising through newspapers and radio, we find the most successful method of reaching these patients is through word of mouth — either from other patients or their doctors. That is why we feel it is so important to reach other physicians as well.”
 

Affected Patients Don’t Just Live in the West

On the outreach front, clinicians in states outside of the western US region can be helpful, too. Shaw urged oncologists nationwide to ask older patients where they lived in the 1950s and 1960s. “Did they live in Nevada, Arizona, Utah, and other Western states that are downwind? They may qualify for needed services and future compensation.”

With regard to compensation, she noted that applicants need to prove that they lived in affected areas many decades ago. And, of course, they must prove that they’ve had cancer. Locating residency records “has often been an enormous challenge.” Old utility bills, pay stubs, and high school annuals can be helpful, “but these records tend to disappear. People and their families throw stuff away.”

Even proving a cancer diagnosis can be a challenge because records can be missing. In Nevada, the law says clinicians only need to keep medical records for 5 years, Shaw said. “Imaging and pathology reports are destroyed. Patients that have been diagnosed with cancer can’t prove it.”

Shaw said she hopes oncologists will offer these messages to patients: “Be an advocate for your own health and keep copies of your own records. Discuss your diagnosis with your family and contact a cancer registry if you are diagnosed with cancer.”
 

A version of this article appeared on Medscape.com.

For more than three decades, the federal government sought to make amends to countless Americans who developed cancer after being exposed to radiation from nuclear testing in the Southwest or while working in the uranium mining industry.

As of 2022, more than 40,000 patients with cancer successfully applied for $2.6 billion in compensation. Recipients included “downwinders” who were eligible for $50,000 each if they lived in certain areas of Nevada, Utah, and Arizona during specified nuclear testing periods and developed a covered form of cancer.

In June 2024, however, the Radiation Exposure Compensation Program expired amid infighting among Republicans in Congress over whether to expand it. For now, no one can make a claim, even though many downwinders are still alive and continue to be diagnosed with covered cancers decades after they were exposed in the 1940s, 1950s, and 1960s.

There’s a glimmer of good news. The federal government continues to support free medical screenings for eligible people, including certain downwinders and uranium workers. Meanwhile, there are still important roles for clinicians across the country to play as politicians figure out what — if anything — to do next regarding those exposed to radiation.

“We are still here. We can still screen people,” Zachary Davis, program director for the Radiation Exposure Screening and Education Program, The University of New Mexico, in Albuquerque, New Mexico, said in an interview.
 

Still-Unfolding Legacy of Radiation Exposure

No one knew just how far radiation would spread when the first nuclear bomb was tested in New Mexico in July 1945. Would it cover the state? The entire Southwest? The whole nation?

It also wasn’t clear how radiation would affect people’s health. “There was an awareness that some cancers were caused by radiation, but there wasn’t a cohesive understanding of what the problem was,” Joseph Shonka, PhD, a health physicist who studies radiation exposure and has worked for decades in nuclear engineering, said in an interview.

Now, nearly eight decades later, scientists are still figuring out the full extent of radioactive fallout from nuclear testing. Just last year, a study suggested that radiation from 94 nuclear weapon tests in the Southwest from 1945 to 1962 reached 46 states along with Canada and Mexico.

Activists believe the tests triggered untold number of cancer cases in residents who were exposed in downwind areas:

“My brother died of stomach cancer; my mom died of bone cancer. One of my sisters is surviving brain tumors, and the other one is surviving thyroid cancer,” one New Mexico man recently told ABC-TV’s “Nightline.”

In Idaho, a downwinder advocate told Idaho Capital Sun that everyone who attended a reception for her newly married parents in 1952 — just weeks after a nuclear test — developed cancer or “weird medical complications.” That included her parents, who both had cancer. Her two older brothers, born in 1953 and 1955, also developed cancer, and she’s tracked many other cases in the small town of Emmett.

In Utah, another downwinder advocate told Utah News Dispatch that cancer was common in Salt Lake City neighborhood, where she grew up, which was exposed to fallout. She developed thyroid cancer, her younger sister developed stomach cancer, and an older sister died of lupus, which is connected to radiation exposure. But Salt Lake City isn’t in one of the regions of Utah covered by the federal compensation program, so the advocate can’t get a $50,000 payment.

Downwinders who lived in New Mexico, Idaho, and the Salt Lake City area of Utah are not covered by the federal compensation program. That means none of these people or their descendants are eligible for payments — yet.
 

 

 

Decades After Nuclear Testing, the Government Responds

In 1990, Congress passed the Radiation Exposure Compensation Act, which allowed compensation to people with cancer at several levels. It was later expanded. Downwinders — including those who’ve moved elsewhere over the years — were eligible for $50,000. Onsite participants in nuclear testing could get $75,000. Uranium miners, millers, and ore transporters in 11 states west of the Mississippi River could get $100,000.

Among downwinders, eligible cancers included blood cancers (leukemias with the exception of chronic lymphocytic leukemiamultiple myeloma, and non-Hodgkin’s lymphomas) and a long list of solid organ cancers such as thyroid, breast, stomach, brain, lung, colon, and liver cancers.

“When it comes to blood-related cancers, we do see leukemias, lymphomas, and multiple myeloma, but these cancers were more likely to occur sooner after fallout exposure,” said Laura Shaw, MD, principal investigator who oversees the radiation exposure screening program at the University of Nevada, Las Vegas. “At this point, we see more pancreatic, thyroid, lung, stomach, bladder, and breast cancer.”

The compensation program had major limitations, critics said. “It left out a lot of communities that were exposed,” said Lilly Adams, senior outreach coordinator with the Union of Concerned Scientists (UCS), which supports expanding the program. A national nonprofit organization, UCS was founded more than 50 years ago by scientists and students at the Massachusetts Institute of Technology.

“You have this pretty small amount of one-time compensation, and that’s it,” Adams said in an interview. “You can’t get reimbursed for medical costs or lost wages.” Still, “as flawed as the program is, it’s really valuable for the people who are eligible,” she noted.
 

Now Congress Is Divided on Next Steps

Some lawmakers have recognized the need to do more for those who developed cancer that’s potentially linked to radiation exposure. As the June 2024 expiration of the Radiation Exposure Compensation Act loomed, Democrats and Republicans in Congress worked together to extend and expand the program.

They introduced a bill for higher compensation — $100,000 per person — and the widening of covered downwinder areas to all of Arizona, Nevada, and Utah (which had only been partially covered), along with all of Colorado, Idaho, New Mexico, Montana, and Guam. Under the legislation, the program also would expand to cover some uranium workers who were on the job after 1971 and residents exposed to nuclear waste in Kentucky, Missouri, and Tennessee.

In March, the new legislation easily passed the US Senate by a vote of 69-30, with support from both political parties — but the Republican-led House hasn’t taken it up. As a result, the Radiation Exposure Compensation Act expired in June, and no one can submit new applications for compensation.

A spokesman for House Speaker Mike Johnson told Missouri Independent “unfortunately, the current Senate bill is estimated to cost $50-$60 billion in new mandatory spending with no offsets and was supported by only 20 of 49 Republicans in the Senate.”

Adams rejected these arguments. “The government spends literally trillions of dollars on our nuclear weapons. Whether or not you support that spending, the human cost of building those weapons should be factored in,” she said. She added that she hopes the House will act by the end of the year to pass the bill, but that’s uncertain.
 

 

 

As Compensation Is On Hold, Medical Screening Continues

A major benefit is still available for downwinders and uranium workers: Free medical screening and referrals for medical treatment. The Radiation Exposure Screening and Education Program’s funding has not been affected by the congressional impasse, so screenings are continuing for eligible people exposed to radiation.

Radiation exposure clinics offer screening in Arizona, Colorado, Nevada, New Mexico, and Utah, and health providers can get funding to offer screening in other affected states.

In Nevada, “we hold screening clinics throughout the state: Caliente, Ely, and Winnemucca. Also, in Reno and Las Vegas, which are not in designated downwind areas, but many downwinders have migrated there,” said Shaw in an interview. Among downwinders, “our youngest patients are in their 60s and range up to a few in their 90s,” she said.

Patients fill out questionnaires that ask about their medical problems, family history, and medications. “Ely patients in particular seem to have extensive family histories of cancer, and this may be due to their location directly downwind of the Nevada Test Site,” Shaw said. (Ely is a remote town in central eastern Nevada near the Utah border.)

The screenings cover both cancer and noncancer conditions. Shaw said clinicians often diagnose problems other than the covered cancers — new cases of atrial fibrillation, diabetes, and hypertension. “We see a ton of prostate and skin cancer” but don’t make patients eligible for the compensation program because they’re not covered, she said.

Even as compensation is on hold, doctors can get the word out that screenings are still available, Shaw said. “We continue to get contacted by individuals who in these communities who have never heard of this program, even though we’ve been holding clinics since 2005,” Shaw said. “Despite outreach activities and advertising through newspapers and radio, we find the most successful method of reaching these patients is through word of mouth — either from other patients or their doctors. That is why we feel it is so important to reach other physicians as well.”
 

Affected Patients Don’t Just Live in the West

On the outreach front, clinicians in states outside of the western US region can be helpful, too. Shaw urged oncologists nationwide to ask older patients where they lived in the 1950s and 1960s. “Did they live in Nevada, Arizona, Utah, and other Western states that are downwind? They may qualify for needed services and future compensation.”

With regard to compensation, she noted that applicants need to prove that they lived in affected areas many decades ago. And, of course, they must prove that they’ve had cancer. Locating residency records “has often been an enormous challenge.” Old utility bills, pay stubs, and high school annuals can be helpful, “but these records tend to disappear. People and their families throw stuff away.”

Even proving a cancer diagnosis can be a challenge because records can be missing. In Nevada, the law says clinicians only need to keep medical records for 5 years, Shaw said. “Imaging and pathology reports are destroyed. Patients that have been diagnosed with cancer can’t prove it.”

Shaw said she hopes oncologists will offer these messages to patients: “Be an advocate for your own health and keep copies of your own records. Discuss your diagnosis with your family and contact a cancer registry if you are diagnosed with cancer.”
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Pediatric Myasthenia Gravis: Don’t Treat Children Like Adults

Article Type
Changed
Tue, 10/22/2024 - 13:17

— At a pathophysiological level, juvenile myasthenia gravis (MG) seems to be identical to the adult form, neuromuscular specialists learned. But there are still important differences between children and their elders that affect pediatric care.

For example, “we have to think a little bit differently about the side effect profiles of the medications and their toxicity because children may react to medications differently,” said Matthew Ginsberg, MD, a pediatric neurologist based in Akron, Ohio, in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

And then there’s the matter of adherence. “It’s hard to get adults to take medication, but a teenager is sometimes an exceptional challenge,” Ginsberg said.
 

Case In Point: A 13-Year-Old With MG

Pediatric MG is rare. Cases in children are estimated to account for 10% of MG cases diagnosed each year. According to a 2020 report, “the majority will present with ptosis and a variable degree of ophthalmoplegia [paralysis of eye muscles].”

Ginsberg highlighted a case of a 13-year-old girl who’d been healthy but developed fatigable ptosis and mild restriction of extraocular movements. The patient’s acetylcholine receptor antibodies were very elevated, but she didn’t have MuSK antibodies.

“This isn’t a diagnostic conundrum. She has autoimmune myasthenia gravis with ocular manifestations,” Ginsberg said. “For someone like this, whether it’s an adult or a child, many people would start symptomatic treatment with an acetylcholinesterase inhibitor like pyridostigmine.”

The use of the drug in children is similar to that in adults, he said, although weight-based dosing is used. “Usually it’s around 3-7 mg/kg/d, but it’s still very individualized based on patient response.” The timing of symptoms can affect the distribution of doses throughout the day, he said.

“There are extended-release formulations of the medication, and I think some people use them more than I do,” he said. “The side effects are basically similar to adults. Most of the patients I have on it tolerate it really well and don’t have a lot of the muscarinic side effects that you would expect.”
 

Consider Prescription Eye Drops for Ptosis

Alpha-1A agonists oxymetazoline and apraclonidine in the form of topical eye drops can help with ptosis. “They potentially avoid some of the systemic toxicity of the other medications,” Ginsberg said. “So they might be an option if you’re really just trying to target ptosis as a symptom.”

However, it can be difficult to get insurers to cover these medications, he said.

The 13-year-old patient initially improved but developed difficulty walking. “Her hands began to feel heavy, and she had difficulty chewing and nasal regurgitation. On her exam, she still had fatigable ptosis plus hypernasal speech and generalized weakness. At this point, we’re starting to see that she has generalized myasthenia gravis that may be an impending crisis.”
 

The Young Patient Worsens. Now What?

The patient was admitted and given intravenous immunoglobulin at 2 g/kg over a couple days. But her symptoms worsened following initial improvement.

Glucocorticoids can play a larger role in treatment at this stage, and the patient was initially on prednisone. But there are reasons for caution, including effects on bone growth and interference with live vaccines.

However, live vaccines aren’t common in children, with the exception of the MMRV vaccine, he said. “It’s worth noting that you can give that second dose as early as 3 months after the initial one, so most patients really should be able to complete a course before they start on immunosuppression,” he said.

Another option is immunotherapy. “There’s a really large menu of options for immunotherapy in myasthenia gravis right now,” Ginsberg said. “It’s great that we have all these options, but it adds to the complexity.”

Rituximab may be considered based on early data, he said. And thymectomy — removal of the thymus gland — should be considered early.
 

 

 

Don’t Neglect Supportive Care

Ginsberg urged colleagues to consider supportive care measures. Advocacy groups such as the Myasthenia Gravis Foundation of America can help with weight management and diet/exercise counseling, especially in patients taking glucocorticoids.

He added that “school accommodations are very important in this age group. They might need a plan, for example, to have modified gym class or an excuse not to carry a book bag between classes.”

How did the 13-year-old do? She underwent thymectomy, and her disease remained stable after 6 months. “Her rituximab was discontinued,” Ginsberg said. “She considered participating in a clinical trial but then started seeing improvements. About a year after the thymectomy, she just stopped her steroids on her own, and she was fine.”

Ginsberg had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

— At a pathophysiological level, juvenile myasthenia gravis (MG) seems to be identical to the adult form, neuromuscular specialists learned. But there are still important differences between children and their elders that affect pediatric care.

For example, “we have to think a little bit differently about the side effect profiles of the medications and their toxicity because children may react to medications differently,” said Matthew Ginsberg, MD, a pediatric neurologist based in Akron, Ohio, in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

And then there’s the matter of adherence. “It’s hard to get adults to take medication, but a teenager is sometimes an exceptional challenge,” Ginsberg said.
 

Case In Point: A 13-Year-Old With MG

Pediatric MG is rare. Cases in children are estimated to account for 10% of MG cases diagnosed each year. According to a 2020 report, “the majority will present with ptosis and a variable degree of ophthalmoplegia [paralysis of eye muscles].”

Ginsberg highlighted a case of a 13-year-old girl who’d been healthy but developed fatigable ptosis and mild restriction of extraocular movements. The patient’s acetylcholine receptor antibodies were very elevated, but she didn’t have MuSK antibodies.

“This isn’t a diagnostic conundrum. She has autoimmune myasthenia gravis with ocular manifestations,” Ginsberg said. “For someone like this, whether it’s an adult or a child, many people would start symptomatic treatment with an acetylcholinesterase inhibitor like pyridostigmine.”

The use of the drug in children is similar to that in adults, he said, although weight-based dosing is used. “Usually it’s around 3-7 mg/kg/d, but it’s still very individualized based on patient response.” The timing of symptoms can affect the distribution of doses throughout the day, he said.

“There are extended-release formulations of the medication, and I think some people use them more than I do,” he said. “The side effects are basically similar to adults. Most of the patients I have on it tolerate it really well and don’t have a lot of the muscarinic side effects that you would expect.”
 

Consider Prescription Eye Drops for Ptosis

Alpha-1A agonists oxymetazoline and apraclonidine in the form of topical eye drops can help with ptosis. “They potentially avoid some of the systemic toxicity of the other medications,” Ginsberg said. “So they might be an option if you’re really just trying to target ptosis as a symptom.”

However, it can be difficult to get insurers to cover these medications, he said.

The 13-year-old patient initially improved but developed difficulty walking. “Her hands began to feel heavy, and she had difficulty chewing and nasal regurgitation. On her exam, she still had fatigable ptosis plus hypernasal speech and generalized weakness. At this point, we’re starting to see that she has generalized myasthenia gravis that may be an impending crisis.”
 

The Young Patient Worsens. Now What?

The patient was admitted and given intravenous immunoglobulin at 2 g/kg over a couple days. But her symptoms worsened following initial improvement.

Glucocorticoids can play a larger role in treatment at this stage, and the patient was initially on prednisone. But there are reasons for caution, including effects on bone growth and interference with live vaccines.

However, live vaccines aren’t common in children, with the exception of the MMRV vaccine, he said. “It’s worth noting that you can give that second dose as early as 3 months after the initial one, so most patients really should be able to complete a course before they start on immunosuppression,” he said.

Another option is immunotherapy. “There’s a really large menu of options for immunotherapy in myasthenia gravis right now,” Ginsberg said. “It’s great that we have all these options, but it adds to the complexity.”

Rituximab may be considered based on early data, he said. And thymectomy — removal of the thymus gland — should be considered early.
 

 

 

Don’t Neglect Supportive Care

Ginsberg urged colleagues to consider supportive care measures. Advocacy groups such as the Myasthenia Gravis Foundation of America can help with weight management and diet/exercise counseling, especially in patients taking glucocorticoids.

He added that “school accommodations are very important in this age group. They might need a plan, for example, to have modified gym class or an excuse not to carry a book bag between classes.”

How did the 13-year-old do? She underwent thymectomy, and her disease remained stable after 6 months. “Her rituximab was discontinued,” Ginsberg said. “She considered participating in a clinical trial but then started seeing improvements. About a year after the thymectomy, she just stopped her steroids on her own, and she was fine.”

Ginsberg had no disclosures.
 

A version of this article appeared on Medscape.com.

— At a pathophysiological level, juvenile myasthenia gravis (MG) seems to be identical to the adult form, neuromuscular specialists learned. But there are still important differences between children and their elders that affect pediatric care.

For example, “we have to think a little bit differently about the side effect profiles of the medications and their toxicity because children may react to medications differently,” said Matthew Ginsberg, MD, a pediatric neurologist based in Akron, Ohio, in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024.

And then there’s the matter of adherence. “It’s hard to get adults to take medication, but a teenager is sometimes an exceptional challenge,” Ginsberg said.
 

Case In Point: A 13-Year-Old With MG

Pediatric MG is rare. Cases in children are estimated to account for 10% of MG cases diagnosed each year. According to a 2020 report, “the majority will present with ptosis and a variable degree of ophthalmoplegia [paralysis of eye muscles].”

Ginsberg highlighted a case of a 13-year-old girl who’d been healthy but developed fatigable ptosis and mild restriction of extraocular movements. The patient’s acetylcholine receptor antibodies were very elevated, but she didn’t have MuSK antibodies.

“This isn’t a diagnostic conundrum. She has autoimmune myasthenia gravis with ocular manifestations,” Ginsberg said. “For someone like this, whether it’s an adult or a child, many people would start symptomatic treatment with an acetylcholinesterase inhibitor like pyridostigmine.”

The use of the drug in children is similar to that in adults, he said, although weight-based dosing is used. “Usually it’s around 3-7 mg/kg/d, but it’s still very individualized based on patient response.” The timing of symptoms can affect the distribution of doses throughout the day, he said.

“There are extended-release formulations of the medication, and I think some people use them more than I do,” he said. “The side effects are basically similar to adults. Most of the patients I have on it tolerate it really well and don’t have a lot of the muscarinic side effects that you would expect.”
 

Consider Prescription Eye Drops for Ptosis

Alpha-1A agonists oxymetazoline and apraclonidine in the form of topical eye drops can help with ptosis. “They potentially avoid some of the systemic toxicity of the other medications,” Ginsberg said. “So they might be an option if you’re really just trying to target ptosis as a symptom.”

However, it can be difficult to get insurers to cover these medications, he said.

The 13-year-old patient initially improved but developed difficulty walking. “Her hands began to feel heavy, and she had difficulty chewing and nasal regurgitation. On her exam, she still had fatigable ptosis plus hypernasal speech and generalized weakness. At this point, we’re starting to see that she has generalized myasthenia gravis that may be an impending crisis.”
 

The Young Patient Worsens. Now What?

The patient was admitted and given intravenous immunoglobulin at 2 g/kg over a couple days. But her symptoms worsened following initial improvement.

Glucocorticoids can play a larger role in treatment at this stage, and the patient was initially on prednisone. But there are reasons for caution, including effects on bone growth and interference with live vaccines.

However, live vaccines aren’t common in children, with the exception of the MMRV vaccine, he said. “It’s worth noting that you can give that second dose as early as 3 months after the initial one, so most patients really should be able to complete a course before they start on immunosuppression,” he said.

Another option is immunotherapy. “There’s a really large menu of options for immunotherapy in myasthenia gravis right now,” Ginsberg said. “It’s great that we have all these options, but it adds to the complexity.”

Rituximab may be considered based on early data, he said. And thymectomy — removal of the thymus gland — should be considered early.
 

 

 

Don’t Neglect Supportive Care

Ginsberg urged colleagues to consider supportive care measures. Advocacy groups such as the Myasthenia Gravis Foundation of America can help with weight management and diet/exercise counseling, especially in patients taking glucocorticoids.

He added that “school accommodations are very important in this age group. They might need a plan, for example, to have modified gym class or an excuse not to carry a book bag between classes.”

How did the 13-year-old do? She underwent thymectomy, and her disease remained stable after 6 months. “Her rituximab was discontinued,” Ginsberg said. “She considered participating in a clinical trial but then started seeing improvements. About a year after the thymectomy, she just stopped her steroids on her own, and she was fine.”

Ginsberg had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANEM 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

New Clinician Tool Aims to Stop ALS Diagnosis Delays

Article Type
Changed
Tue, 10/22/2024 - 11:46

A new clinical education tool aims to speed the diagnosis of amyotrophic lateral sclerosis (ALS), which often goes undetected for months even in neurologist offices.

The one-page “thinkALS” tool, designed for clinicians who don’t specialize in neuromuscular disorders, offers a guide to recognize ALS symptoms and determine when it’s time to refer patients to ALS clinics.

“Time is of the essence. It’s really important because the paradigm of looking at ALS is shifting from this being a fatal disease that nobody can do anything about,” said Suma Babu, MBBS, MPH, assistant professor of neurology at Massachusetts General Hospital/Harvard Medical School in Boston, in a presentation at American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024. “As a community, we need to think about how can get to the diagnosis point early and get patients started on therapies.”
 

On Average, ALS Diagnosis Takes 12-15 Months

As Babu noted, the percentage of patients initially diagnosed with something else may be as high as 52%. The time to diagnosis in ALS remained steady at a mean 12-15 months from 1996-1998 to 2000-2018.

“If you keep in mind that an average ALS patient lives only 3-5 years from symptom onset, they’re spending one third of their survival time in just trying to figure out what the diagnosis is,” Babu said. “Often, they may even undergo unnecessary testing and unnecessary surgeries — carpal tunnel releases, spinal surgeries, and so on.”

Babu’s own research, which is under review for publication, examined 2011-2021 Medicare claims to determine the typical time from first neurologist consult to confirmed ALS diagnosis. The mean for ALS/neuromuscular specialists is 9.6 months, while it’s 16.7 months for nonspecialist neurologists.

“It’s a hard pill to swallow,” Babu said, referring to the fact that neurologists are contributing to some of this situation. “But it is a challenge because ALS does not have a definitive diagnostic test, and you’re ruling out other possibilities.”
 

A ‘Sense of Nihilism’ About Prognoses

She added that “unless you’re seeing a lot of ALS patients, this is not going to be on a neurologist’s or a nurse practitioner’s radar to think about ALS early and then refer them to the right place.”

There’s also an unwarranted “sense of nihilism” about prognoses for patients, she said. “Sometimes people do not understand what’s going on within the ALS field in terms of ‘What are we going to do about it if it’s diagnosed?’ ”

The new one-page tool will be helpful in making diagnoses, she said. “If you have a patient who has asymmetric, progressive weakness, there is an instrument you can turn to that will walk you through the most common symptoms. It’ll also walk you through what to do next.”

The tool lists features of ALS and factors that support — or don’t support — an ALS diagnosis. Users are told to “think ALS” if features in two categories are present and no features in a third category are present.
 

Referral Wording Is Crucial

Babu added that the “important key feature of this instrument” is guidance for non-neurologists regarding what to write on a referral to neurology so the patient is channeled directly to an ALS clinic. The recommended wording: “CLINICAL SUSPICION FOR ALS.”

Neurologist Ximena Arcila-Londono, MD, of Henry Ford Health in Detroit, spoke after Babu’s presentation and agreed that wording is crucial in referrals. “Please include in your words ‘Rule out motor neuron disorder’ or ‘Rule out ALS,’ ” she said. “Some people in the community are very reluctant to use those words in their referral. If you don’t use the referral and you send them [regarding] weakness, that person is going to get stuck in the general neurology pile. The moment you use the word ‘motor neuron disorder’ or ALS, most of us will get to those patients within a month.”

The tool’s wording adds that “most ALS centers can accommodate urgent ALS referrals within 2 weeks.”

Babu disclosed receiving research funding from the AANEM Foundation, American Academy of Neurology, Muscular Dystrophy Association, OrphAI, Biogen, Ionis, Novartis, Denali, uniQure, and MarvelBiome. Arcila-Londono had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

A new clinical education tool aims to speed the diagnosis of amyotrophic lateral sclerosis (ALS), which often goes undetected for months even in neurologist offices.

The one-page “thinkALS” tool, designed for clinicians who don’t specialize in neuromuscular disorders, offers a guide to recognize ALS symptoms and determine when it’s time to refer patients to ALS clinics.

“Time is of the essence. It’s really important because the paradigm of looking at ALS is shifting from this being a fatal disease that nobody can do anything about,” said Suma Babu, MBBS, MPH, assistant professor of neurology at Massachusetts General Hospital/Harvard Medical School in Boston, in a presentation at American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024. “As a community, we need to think about how can get to the diagnosis point early and get patients started on therapies.”
 

On Average, ALS Diagnosis Takes 12-15 Months

As Babu noted, the percentage of patients initially diagnosed with something else may be as high as 52%. The time to diagnosis in ALS remained steady at a mean 12-15 months from 1996-1998 to 2000-2018.

“If you keep in mind that an average ALS patient lives only 3-5 years from symptom onset, they’re spending one third of their survival time in just trying to figure out what the diagnosis is,” Babu said. “Often, they may even undergo unnecessary testing and unnecessary surgeries — carpal tunnel releases, spinal surgeries, and so on.”

Babu’s own research, which is under review for publication, examined 2011-2021 Medicare claims to determine the typical time from first neurologist consult to confirmed ALS diagnosis. The mean for ALS/neuromuscular specialists is 9.6 months, while it’s 16.7 months for nonspecialist neurologists.

“It’s a hard pill to swallow,” Babu said, referring to the fact that neurologists are contributing to some of this situation. “But it is a challenge because ALS does not have a definitive diagnostic test, and you’re ruling out other possibilities.”
 

A ‘Sense of Nihilism’ About Prognoses

She added that “unless you’re seeing a lot of ALS patients, this is not going to be on a neurologist’s or a nurse practitioner’s radar to think about ALS early and then refer them to the right place.”

There’s also an unwarranted “sense of nihilism” about prognoses for patients, she said. “Sometimes people do not understand what’s going on within the ALS field in terms of ‘What are we going to do about it if it’s diagnosed?’ ”

The new one-page tool will be helpful in making diagnoses, she said. “If you have a patient who has asymmetric, progressive weakness, there is an instrument you can turn to that will walk you through the most common symptoms. It’ll also walk you through what to do next.”

The tool lists features of ALS and factors that support — or don’t support — an ALS diagnosis. Users are told to “think ALS” if features in two categories are present and no features in a third category are present.
 

Referral Wording Is Crucial

Babu added that the “important key feature of this instrument” is guidance for non-neurologists regarding what to write on a referral to neurology so the patient is channeled directly to an ALS clinic. The recommended wording: “CLINICAL SUSPICION FOR ALS.”

Neurologist Ximena Arcila-Londono, MD, of Henry Ford Health in Detroit, spoke after Babu’s presentation and agreed that wording is crucial in referrals. “Please include in your words ‘Rule out motor neuron disorder’ or ‘Rule out ALS,’ ” she said. “Some people in the community are very reluctant to use those words in their referral. If you don’t use the referral and you send them [regarding] weakness, that person is going to get stuck in the general neurology pile. The moment you use the word ‘motor neuron disorder’ or ALS, most of us will get to those patients within a month.”

The tool’s wording adds that “most ALS centers can accommodate urgent ALS referrals within 2 weeks.”

Babu disclosed receiving research funding from the AANEM Foundation, American Academy of Neurology, Muscular Dystrophy Association, OrphAI, Biogen, Ionis, Novartis, Denali, uniQure, and MarvelBiome. Arcila-Londono had no disclosures.
 

A version of this article appeared on Medscape.com.

A new clinical education tool aims to speed the diagnosis of amyotrophic lateral sclerosis (ALS), which often goes undetected for months even in neurologist offices.

The one-page “thinkALS” tool, designed for clinicians who don’t specialize in neuromuscular disorders, offers a guide to recognize ALS symptoms and determine when it’s time to refer patients to ALS clinics.

“Time is of the essence. It’s really important because the paradigm of looking at ALS is shifting from this being a fatal disease that nobody can do anything about,” said Suma Babu, MBBS, MPH, assistant professor of neurology at Massachusetts General Hospital/Harvard Medical School in Boston, in a presentation at American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024. “As a community, we need to think about how can get to the diagnosis point early and get patients started on therapies.”
 

On Average, ALS Diagnosis Takes 12-15 Months

As Babu noted, the percentage of patients initially diagnosed with something else may be as high as 52%. The time to diagnosis in ALS remained steady at a mean 12-15 months from 1996-1998 to 2000-2018.

“If you keep in mind that an average ALS patient lives only 3-5 years from symptom onset, they’re spending one third of their survival time in just trying to figure out what the diagnosis is,” Babu said. “Often, they may even undergo unnecessary testing and unnecessary surgeries — carpal tunnel releases, spinal surgeries, and so on.”

Babu’s own research, which is under review for publication, examined 2011-2021 Medicare claims to determine the typical time from first neurologist consult to confirmed ALS diagnosis. The mean for ALS/neuromuscular specialists is 9.6 months, while it’s 16.7 months for nonspecialist neurologists.

“It’s a hard pill to swallow,” Babu said, referring to the fact that neurologists are contributing to some of this situation. “But it is a challenge because ALS does not have a definitive diagnostic test, and you’re ruling out other possibilities.”
 

A ‘Sense of Nihilism’ About Prognoses

She added that “unless you’re seeing a lot of ALS patients, this is not going to be on a neurologist’s or a nurse practitioner’s radar to think about ALS early and then refer them to the right place.”

There’s also an unwarranted “sense of nihilism” about prognoses for patients, she said. “Sometimes people do not understand what’s going on within the ALS field in terms of ‘What are we going to do about it if it’s diagnosed?’ ”

The new one-page tool will be helpful in making diagnoses, she said. “If you have a patient who has asymmetric, progressive weakness, there is an instrument you can turn to that will walk you through the most common symptoms. It’ll also walk you through what to do next.”

The tool lists features of ALS and factors that support — or don’t support — an ALS diagnosis. Users are told to “think ALS” if features in two categories are present and no features in a third category are present.
 

Referral Wording Is Crucial

Babu added that the “important key feature of this instrument” is guidance for non-neurologists regarding what to write on a referral to neurology so the patient is channeled directly to an ALS clinic. The recommended wording: “CLINICAL SUSPICION FOR ALS.”

Neurologist Ximena Arcila-Londono, MD, of Henry Ford Health in Detroit, spoke after Babu’s presentation and agreed that wording is crucial in referrals. “Please include in your words ‘Rule out motor neuron disorder’ or ‘Rule out ALS,’ ” she said. “Some people in the community are very reluctant to use those words in their referral. If you don’t use the referral and you send them [regarding] weakness, that person is going to get stuck in the general neurology pile. The moment you use the word ‘motor neuron disorder’ or ALS, most of us will get to those patients within a month.”

The tool’s wording adds that “most ALS centers can accommodate urgent ALS referrals within 2 weeks.”

Babu disclosed receiving research funding from the AANEM Foundation, American Academy of Neurology, Muscular Dystrophy Association, OrphAI, Biogen, Ionis, Novartis, Denali, uniQure, and MarvelBiome. Arcila-Londono had no disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANEM 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cardiac Monitoring Is Crucial in Neuromuscular Disorder Care

Article Type
Changed
Mon, 10/21/2024 - 16:09

Heart problems are common in the vast majority of neuromuscular disorders, and cardiac monitoring of patients is crucial, even at younger ages, a neurologist told an audience of nerve/muscle specialists.

The cardiac conditions can range from asymptomatic to potentially lethal, Nicholas J. Silvestri, MD, professor of neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, in New York, said in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024. “It’s really important to know when to do tests and refer to cardiology, and it’s really important to find a cardiologist who can work in concert in taking care of these patients.”
 

Protein Alterations May Disrupt Heart Muscles

In muscular dystrophies, a prevailing theory suggests that alterations to proteins such as dystrophin disrupt structural integrity in both muscle and cardiac cells, he said.

In Duchenne muscular dystrophy (DMD), cardiomyopathy, cardiac conduction abnormalities, or both usually appear in patients by age 10. “It’s important to know that it’s probably present to some degree before that, and it’s not going to get better over time,” he said.

Cardiac problems are universal in DMD by age 18, he said. “Men and boys are living longer, so they have the opportunity to develop the cardiac abnormalities that accrue with time.” Conduction abnormalities typically appear first. “In a lot of these boys, you’ll typically see persistent sinus tachycardia. But they can also develop atrial arrhythmias and bundle branch blocks.”

Sudden cardiac death is responsible for mortality in an estimated 15% patients with DMD. “Very sadly, I lost a patient this way just a few months ago,” Silvestri said.
 

ECGs and Echos Are Recommended

Screening is crucial. “Make sure that patients get that referral and get these tests done,” he said. “You need an ECG and echo by diagnosis or age 6. This is usually repeated annually or biannually, typically by the cardiologist you’re working with.”

The good news is that there’s evidence of survival benefits from treatment with angiotensin-converting enzyme inhibitors for dilated cardiomyopathy. “Some cardiac experts feel treatment with angiotensin receptor blockers (ARBs) is equivalent.”

Most boys will get echocardiograms, he said, “but there’s a lot of evidence showing that cardiac MRI is probably preferable for a number of reasons,” including better visualization. But the need for sedation limits access, he said, and cardiac MRI may not be available at some facilities.
 

Worse Outcomes in Becker Muscular Dystrophy (BMD)

Cardiac involvement is more common and more severe in BMD than in DMD. About 50% of deaths in BMD are attributed to malignant arrhythmias or congestive heart failure, he said.

Screening requirements and treatment options in BMD are similar to those in DMD, with the added option of heart transplantation.

Silvestri cautioned that up to 40% of female carriers of dystrophin mutations can develop cardiac dysfunction similar to that seen in DMD and BMD. Cardiac assessments are recommended every 5 years. “It’s important to genotype Mom,” he said, especially in light of the fact that two thirds of DMD cases may be inherited.

“When I send genetic testing on the mother and find her to be a carrier, I send her to a cardiologist so she has the appropriate screening done,” he said.
 

 

 

Pacemakers May Be Considered in Type 1 Myotonic Dystrophy

In type 1 myotonic dystrophy, cardiac conduction abnormalities are seen in two thirds of patients, and sudden cardiac death in up to 30% of patients. “When it is diagnosed, patients do need an ECG at that time, as well as annually,” he said.

Holter monitoring or implantable loop recorders may be recommended, and permanent pacing via an implantable cardioverter-defibrillator might be appropriate.

“Based on the literature to date, the exact timing is not is not clear,” Silvestri said. “The electrophysiologists in my area tend to be very aggressive, thankfully, and treat them fairly soon with pacemakers when we see the first sign of trouble.”

Silvestri disclosed consultant/advisory relationships with argenx, Alexion, Amgen, UCB, Immunovant, and Janssen.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Heart problems are common in the vast majority of neuromuscular disorders, and cardiac monitoring of patients is crucial, even at younger ages, a neurologist told an audience of nerve/muscle specialists.

The cardiac conditions can range from asymptomatic to potentially lethal, Nicholas J. Silvestri, MD, professor of neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, in New York, said in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024. “It’s really important to know when to do tests and refer to cardiology, and it’s really important to find a cardiologist who can work in concert in taking care of these patients.”
 

Protein Alterations May Disrupt Heart Muscles

In muscular dystrophies, a prevailing theory suggests that alterations to proteins such as dystrophin disrupt structural integrity in both muscle and cardiac cells, he said.

In Duchenne muscular dystrophy (DMD), cardiomyopathy, cardiac conduction abnormalities, or both usually appear in patients by age 10. “It’s important to know that it’s probably present to some degree before that, and it’s not going to get better over time,” he said.

Cardiac problems are universal in DMD by age 18, he said. “Men and boys are living longer, so they have the opportunity to develop the cardiac abnormalities that accrue with time.” Conduction abnormalities typically appear first. “In a lot of these boys, you’ll typically see persistent sinus tachycardia. But they can also develop atrial arrhythmias and bundle branch blocks.”

Sudden cardiac death is responsible for mortality in an estimated 15% patients with DMD. “Very sadly, I lost a patient this way just a few months ago,” Silvestri said.
 

ECGs and Echos Are Recommended

Screening is crucial. “Make sure that patients get that referral and get these tests done,” he said. “You need an ECG and echo by diagnosis or age 6. This is usually repeated annually or biannually, typically by the cardiologist you’re working with.”

The good news is that there’s evidence of survival benefits from treatment with angiotensin-converting enzyme inhibitors for dilated cardiomyopathy. “Some cardiac experts feel treatment with angiotensin receptor blockers (ARBs) is equivalent.”

Most boys will get echocardiograms, he said, “but there’s a lot of evidence showing that cardiac MRI is probably preferable for a number of reasons,” including better visualization. But the need for sedation limits access, he said, and cardiac MRI may not be available at some facilities.
 

Worse Outcomes in Becker Muscular Dystrophy (BMD)

Cardiac involvement is more common and more severe in BMD than in DMD. About 50% of deaths in BMD are attributed to malignant arrhythmias or congestive heart failure, he said.

Screening requirements and treatment options in BMD are similar to those in DMD, with the added option of heart transplantation.

Silvestri cautioned that up to 40% of female carriers of dystrophin mutations can develop cardiac dysfunction similar to that seen in DMD and BMD. Cardiac assessments are recommended every 5 years. “It’s important to genotype Mom,” he said, especially in light of the fact that two thirds of DMD cases may be inherited.

“When I send genetic testing on the mother and find her to be a carrier, I send her to a cardiologist so she has the appropriate screening done,” he said.
 

 

 

Pacemakers May Be Considered in Type 1 Myotonic Dystrophy

In type 1 myotonic dystrophy, cardiac conduction abnormalities are seen in two thirds of patients, and sudden cardiac death in up to 30% of patients. “When it is diagnosed, patients do need an ECG at that time, as well as annually,” he said.

Holter monitoring or implantable loop recorders may be recommended, and permanent pacing via an implantable cardioverter-defibrillator might be appropriate.

“Based on the literature to date, the exact timing is not is not clear,” Silvestri said. “The electrophysiologists in my area tend to be very aggressive, thankfully, and treat them fairly soon with pacemakers when we see the first sign of trouble.”

Silvestri disclosed consultant/advisory relationships with argenx, Alexion, Amgen, UCB, Immunovant, and Janssen.
 

A version of this article appeared on Medscape.com.

Heart problems are common in the vast majority of neuromuscular disorders, and cardiac monitoring of patients is crucial, even at younger ages, a neurologist told an audience of nerve/muscle specialists.

The cardiac conditions can range from asymptomatic to potentially lethal, Nicholas J. Silvestri, MD, professor of neurology at the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, in New York, said in a presentation at the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM) 2024. “It’s really important to know when to do tests and refer to cardiology, and it’s really important to find a cardiologist who can work in concert in taking care of these patients.”
 

Protein Alterations May Disrupt Heart Muscles

In muscular dystrophies, a prevailing theory suggests that alterations to proteins such as dystrophin disrupt structural integrity in both muscle and cardiac cells, he said.

In Duchenne muscular dystrophy (DMD), cardiomyopathy, cardiac conduction abnormalities, or both usually appear in patients by age 10. “It’s important to know that it’s probably present to some degree before that, and it’s not going to get better over time,” he said.

Cardiac problems are universal in DMD by age 18, he said. “Men and boys are living longer, so they have the opportunity to develop the cardiac abnormalities that accrue with time.” Conduction abnormalities typically appear first. “In a lot of these boys, you’ll typically see persistent sinus tachycardia. But they can also develop atrial arrhythmias and bundle branch blocks.”

Sudden cardiac death is responsible for mortality in an estimated 15% patients with DMD. “Very sadly, I lost a patient this way just a few months ago,” Silvestri said.
 

ECGs and Echos Are Recommended

Screening is crucial. “Make sure that patients get that referral and get these tests done,” he said. “You need an ECG and echo by diagnosis or age 6. This is usually repeated annually or biannually, typically by the cardiologist you’re working with.”

The good news is that there’s evidence of survival benefits from treatment with angiotensin-converting enzyme inhibitors for dilated cardiomyopathy. “Some cardiac experts feel treatment with angiotensin receptor blockers (ARBs) is equivalent.”

Most boys will get echocardiograms, he said, “but there’s a lot of evidence showing that cardiac MRI is probably preferable for a number of reasons,” including better visualization. But the need for sedation limits access, he said, and cardiac MRI may not be available at some facilities.
 

Worse Outcomes in Becker Muscular Dystrophy (BMD)

Cardiac involvement is more common and more severe in BMD than in DMD. About 50% of deaths in BMD are attributed to malignant arrhythmias or congestive heart failure, he said.

Screening requirements and treatment options in BMD are similar to those in DMD, with the added option of heart transplantation.

Silvestri cautioned that up to 40% of female carriers of dystrophin mutations can develop cardiac dysfunction similar to that seen in DMD and BMD. Cardiac assessments are recommended every 5 years. “It’s important to genotype Mom,” he said, especially in light of the fact that two thirds of DMD cases may be inherited.

“When I send genetic testing on the mother and find her to be a carrier, I send her to a cardiologist so she has the appropriate screening done,” he said.
 

 

 

Pacemakers May Be Considered in Type 1 Myotonic Dystrophy

In type 1 myotonic dystrophy, cardiac conduction abnormalities are seen in two thirds of patients, and sudden cardiac death in up to 30% of patients. “When it is diagnosed, patients do need an ECG at that time, as well as annually,” he said.

Holter monitoring or implantable loop recorders may be recommended, and permanent pacing via an implantable cardioverter-defibrillator might be appropriate.

“Based on the literature to date, the exact timing is not is not clear,” Silvestri said. “The electrophysiologists in my area tend to be very aggressive, thankfully, and treat them fairly soon with pacemakers when we see the first sign of trouble.”

Silvestri disclosed consultant/advisory relationships with argenx, Alexion, Amgen, UCB, Immunovant, and Janssen.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM AANEM 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article