User login
-
Tiny Doses of Metabolically Armed CAR T Show Benefits
“Our study showed a manageable safety profile in r/r DLBCL/B-ALL, with promising breakthrough efficacy of a 100% complete remission in all dose groups,” said first author Jingjing Ren, MD, PhD, associate director of research and development with Leman Biotech in Shenzhen, China. Dr. Ren presented these findings at the American Association for Cancer Research annual meeting held in San Diego.
While CD19 CAR T-cell therapy has been transformative in the treatment of relapsed B -cell hematological malignancies in recent years, more than half of patients relapse within a year because of inadequate CAR T persistence.
To address the problem, Dr. Ren and her colleagues developed a metabolically armed, interleukin (IL)-10-expressing CAR T-cell product called Meta10-19 for the treatment patients with r/r DLBCL or r/r B-ALL.
According to the authors, the IL-10-expressing CAR T-cells trigger “stem-like memory responses” in various lymphoid organs, which prompt a “robust tumor eradication and durable protection,” and hence, better persistence.
Preclinical studies in mice showed the Meta10-19 CAR T-cells exhibited substantially higher expansion of approximately 100-fold compared with a control CD19 CAR-T product.
Therefore, “we dramatically reduced the dose to approximately 1% to 5% of commercial products for the IL-10-expressing CD19 CAR-T for patients,” coauthor Yugang Guo, PhD, cofounder and president of Leman Biotech said in an interview.
For the ongoing, open-label clinical trial, 12 adult patients with r/r DLBCL or r/r B-ALL and confirmed CD19 expression at a hospital center in China were enrolled between December 2022 and November 2023 and treated in three cohorts, receiving doses that corresponded to 1%, 2.5%, or 5% of the doses of other commercialized CAR-T infusion products.
All patients also underwent lympho-depleting chemotherapy with cyclophosphamide and fludarabine prior to the CAR T-cell infusion.
Six patients had r/r DLBCL and the other six had r/r B-ALL; their median age was 47 and their median time since diagnosis was 1 year.
In the single-arm, intent-to-treat analysis, the treatment induced a complete remission in all 12 patients, as evaluated by PET-CT scan, nuclear magnetic resonance (NMR) spectroscopy, or minimal residual disease assessment of bone marrow.
The median time to best response was 1 month (range 0.5 to 2.2 months).
There were no cases of severe cytokine storm syndrome or neurotoxicity, which are among key limitations with current commercial CAR-T products.
All of the patients continued to have a complete remission at 3 months. Two of the 12 patients, both with B-ALL, experienced relapses, one after 4.7 months and the other at 8 months.
The authors reported that the first treated patient had maintained continuous remission as of 9 months.
In comparison with the much higher full doses of commercial CD19 CAR-T products, only about 50% of patients with DLBCL and 70% of B-ALL patients have been shown to achieve CR at 3 months, the authors reported.
“Our IL-10 expressing CAR-T sustains CR at 3 months post infusion in the context of not following allogeneic hematopoietic stem cell transplant, which suggests IL-10 expressing CAR-T is more resistant to relapse,” Dr. Guo said.
In terms of safety, six patients with DLBCL and four with B-ALL experienced grade 1 cytokine release syndrome (CRS), and two patients with B-ALL developed grade 2 CRS. There were no grade 3 or 4 CRS cases.
One patient with B-ALL developed grade 3 ICANS.
Grade 3-4 cytopenias occurred in most patients, but all were limited to no later than 90 days.
“We observed reduced CRS, with no level 3 or 4, or ICANS,” Dr. Guo said. “There was increased cytopenia, but still manageable, compared with commercial products.”
Of note, the Meta10-19 cells showed efficacy in the extremely low infusion doses even among patients with bulky mass (≥ 7.5 cm) of DLBCL, which is associated with an increased risk of relapse.
One patient had primary central nervous system lymphoma (PCNSL), a rare form of DLBCL that is known to have the worst prognosis of all non-Hodgkin lymphomas.
Due to the unique nature of CNS primary tumors, the CAR T-cell infusion dose was further reduced to 1% of the standard dose for the patient.
The patient maintained complete remission for more than 8 months before relapsing in periphery blood, but not in the CNS, Dr. Guo noted.
“Luckily, this relapse has been easily controlled by chemotherapy, and the patient is maintaining complete remission again now,” Dr. Guo said.
Mechanisms?
Dr. Guo noted that the mechanism believed to explain the improvements despite such low doses is that “IL-10-expressing CAR-T exhibits enhanced proliferation, cytotoxicity, and stem-like antitumor memory due to enhanced metabolic activities of oxidative phosphorylation.”
The authors noted that a key major factor limiting accessibility to CAR-T therapies is the lengthy production cycle and high costs; however, the “extremely low doses of 1% to 5% can significantly reduce the production cycle and cost of CAR T-cell therapies, increasing accessibility,” they wrote in a press statement.
Currently, more than 20 patients have achieved a CR overall, and studies with a larger cohort and longer follow-up are ongoing, Dr. Guo reported.
The research team plans to launch further clinical investigation this year into patients with solid tumors.
Commenting on the study, Hongbo Chi, PhD, the Robert G. Webster Endowed Chair in Immunology at St. Jude Children’s Research Hospital in Memphis, Tennessee, noted that, based on the abstract, “the effects are quite remarkable, considering the therapeutic efficacy observed even at the low dose.
“Results from more patients are needed to fully validate these findings, but the results to date are very encouraging,” he said.
The study was sponsored by Leman Biotech. Dr. Chi had no disclosures to report.
“Our study showed a manageable safety profile in r/r DLBCL/B-ALL, with promising breakthrough efficacy of a 100% complete remission in all dose groups,” said first author Jingjing Ren, MD, PhD, associate director of research and development with Leman Biotech in Shenzhen, China. Dr. Ren presented these findings at the American Association for Cancer Research annual meeting held in San Diego.
While CD19 CAR T-cell therapy has been transformative in the treatment of relapsed B -cell hematological malignancies in recent years, more than half of patients relapse within a year because of inadequate CAR T persistence.
To address the problem, Dr. Ren and her colleagues developed a metabolically armed, interleukin (IL)-10-expressing CAR T-cell product called Meta10-19 for the treatment patients with r/r DLBCL or r/r B-ALL.
According to the authors, the IL-10-expressing CAR T-cells trigger “stem-like memory responses” in various lymphoid organs, which prompt a “robust tumor eradication and durable protection,” and hence, better persistence.
Preclinical studies in mice showed the Meta10-19 CAR T-cells exhibited substantially higher expansion of approximately 100-fold compared with a control CD19 CAR-T product.
Therefore, “we dramatically reduced the dose to approximately 1% to 5% of commercial products for the IL-10-expressing CD19 CAR-T for patients,” coauthor Yugang Guo, PhD, cofounder and president of Leman Biotech said in an interview.
For the ongoing, open-label clinical trial, 12 adult patients with r/r DLBCL or r/r B-ALL and confirmed CD19 expression at a hospital center in China were enrolled between December 2022 and November 2023 and treated in three cohorts, receiving doses that corresponded to 1%, 2.5%, or 5% of the doses of other commercialized CAR-T infusion products.
All patients also underwent lympho-depleting chemotherapy with cyclophosphamide and fludarabine prior to the CAR T-cell infusion.
Six patients had r/r DLBCL and the other six had r/r B-ALL; their median age was 47 and their median time since diagnosis was 1 year.
In the single-arm, intent-to-treat analysis, the treatment induced a complete remission in all 12 patients, as evaluated by PET-CT scan, nuclear magnetic resonance (NMR) spectroscopy, or minimal residual disease assessment of bone marrow.
The median time to best response was 1 month (range 0.5 to 2.2 months).
There were no cases of severe cytokine storm syndrome or neurotoxicity, which are among key limitations with current commercial CAR-T products.
All of the patients continued to have a complete remission at 3 months. Two of the 12 patients, both with B-ALL, experienced relapses, one after 4.7 months and the other at 8 months.
The authors reported that the first treated patient had maintained continuous remission as of 9 months.
In comparison with the much higher full doses of commercial CD19 CAR-T products, only about 50% of patients with DLBCL and 70% of B-ALL patients have been shown to achieve CR at 3 months, the authors reported.
“Our IL-10 expressing CAR-T sustains CR at 3 months post infusion in the context of not following allogeneic hematopoietic stem cell transplant, which suggests IL-10 expressing CAR-T is more resistant to relapse,” Dr. Guo said.
In terms of safety, six patients with DLBCL and four with B-ALL experienced grade 1 cytokine release syndrome (CRS), and two patients with B-ALL developed grade 2 CRS. There were no grade 3 or 4 CRS cases.
One patient with B-ALL developed grade 3 ICANS.
Grade 3-4 cytopenias occurred in most patients, but all were limited to no later than 90 days.
“We observed reduced CRS, with no level 3 or 4, or ICANS,” Dr. Guo said. “There was increased cytopenia, but still manageable, compared with commercial products.”
Of note, the Meta10-19 cells showed efficacy in the extremely low infusion doses even among patients with bulky mass (≥ 7.5 cm) of DLBCL, which is associated with an increased risk of relapse.
One patient had primary central nervous system lymphoma (PCNSL), a rare form of DLBCL that is known to have the worst prognosis of all non-Hodgkin lymphomas.
Due to the unique nature of CNS primary tumors, the CAR T-cell infusion dose was further reduced to 1% of the standard dose for the patient.
The patient maintained complete remission for more than 8 months before relapsing in periphery blood, but not in the CNS, Dr. Guo noted.
“Luckily, this relapse has been easily controlled by chemotherapy, and the patient is maintaining complete remission again now,” Dr. Guo said.
Mechanisms?
Dr. Guo noted that the mechanism believed to explain the improvements despite such low doses is that “IL-10-expressing CAR-T exhibits enhanced proliferation, cytotoxicity, and stem-like antitumor memory due to enhanced metabolic activities of oxidative phosphorylation.”
The authors noted that a key major factor limiting accessibility to CAR-T therapies is the lengthy production cycle and high costs; however, the “extremely low doses of 1% to 5% can significantly reduce the production cycle and cost of CAR T-cell therapies, increasing accessibility,” they wrote in a press statement.
Currently, more than 20 patients have achieved a CR overall, and studies with a larger cohort and longer follow-up are ongoing, Dr. Guo reported.
The research team plans to launch further clinical investigation this year into patients with solid tumors.
Commenting on the study, Hongbo Chi, PhD, the Robert G. Webster Endowed Chair in Immunology at St. Jude Children’s Research Hospital in Memphis, Tennessee, noted that, based on the abstract, “the effects are quite remarkable, considering the therapeutic efficacy observed even at the low dose.
“Results from more patients are needed to fully validate these findings, but the results to date are very encouraging,” he said.
The study was sponsored by Leman Biotech. Dr. Chi had no disclosures to report.
“Our study showed a manageable safety profile in r/r DLBCL/B-ALL, with promising breakthrough efficacy of a 100% complete remission in all dose groups,” said first author Jingjing Ren, MD, PhD, associate director of research and development with Leman Biotech in Shenzhen, China. Dr. Ren presented these findings at the American Association for Cancer Research annual meeting held in San Diego.
While CD19 CAR T-cell therapy has been transformative in the treatment of relapsed B -cell hematological malignancies in recent years, more than half of patients relapse within a year because of inadequate CAR T persistence.
To address the problem, Dr. Ren and her colleagues developed a metabolically armed, interleukin (IL)-10-expressing CAR T-cell product called Meta10-19 for the treatment patients with r/r DLBCL or r/r B-ALL.
According to the authors, the IL-10-expressing CAR T-cells trigger “stem-like memory responses” in various lymphoid organs, which prompt a “robust tumor eradication and durable protection,” and hence, better persistence.
Preclinical studies in mice showed the Meta10-19 CAR T-cells exhibited substantially higher expansion of approximately 100-fold compared with a control CD19 CAR-T product.
Therefore, “we dramatically reduced the dose to approximately 1% to 5% of commercial products for the IL-10-expressing CD19 CAR-T for patients,” coauthor Yugang Guo, PhD, cofounder and president of Leman Biotech said in an interview.
For the ongoing, open-label clinical trial, 12 adult patients with r/r DLBCL or r/r B-ALL and confirmed CD19 expression at a hospital center in China were enrolled between December 2022 and November 2023 and treated in three cohorts, receiving doses that corresponded to 1%, 2.5%, or 5% of the doses of other commercialized CAR-T infusion products.
All patients also underwent lympho-depleting chemotherapy with cyclophosphamide and fludarabine prior to the CAR T-cell infusion.
Six patients had r/r DLBCL and the other six had r/r B-ALL; their median age was 47 and their median time since diagnosis was 1 year.
In the single-arm, intent-to-treat analysis, the treatment induced a complete remission in all 12 patients, as evaluated by PET-CT scan, nuclear magnetic resonance (NMR) spectroscopy, or minimal residual disease assessment of bone marrow.
The median time to best response was 1 month (range 0.5 to 2.2 months).
There were no cases of severe cytokine storm syndrome or neurotoxicity, which are among key limitations with current commercial CAR-T products.
All of the patients continued to have a complete remission at 3 months. Two of the 12 patients, both with B-ALL, experienced relapses, one after 4.7 months and the other at 8 months.
The authors reported that the first treated patient had maintained continuous remission as of 9 months.
In comparison with the much higher full doses of commercial CD19 CAR-T products, only about 50% of patients with DLBCL and 70% of B-ALL patients have been shown to achieve CR at 3 months, the authors reported.
“Our IL-10 expressing CAR-T sustains CR at 3 months post infusion in the context of not following allogeneic hematopoietic stem cell transplant, which suggests IL-10 expressing CAR-T is more resistant to relapse,” Dr. Guo said.
In terms of safety, six patients with DLBCL and four with B-ALL experienced grade 1 cytokine release syndrome (CRS), and two patients with B-ALL developed grade 2 CRS. There were no grade 3 or 4 CRS cases.
One patient with B-ALL developed grade 3 ICANS.
Grade 3-4 cytopenias occurred in most patients, but all were limited to no later than 90 days.
“We observed reduced CRS, with no level 3 or 4, or ICANS,” Dr. Guo said. “There was increased cytopenia, but still manageable, compared with commercial products.”
Of note, the Meta10-19 cells showed efficacy in the extremely low infusion doses even among patients with bulky mass (≥ 7.5 cm) of DLBCL, which is associated with an increased risk of relapse.
One patient had primary central nervous system lymphoma (PCNSL), a rare form of DLBCL that is known to have the worst prognosis of all non-Hodgkin lymphomas.
Due to the unique nature of CNS primary tumors, the CAR T-cell infusion dose was further reduced to 1% of the standard dose for the patient.
The patient maintained complete remission for more than 8 months before relapsing in periphery blood, but not in the CNS, Dr. Guo noted.
“Luckily, this relapse has been easily controlled by chemotherapy, and the patient is maintaining complete remission again now,” Dr. Guo said.
Mechanisms?
Dr. Guo noted that the mechanism believed to explain the improvements despite such low doses is that “IL-10-expressing CAR-T exhibits enhanced proliferation, cytotoxicity, and stem-like antitumor memory due to enhanced metabolic activities of oxidative phosphorylation.”
The authors noted that a key major factor limiting accessibility to CAR-T therapies is the lengthy production cycle and high costs; however, the “extremely low doses of 1% to 5% can significantly reduce the production cycle and cost of CAR T-cell therapies, increasing accessibility,” they wrote in a press statement.
Currently, more than 20 patients have achieved a CR overall, and studies with a larger cohort and longer follow-up are ongoing, Dr. Guo reported.
The research team plans to launch further clinical investigation this year into patients with solid tumors.
Commenting on the study, Hongbo Chi, PhD, the Robert G. Webster Endowed Chair in Immunology at St. Jude Children’s Research Hospital in Memphis, Tennessee, noted that, based on the abstract, “the effects are quite remarkable, considering the therapeutic efficacy observed even at the low dose.
“Results from more patients are needed to fully validate these findings, but the results to date are very encouraging,” he said.
The study was sponsored by Leman Biotech. Dr. Chi had no disclosures to report.
FROM AACR 2024
Weighing the Benefits of Integrating AI-based Clinical Notes Into Your Practice
Picture a healthcare system where physicians aren’t bogged down by excessive charting but are instead fully present with their patients, offering undivided attention and personalized care. In a recent X post, Stuart Blitz, COO and co-founder of Hone Health, sparked a thought-provoking conversation. “The problem with US healthcare is physicians are burned out since they spend way too much time charting, not enough with patients,” he wrote. “If you created a health system that did zero charting, you’d attract the best physicians and all patients would go there. Who is working on this?”
This resonates with many in the medical community, myself included, because the strain of extensive documentation detracts from patient care. Having worked in both large and small healthcare systems, I know the burden of extensive charting is a palpable challenge, often detracting from the time we can devote to our patients.
The first part of this two-part series examines the overarching benefits of artificial intelligence (AI)–based clinical documentation in modern healthcare, a field witnessing a paradigm shift thanks to advancements in AI.
Transformative Evolution of Clinical Documentation
The transition from manual documentation to AI-driven solutions marks a significant shift in the field, with a number of products in development including Nuance, Abridge, Ambience, ScribeAmerica, 3M, and DeepScribe. These tools use ambient clinical intelligence (ACI) to automate documentation, capturing patient conversations and translating them into structured clinical summaries. This innovation aligns with the vision of reducing charting burdens and enhancing patient-physician interactions.
How does it work? ACI refers to a sophisticated form of AI applied in healthcare settings, particularly focusing on enhancing the clinical documentation process without disrupting the natural flow of the consultation. Here’s a technical yet practical breakdown of ACI and the algorithms it typically employs:
Data capture and processing: ACI systems employ various sensors and processing units, typically integrated into clinical settings. These sensors, like microphones and cameras, gather diverse data such as audio from patient-doctor dialogues and visual cues. This information is then processed in real-time or near–real-time.
Natural language processing (NLP): A core component of ACI is advanced NLP algorithms. These algorithms analyze the captured audio data, transcribing spoken words into text. NLP goes beyond mere transcription; it involves understanding context, extracting relevant medical information (like symptoms, diagnoses, and treatment plans), and interpreting the nuances of human language.
Deep learning: Machine learning, particularly deep-learning techniques, are employed to improve the accuracy of ACI systems continually. These algorithms can learn from vast datasets of clinical interactions, enhancing their ability to transcribe and interpret future conversations accurately. As they learn, they become better at understanding different accents, complex medical terms, and variations in speech patterns.
Integration with electronic health records (EHRs): ACI systems are often designed to integrate seamlessly with existing EHR systems. They can automatically populate patient records with information from patient-clinician interactions, reducing manual entry and potential errors.
Customization and personalization: Many ACI systems offer customizable templates or allow clinicians to tailor documentation workflows. This flexibility ensures that the output aligns with the specific needs and preferences of healthcare providers.
Ethical and privacy considerations: ACI systems must navigate significant ethical and privacy concerns, especially related to patient consent and data security. These systems need to comply with healthcare privacy regulations such as HIPAA. They need to securely manage sensitive patient data and restrict access to authorized personnel only.
Broad-Spectrum Benefits of AI in Documentation
- Reducing clinician burnout: By automating the documentation process, AI tools like DAX Copilot alleviate a significant contributor to physician burnout, enabling clinicians to focus more on patient care.
- Enhanced patient care: With AI handling documentation, clinicians can engage more with their patients, leading to improved care quality and patient satisfaction.
- Data accuracy and quality: AI-driven documentation captures detailed patient encounters accurately, ensuring high-quality and comprehensive medical records.
- Response to the growing need for efficient healthcare: AI-based documentation is a direct response to the growing call for more efficient healthcare practices, where clinicians spend less time on paperwork and more with patients.
The shift toward AI-based clinical documentation represents a critical step in addressing the inefficiencies in healthcare systems. It’s a move towards a more patient-centered approach, where clinicians can focus more on patient care by reducing the time spent on excessive charting. Hopefully, we can integrate these solutions into our clinics at a large enough scale to make such an impact.
In the next column, we will explore in-depth insights from Kenneth Harper at Nuance on the technical implementation of these tools, with DAX as an example.
I would love to read your comments on AI in clinical trials as well as other AI-related topics. Write me at Arturo.ai.medtech@gmail.com or find me on X @DrBonillaOnc.
Dr. Loaiza-Bonilla is the co-founder and chief medical officer at Massive Bio, a company connecting patients to clinical trials using artificial intelligence. His research and professional interests focus on precision medicine, clinical trial design, digital health, entrepreneurship, and patient advocacy. Dr Loaiza-Bonilla serves as medical director of oncology research at Capital Health in New Jersey, where he maintains a connection to patient care by attending to patients 2 days a week. He has served as a consultant for Verify, PSI CRO, Bayer, AstraZeneca, Cardinal Health, BrightInsight, The Lynx Group, Fresenius, Pfizer, Ipsen, and Guardant; served as a speaker or a member of a speakers bureau for Amgen, Guardant, Eisai, Ipsen, Natera, Merck, Bristol-Myers Squibb, and AstraZeneca. He holds a 5% or greater equity interest in Massive Bio.
A version of this article appeared on Medscape.com.
Picture a healthcare system where physicians aren’t bogged down by excessive charting but are instead fully present with their patients, offering undivided attention and personalized care. In a recent X post, Stuart Blitz, COO and co-founder of Hone Health, sparked a thought-provoking conversation. “The problem with US healthcare is physicians are burned out since they spend way too much time charting, not enough with patients,” he wrote. “If you created a health system that did zero charting, you’d attract the best physicians and all patients would go there. Who is working on this?”
This resonates with many in the medical community, myself included, because the strain of extensive documentation detracts from patient care. Having worked in both large and small healthcare systems, I know the burden of extensive charting is a palpable challenge, often detracting from the time we can devote to our patients.
The first part of this two-part series examines the overarching benefits of artificial intelligence (AI)–based clinical documentation in modern healthcare, a field witnessing a paradigm shift thanks to advancements in AI.
Transformative Evolution of Clinical Documentation
The transition from manual documentation to AI-driven solutions marks a significant shift in the field, with a number of products in development including Nuance, Abridge, Ambience, ScribeAmerica, 3M, and DeepScribe. These tools use ambient clinical intelligence (ACI) to automate documentation, capturing patient conversations and translating them into structured clinical summaries. This innovation aligns with the vision of reducing charting burdens and enhancing patient-physician interactions.
How does it work? ACI refers to a sophisticated form of AI applied in healthcare settings, particularly focusing on enhancing the clinical documentation process without disrupting the natural flow of the consultation. Here’s a technical yet practical breakdown of ACI and the algorithms it typically employs:
Data capture and processing: ACI systems employ various sensors and processing units, typically integrated into clinical settings. These sensors, like microphones and cameras, gather diverse data such as audio from patient-doctor dialogues and visual cues. This information is then processed in real-time or near–real-time.
Natural language processing (NLP): A core component of ACI is advanced NLP algorithms. These algorithms analyze the captured audio data, transcribing spoken words into text. NLP goes beyond mere transcription; it involves understanding context, extracting relevant medical information (like symptoms, diagnoses, and treatment plans), and interpreting the nuances of human language.
Deep learning: Machine learning, particularly deep-learning techniques, are employed to improve the accuracy of ACI systems continually. These algorithms can learn from vast datasets of clinical interactions, enhancing their ability to transcribe and interpret future conversations accurately. As they learn, they become better at understanding different accents, complex medical terms, and variations in speech patterns.
Integration with electronic health records (EHRs): ACI systems are often designed to integrate seamlessly with existing EHR systems. They can automatically populate patient records with information from patient-clinician interactions, reducing manual entry and potential errors.
Customization and personalization: Many ACI systems offer customizable templates or allow clinicians to tailor documentation workflows. This flexibility ensures that the output aligns with the specific needs and preferences of healthcare providers.
Ethical and privacy considerations: ACI systems must navigate significant ethical and privacy concerns, especially related to patient consent and data security. These systems need to comply with healthcare privacy regulations such as HIPAA. They need to securely manage sensitive patient data and restrict access to authorized personnel only.
Broad-Spectrum Benefits of AI in Documentation
- Reducing clinician burnout: By automating the documentation process, AI tools like DAX Copilot alleviate a significant contributor to physician burnout, enabling clinicians to focus more on patient care.
- Enhanced patient care: With AI handling documentation, clinicians can engage more with their patients, leading to improved care quality and patient satisfaction.
- Data accuracy and quality: AI-driven documentation captures detailed patient encounters accurately, ensuring high-quality and comprehensive medical records.
- Response to the growing need for efficient healthcare: AI-based documentation is a direct response to the growing call for more efficient healthcare practices, where clinicians spend less time on paperwork and more with patients.
The shift toward AI-based clinical documentation represents a critical step in addressing the inefficiencies in healthcare systems. It’s a move towards a more patient-centered approach, where clinicians can focus more on patient care by reducing the time spent on excessive charting. Hopefully, we can integrate these solutions into our clinics at a large enough scale to make such an impact.
In the next column, we will explore in-depth insights from Kenneth Harper at Nuance on the technical implementation of these tools, with DAX as an example.
I would love to read your comments on AI in clinical trials as well as other AI-related topics. Write me at Arturo.ai.medtech@gmail.com or find me on X @DrBonillaOnc.
Dr. Loaiza-Bonilla is the co-founder and chief medical officer at Massive Bio, a company connecting patients to clinical trials using artificial intelligence. His research and professional interests focus on precision medicine, clinical trial design, digital health, entrepreneurship, and patient advocacy. Dr Loaiza-Bonilla serves as medical director of oncology research at Capital Health in New Jersey, where he maintains a connection to patient care by attending to patients 2 days a week. He has served as a consultant for Verify, PSI CRO, Bayer, AstraZeneca, Cardinal Health, BrightInsight, The Lynx Group, Fresenius, Pfizer, Ipsen, and Guardant; served as a speaker or a member of a speakers bureau for Amgen, Guardant, Eisai, Ipsen, Natera, Merck, Bristol-Myers Squibb, and AstraZeneca. He holds a 5% or greater equity interest in Massive Bio.
A version of this article appeared on Medscape.com.
Picture a healthcare system where physicians aren’t bogged down by excessive charting but are instead fully present with their patients, offering undivided attention and personalized care. In a recent X post, Stuart Blitz, COO and co-founder of Hone Health, sparked a thought-provoking conversation. “The problem with US healthcare is physicians are burned out since they spend way too much time charting, not enough with patients,” he wrote. “If you created a health system that did zero charting, you’d attract the best physicians and all patients would go there. Who is working on this?”
This resonates with many in the medical community, myself included, because the strain of extensive documentation detracts from patient care. Having worked in both large and small healthcare systems, I know the burden of extensive charting is a palpable challenge, often detracting from the time we can devote to our patients.
The first part of this two-part series examines the overarching benefits of artificial intelligence (AI)–based clinical documentation in modern healthcare, a field witnessing a paradigm shift thanks to advancements in AI.
Transformative Evolution of Clinical Documentation
The transition from manual documentation to AI-driven solutions marks a significant shift in the field, with a number of products in development including Nuance, Abridge, Ambience, ScribeAmerica, 3M, and DeepScribe. These tools use ambient clinical intelligence (ACI) to automate documentation, capturing patient conversations and translating them into structured clinical summaries. This innovation aligns with the vision of reducing charting burdens and enhancing patient-physician interactions.
How does it work? ACI refers to a sophisticated form of AI applied in healthcare settings, particularly focusing on enhancing the clinical documentation process without disrupting the natural flow of the consultation. Here’s a technical yet practical breakdown of ACI and the algorithms it typically employs:
Data capture and processing: ACI systems employ various sensors and processing units, typically integrated into clinical settings. These sensors, like microphones and cameras, gather diverse data such as audio from patient-doctor dialogues and visual cues. This information is then processed in real-time or near–real-time.
Natural language processing (NLP): A core component of ACI is advanced NLP algorithms. These algorithms analyze the captured audio data, transcribing spoken words into text. NLP goes beyond mere transcription; it involves understanding context, extracting relevant medical information (like symptoms, diagnoses, and treatment plans), and interpreting the nuances of human language.
Deep learning: Machine learning, particularly deep-learning techniques, are employed to improve the accuracy of ACI systems continually. These algorithms can learn from vast datasets of clinical interactions, enhancing their ability to transcribe and interpret future conversations accurately. As they learn, they become better at understanding different accents, complex medical terms, and variations in speech patterns.
Integration with electronic health records (EHRs): ACI systems are often designed to integrate seamlessly with existing EHR systems. They can automatically populate patient records with information from patient-clinician interactions, reducing manual entry and potential errors.
Customization and personalization: Many ACI systems offer customizable templates or allow clinicians to tailor documentation workflows. This flexibility ensures that the output aligns with the specific needs and preferences of healthcare providers.
Ethical and privacy considerations: ACI systems must navigate significant ethical and privacy concerns, especially related to patient consent and data security. These systems need to comply with healthcare privacy regulations such as HIPAA. They need to securely manage sensitive patient data and restrict access to authorized personnel only.
Broad-Spectrum Benefits of AI in Documentation
- Reducing clinician burnout: By automating the documentation process, AI tools like DAX Copilot alleviate a significant contributor to physician burnout, enabling clinicians to focus more on patient care.
- Enhanced patient care: With AI handling documentation, clinicians can engage more with their patients, leading to improved care quality and patient satisfaction.
- Data accuracy and quality: AI-driven documentation captures detailed patient encounters accurately, ensuring high-quality and comprehensive medical records.
- Response to the growing need for efficient healthcare: AI-based documentation is a direct response to the growing call for more efficient healthcare practices, where clinicians spend less time on paperwork and more with patients.
The shift toward AI-based clinical documentation represents a critical step in addressing the inefficiencies in healthcare systems. It’s a move towards a more patient-centered approach, where clinicians can focus more on patient care by reducing the time spent on excessive charting. Hopefully, we can integrate these solutions into our clinics at a large enough scale to make such an impact.
In the next column, we will explore in-depth insights from Kenneth Harper at Nuance on the technical implementation of these tools, with DAX as an example.
I would love to read your comments on AI in clinical trials as well as other AI-related topics. Write me at Arturo.ai.medtech@gmail.com or find me on X @DrBonillaOnc.
Dr. Loaiza-Bonilla is the co-founder and chief medical officer at Massive Bio, a company connecting patients to clinical trials using artificial intelligence. His research and professional interests focus on precision medicine, clinical trial design, digital health, entrepreneurship, and patient advocacy. Dr Loaiza-Bonilla serves as medical director of oncology research at Capital Health in New Jersey, where he maintains a connection to patient care by attending to patients 2 days a week. He has served as a consultant for Verify, PSI CRO, Bayer, AstraZeneca, Cardinal Health, BrightInsight, The Lynx Group, Fresenius, Pfizer, Ipsen, and Guardant; served as a speaker or a member of a speakers bureau for Amgen, Guardant, Eisai, Ipsen, Natera, Merck, Bristol-Myers Squibb, and AstraZeneca. He holds a 5% or greater equity interest in Massive Bio.
A version of this article appeared on Medscape.com.
New Federal Rule Delivers Workplace Support, Time Off for Pregnant Docs
Pregnant physicians may receive more workplace accommodations and protection against discrimination thanks to an updated rule from the US Equal Employment Opportunity Commission (EEOC). The guidelines could prevent women from losing critical career momentum.
The Pregnant Workers Fairness Act (PWFA) aims to help workers balance professional demands with healthy pregnancies. It requires employers to provide reasonable accommodations for a “worker’s known limitations,” including physical or mental conditions associated with “pregnancy, childbirth, or related medical conditions.”
Reasonable accommodations vary but may involve time off to attend healthcare appointments or recover from childbirth, extra breaks during a shift, shorter work hours, or the ability to sit instead of stand. Private and public sector employers, including state and local governments, federal agencies, and employment agencies, must abide by the new guidelines unless they can provide evidence that doing so will cause undue hardship.
Female doctors have historically encountered significant barriers to family planning. Years of training cause them to delay having children, often leading to higher rates of infertility, miscarriage, and pregnancy complications than in the general population.
Some specialties, like surgeons, are particularly at risk, with 42% reporting at least one pregnancy loss. Most surgeons work their regular schedules until delivery despite desiring workload reductions, commonly citing unsupportive workplaces as a reason for not seeking accommodations.
Trauma surgeon Qaali Hussein, MD, became pregnant with her first child during her intern year in 2008. She told this news organization that her residency program didn’t even have a maternity policy at the time, and her male supervisor was certain that motherhood would end her surgical career.
She shared how “women usually waited until the end of their training to get pregnant. No one had ever gotten pregnant during the program and returned from maternity leave. I was the first to do so, so there wasn’t a policy or any program support to say, ‘What can we do to help?’ ”
Dr. Hussein used her vacation and sick time, returning to work 4 weeks after delivery. She had five more children, including twins her chief year and another baby during fellowship training in 2014.
Each subsequent pregnancy was met with the same response from program leadership, she recalled. “They’d say, ‘This is it. You may have been able to do the first and second child, but this one will be impossible.’ ”
After the PWFA regulations first became enforceable in June, the EEOC accepted public feedback. The guidelines received nearly 100,000 comments, spurred mainly by the inclusion of abortion care as a qualifying condition for which an employee could receive accommodations. About 54,000 comments called for abortion to be excluded from the final rule, and 40,000 supported keeping the clause.
The EEOC issued the final rule on April 15. It includes abortion care. However, the updated rule “does not require any employee to have — or not to have — an abortion, does not require taxpayers to pay for any abortions, and does not compel health care providers to provide any abortions,” the unpublished version of the final rule said. It is scheduled to take effect 60 days after its publication in the Federal Register on April 19.
Increasing Support for Doctor-Moms
The PWFA supplements other EEOC protections, such as pregnancy discrimination under Title VII of the Civil Rights Act of 1964 and access to reasonable accommodations under the Americans with Disabilities Act. In addition, it builds upon Department of Labor regulations, like the PUMP Act for breastfeeding employees and the Family and Medical Leave Act, which provides 12 weeks of unpaid, job-protected leave for the arrival of a child or certain medical conditions.
FMLA applies only to employees who have worked full-time for at least 12 months for an employer with 50 or more employees. Meanwhile, the unpaid, job-protected leave under the PWFA has no waiting period, lowers the required number of employees to 15, and permits accommodations for up to 40 weeks.
Employers are encouraged to honor “common and simple” requests, like using a closer parking space or pumping or nursing at work, without requiring a doctor’s note, the rule said.
Efforts to improve family leave policies for physicians and residents have been gaining traction. In 2021, the American Board of Medical Specialties began requiring its member boards with training programs lasting 2 or more years to allow at least 6 weeks off for parental, caregiver, and medical leave. This time can be taken without exhausting vacation or sick leave or requiring an extension in training. Over half of the 24 member boards permit leave beyond 6 weeks, including the American Boards of Allergy and Immunology, Emergency Medicine, Family Medicine, Radiology, and Surgery.
Estefania Oliveros, MD, MSc, cardiologist and assistant professor at the Lewis Katz School of Medicine at Temple University, Philadelphia, told this news organization that the Accreditation Council for Graduate Medical Education also requires that residents and fellows receive 6 weeks of paid leave.
“We add to that vacation time, so it gives them at least 8 weeks,” she said. The school has created spaces for nursing mothers — something neither she nor Dr. Hussein had access to when breastfeeding — and encourages the attendings to be proactive in excusing pregnant fellows for appointments.
This differs significantly from her fellowship training experience 6 years ago at another institution, where she worked without accommodations until the day before her cesarean delivery. Dr. Oliveros had to use all her vacation time for recovery, returning to the program after 4 weeks instead of the recommended 6.
“And that’s the story you hear all the time. Not because people are ill-intended; I just don’t think the system is designed to accommodate women, so we lose a lot of talent that way,” said Dr. Oliveros, whose 2019 survey in the Journal of the American College of Cardiology called for more support and protections for pregnant doctors.
Both doctors believe the PWFA will be beneficial but only if leadership in the field takes up the cause.
“The cultures of these institutions determine whether women feel safe or even confident enough to have children in medical school or residency,” said Dr. Hussein.
A version of this article appeared on Medscape.com.
Pregnant physicians may receive more workplace accommodations and protection against discrimination thanks to an updated rule from the US Equal Employment Opportunity Commission (EEOC). The guidelines could prevent women from losing critical career momentum.
The Pregnant Workers Fairness Act (PWFA) aims to help workers balance professional demands with healthy pregnancies. It requires employers to provide reasonable accommodations for a “worker’s known limitations,” including physical or mental conditions associated with “pregnancy, childbirth, or related medical conditions.”
Reasonable accommodations vary but may involve time off to attend healthcare appointments or recover from childbirth, extra breaks during a shift, shorter work hours, or the ability to sit instead of stand. Private and public sector employers, including state and local governments, federal agencies, and employment agencies, must abide by the new guidelines unless they can provide evidence that doing so will cause undue hardship.
Female doctors have historically encountered significant barriers to family planning. Years of training cause them to delay having children, often leading to higher rates of infertility, miscarriage, and pregnancy complications than in the general population.
Some specialties, like surgeons, are particularly at risk, with 42% reporting at least one pregnancy loss. Most surgeons work their regular schedules until delivery despite desiring workload reductions, commonly citing unsupportive workplaces as a reason for not seeking accommodations.
Trauma surgeon Qaali Hussein, MD, became pregnant with her first child during her intern year in 2008. She told this news organization that her residency program didn’t even have a maternity policy at the time, and her male supervisor was certain that motherhood would end her surgical career.
She shared how “women usually waited until the end of their training to get pregnant. No one had ever gotten pregnant during the program and returned from maternity leave. I was the first to do so, so there wasn’t a policy or any program support to say, ‘What can we do to help?’ ”
Dr. Hussein used her vacation and sick time, returning to work 4 weeks after delivery. She had five more children, including twins her chief year and another baby during fellowship training in 2014.
Each subsequent pregnancy was met with the same response from program leadership, she recalled. “They’d say, ‘This is it. You may have been able to do the first and second child, but this one will be impossible.’ ”
After the PWFA regulations first became enforceable in June, the EEOC accepted public feedback. The guidelines received nearly 100,000 comments, spurred mainly by the inclusion of abortion care as a qualifying condition for which an employee could receive accommodations. About 54,000 comments called for abortion to be excluded from the final rule, and 40,000 supported keeping the clause.
The EEOC issued the final rule on April 15. It includes abortion care. However, the updated rule “does not require any employee to have — or not to have — an abortion, does not require taxpayers to pay for any abortions, and does not compel health care providers to provide any abortions,” the unpublished version of the final rule said. It is scheduled to take effect 60 days after its publication in the Federal Register on April 19.
Increasing Support for Doctor-Moms
The PWFA supplements other EEOC protections, such as pregnancy discrimination under Title VII of the Civil Rights Act of 1964 and access to reasonable accommodations under the Americans with Disabilities Act. In addition, it builds upon Department of Labor regulations, like the PUMP Act for breastfeeding employees and the Family and Medical Leave Act, which provides 12 weeks of unpaid, job-protected leave for the arrival of a child or certain medical conditions.
FMLA applies only to employees who have worked full-time for at least 12 months for an employer with 50 or more employees. Meanwhile, the unpaid, job-protected leave under the PWFA has no waiting period, lowers the required number of employees to 15, and permits accommodations for up to 40 weeks.
Employers are encouraged to honor “common and simple” requests, like using a closer parking space or pumping or nursing at work, without requiring a doctor’s note, the rule said.
Efforts to improve family leave policies for physicians and residents have been gaining traction. In 2021, the American Board of Medical Specialties began requiring its member boards with training programs lasting 2 or more years to allow at least 6 weeks off for parental, caregiver, and medical leave. This time can be taken without exhausting vacation or sick leave or requiring an extension in training. Over half of the 24 member boards permit leave beyond 6 weeks, including the American Boards of Allergy and Immunology, Emergency Medicine, Family Medicine, Radiology, and Surgery.
Estefania Oliveros, MD, MSc, cardiologist and assistant professor at the Lewis Katz School of Medicine at Temple University, Philadelphia, told this news organization that the Accreditation Council for Graduate Medical Education also requires that residents and fellows receive 6 weeks of paid leave.
“We add to that vacation time, so it gives them at least 8 weeks,” she said. The school has created spaces for nursing mothers — something neither she nor Dr. Hussein had access to when breastfeeding — and encourages the attendings to be proactive in excusing pregnant fellows for appointments.
This differs significantly from her fellowship training experience 6 years ago at another institution, where she worked without accommodations until the day before her cesarean delivery. Dr. Oliveros had to use all her vacation time for recovery, returning to the program after 4 weeks instead of the recommended 6.
“And that’s the story you hear all the time. Not because people are ill-intended; I just don’t think the system is designed to accommodate women, so we lose a lot of talent that way,” said Dr. Oliveros, whose 2019 survey in the Journal of the American College of Cardiology called for more support and protections for pregnant doctors.
Both doctors believe the PWFA will be beneficial but only if leadership in the field takes up the cause.
“The cultures of these institutions determine whether women feel safe or even confident enough to have children in medical school or residency,” said Dr. Hussein.
A version of this article appeared on Medscape.com.
Pregnant physicians may receive more workplace accommodations and protection against discrimination thanks to an updated rule from the US Equal Employment Opportunity Commission (EEOC). The guidelines could prevent women from losing critical career momentum.
The Pregnant Workers Fairness Act (PWFA) aims to help workers balance professional demands with healthy pregnancies. It requires employers to provide reasonable accommodations for a “worker’s known limitations,” including physical or mental conditions associated with “pregnancy, childbirth, or related medical conditions.”
Reasonable accommodations vary but may involve time off to attend healthcare appointments or recover from childbirth, extra breaks during a shift, shorter work hours, or the ability to sit instead of stand. Private and public sector employers, including state and local governments, federal agencies, and employment agencies, must abide by the new guidelines unless they can provide evidence that doing so will cause undue hardship.
Female doctors have historically encountered significant barriers to family planning. Years of training cause them to delay having children, often leading to higher rates of infertility, miscarriage, and pregnancy complications than in the general population.
Some specialties, like surgeons, are particularly at risk, with 42% reporting at least one pregnancy loss. Most surgeons work their regular schedules until delivery despite desiring workload reductions, commonly citing unsupportive workplaces as a reason for not seeking accommodations.
Trauma surgeon Qaali Hussein, MD, became pregnant with her first child during her intern year in 2008. She told this news organization that her residency program didn’t even have a maternity policy at the time, and her male supervisor was certain that motherhood would end her surgical career.
She shared how “women usually waited until the end of their training to get pregnant. No one had ever gotten pregnant during the program and returned from maternity leave. I was the first to do so, so there wasn’t a policy or any program support to say, ‘What can we do to help?’ ”
Dr. Hussein used her vacation and sick time, returning to work 4 weeks after delivery. She had five more children, including twins her chief year and another baby during fellowship training in 2014.
Each subsequent pregnancy was met with the same response from program leadership, she recalled. “They’d say, ‘This is it. You may have been able to do the first and second child, but this one will be impossible.’ ”
After the PWFA regulations first became enforceable in June, the EEOC accepted public feedback. The guidelines received nearly 100,000 comments, spurred mainly by the inclusion of abortion care as a qualifying condition for which an employee could receive accommodations. About 54,000 comments called for abortion to be excluded from the final rule, and 40,000 supported keeping the clause.
The EEOC issued the final rule on April 15. It includes abortion care. However, the updated rule “does not require any employee to have — or not to have — an abortion, does not require taxpayers to pay for any abortions, and does not compel health care providers to provide any abortions,” the unpublished version of the final rule said. It is scheduled to take effect 60 days after its publication in the Federal Register on April 19.
Increasing Support for Doctor-Moms
The PWFA supplements other EEOC protections, such as pregnancy discrimination under Title VII of the Civil Rights Act of 1964 and access to reasonable accommodations under the Americans with Disabilities Act. In addition, it builds upon Department of Labor regulations, like the PUMP Act for breastfeeding employees and the Family and Medical Leave Act, which provides 12 weeks of unpaid, job-protected leave for the arrival of a child or certain medical conditions.
FMLA applies only to employees who have worked full-time for at least 12 months for an employer with 50 or more employees. Meanwhile, the unpaid, job-protected leave under the PWFA has no waiting period, lowers the required number of employees to 15, and permits accommodations for up to 40 weeks.
Employers are encouraged to honor “common and simple” requests, like using a closer parking space or pumping or nursing at work, without requiring a doctor’s note, the rule said.
Efforts to improve family leave policies for physicians and residents have been gaining traction. In 2021, the American Board of Medical Specialties began requiring its member boards with training programs lasting 2 or more years to allow at least 6 weeks off for parental, caregiver, and medical leave. This time can be taken without exhausting vacation or sick leave or requiring an extension in training. Over half of the 24 member boards permit leave beyond 6 weeks, including the American Boards of Allergy and Immunology, Emergency Medicine, Family Medicine, Radiology, and Surgery.
Estefania Oliveros, MD, MSc, cardiologist and assistant professor at the Lewis Katz School of Medicine at Temple University, Philadelphia, told this news organization that the Accreditation Council for Graduate Medical Education also requires that residents and fellows receive 6 weeks of paid leave.
“We add to that vacation time, so it gives them at least 8 weeks,” she said. The school has created spaces for nursing mothers — something neither she nor Dr. Hussein had access to when breastfeeding — and encourages the attendings to be proactive in excusing pregnant fellows for appointments.
This differs significantly from her fellowship training experience 6 years ago at another institution, where she worked without accommodations until the day before her cesarean delivery. Dr. Oliveros had to use all her vacation time for recovery, returning to the program after 4 weeks instead of the recommended 6.
“And that’s the story you hear all the time. Not because people are ill-intended; I just don’t think the system is designed to accommodate women, so we lose a lot of talent that way,” said Dr. Oliveros, whose 2019 survey in the Journal of the American College of Cardiology called for more support and protections for pregnant doctors.
Both doctors believe the PWFA will be beneficial but only if leadership in the field takes up the cause.
“The cultures of these institutions determine whether women feel safe or even confident enough to have children in medical school or residency,” said Dr. Hussein.
A version of this article appeared on Medscape.com.
Keratoacanthoma, SCC Relatively Rare With PD-1/PD-L1 Inhibitors, Study Suggests
TOPLINE:
(AEs) reported to the US Food and Drug Administration (FDA).
METHODOLOGY:
- The risk for dermatologic immune-related side effects may be increased with immunologic-modifying drugs.
- To determine if there are significant signals between keratoacanthomas and cSCCs and PD-1/PD-L1 inhibitors, researchers analyzed AEs associated with these agents reported to the FDA’s Adverse Event Reporting System (FAERS) between January 2004 and May 2023.
- Pharmacovigilance signals were identified, and a significant signal was defined as the lower 95% CI of a reporting odds ratio (ROR) greater than one or the lower 95% CI of an information component (IC) greater than 0.
TAKEAWAY:
- Of the 158,000 reports of PD-1/PD-L1 inhibitor use, 43 were in patients who developed a keratoacanthoma (mean age, 77 years; 39% women) and 83 were in patients who developed cSCC (mean age, 71 years; 41% women). Patients aged 60-79 years were most likely to develop keratoacanthomas and cSCC on these treatments.
- A PD-1/PD-L1 inhibitor was listed as the suspect drug in all 43 keratoacanthoma reports and in 70 of 83 cSCC reports (the remaining 13 listed them as the concomitant drug).
- Significant signals were reported for both keratoacanthoma (ROR, 9.7; IC, 1.9) and cSCC (ROR, 3.0; IC, 0.9) with PD-1/PD-L1 inhibitor use.
- Of the reports where this information was available, all 10 cases of PD-1/PD-L1 inhibitor–linked keratoacanthoma and 10 of 17 cases (59%) of PD-1/PD-L1 inhibitor–linked cSCC, resolution was noted following discontinuation or dose reduction of the inhibitor.
IN PRACTICE:
“Given the large number of patients receiving immunotherapy, FAERS recording only 43 patients developing keratoacanthoma and 83 patients developing cSCC highlights that these conditions are relatively rare adverse events,” the authors wrote but added that more studies are needed to confirm these results.
SOURCE:
The study, led by Pushkar Aggarwal, MD, MBA, of the Department of Dermatology, University of Cincinnati, Cincinnati, Ohio, was published online in JAMA Dermatology.
LIMITATIONS:
The data obtained from FAERS did not contain information on all AEs from drugs. In addition, a causal association could not be determined.
DISCLOSURES:
The funding source was not reported. The authors did not report any conflicts of interest.
A version of this article appeared on Medscape.com.
TOPLINE:
(AEs) reported to the US Food and Drug Administration (FDA).
METHODOLOGY:
- The risk for dermatologic immune-related side effects may be increased with immunologic-modifying drugs.
- To determine if there are significant signals between keratoacanthomas and cSCCs and PD-1/PD-L1 inhibitors, researchers analyzed AEs associated with these agents reported to the FDA’s Adverse Event Reporting System (FAERS) between January 2004 and May 2023.
- Pharmacovigilance signals were identified, and a significant signal was defined as the lower 95% CI of a reporting odds ratio (ROR) greater than one or the lower 95% CI of an information component (IC) greater than 0.
TAKEAWAY:
- Of the 158,000 reports of PD-1/PD-L1 inhibitor use, 43 were in patients who developed a keratoacanthoma (mean age, 77 years; 39% women) and 83 were in patients who developed cSCC (mean age, 71 years; 41% women). Patients aged 60-79 years were most likely to develop keratoacanthomas and cSCC on these treatments.
- A PD-1/PD-L1 inhibitor was listed as the suspect drug in all 43 keratoacanthoma reports and in 70 of 83 cSCC reports (the remaining 13 listed them as the concomitant drug).
- Significant signals were reported for both keratoacanthoma (ROR, 9.7; IC, 1.9) and cSCC (ROR, 3.0; IC, 0.9) with PD-1/PD-L1 inhibitor use.
- Of the reports where this information was available, all 10 cases of PD-1/PD-L1 inhibitor–linked keratoacanthoma and 10 of 17 cases (59%) of PD-1/PD-L1 inhibitor–linked cSCC, resolution was noted following discontinuation or dose reduction of the inhibitor.
IN PRACTICE:
“Given the large number of patients receiving immunotherapy, FAERS recording only 43 patients developing keratoacanthoma and 83 patients developing cSCC highlights that these conditions are relatively rare adverse events,” the authors wrote but added that more studies are needed to confirm these results.
SOURCE:
The study, led by Pushkar Aggarwal, MD, MBA, of the Department of Dermatology, University of Cincinnati, Cincinnati, Ohio, was published online in JAMA Dermatology.
LIMITATIONS:
The data obtained from FAERS did not contain information on all AEs from drugs. In addition, a causal association could not be determined.
DISCLOSURES:
The funding source was not reported. The authors did not report any conflicts of interest.
A version of this article appeared on Medscape.com.
TOPLINE:
(AEs) reported to the US Food and Drug Administration (FDA).
METHODOLOGY:
- The risk for dermatologic immune-related side effects may be increased with immunologic-modifying drugs.
- To determine if there are significant signals between keratoacanthomas and cSCCs and PD-1/PD-L1 inhibitors, researchers analyzed AEs associated with these agents reported to the FDA’s Adverse Event Reporting System (FAERS) between January 2004 and May 2023.
- Pharmacovigilance signals were identified, and a significant signal was defined as the lower 95% CI of a reporting odds ratio (ROR) greater than one or the lower 95% CI of an information component (IC) greater than 0.
TAKEAWAY:
- Of the 158,000 reports of PD-1/PD-L1 inhibitor use, 43 were in patients who developed a keratoacanthoma (mean age, 77 years; 39% women) and 83 were in patients who developed cSCC (mean age, 71 years; 41% women). Patients aged 60-79 years were most likely to develop keratoacanthomas and cSCC on these treatments.
- A PD-1/PD-L1 inhibitor was listed as the suspect drug in all 43 keratoacanthoma reports and in 70 of 83 cSCC reports (the remaining 13 listed them as the concomitant drug).
- Significant signals were reported for both keratoacanthoma (ROR, 9.7; IC, 1.9) and cSCC (ROR, 3.0; IC, 0.9) with PD-1/PD-L1 inhibitor use.
- Of the reports where this information was available, all 10 cases of PD-1/PD-L1 inhibitor–linked keratoacanthoma and 10 of 17 cases (59%) of PD-1/PD-L1 inhibitor–linked cSCC, resolution was noted following discontinuation or dose reduction of the inhibitor.
IN PRACTICE:
“Given the large number of patients receiving immunotherapy, FAERS recording only 43 patients developing keratoacanthoma and 83 patients developing cSCC highlights that these conditions are relatively rare adverse events,” the authors wrote but added that more studies are needed to confirm these results.
SOURCE:
The study, led by Pushkar Aggarwal, MD, MBA, of the Department of Dermatology, University of Cincinnati, Cincinnati, Ohio, was published online in JAMA Dermatology.
LIMITATIONS:
The data obtained from FAERS did not contain information on all AEs from drugs. In addition, a causal association could not be determined.
DISCLOSURES:
The funding source was not reported. The authors did not report any conflicts of interest.
A version of this article appeared on Medscape.com.
Adding ACEI to Chemotherapy Does Not Prevent Cardiotoxicity
a new randomized trial showed.
The results suggested adding an ACE inhibitor doesn’t affect cardiac injury or cardiac function outcomes “and should not be used as a preventative strategy” in these patients, David Austin, MD, consultant cardiologist, Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough, England, and chief investigator for the PROACT study, told this news organization.
But while these negative results are disappointing, he said, “we now have a definitive result in a robustly conducted trial that will take the field forward.”
The findings were presented on April 8, 2024, at the American College of Cardiology (ACC) Scientific Session 2024.
Anthracyclines, which are extracted from Streptomyces bacterium, are chemotherapy drugs widely used to treat several types of cancer. Doxorubicin is among the most clinically important anthracyclines.
While extremely effective, anthracyclines can cause irreversible damage to cardiac cells and ultimately impair cardiac function and even cause heart failure, which may only be evident years after exposure. “Cardiac injury is very common in patients treated with high dose anthracyclines,” noted Dr. Austin.
The open-label PROACT study included 111 adult patients, mean age 58 years and predominantly White and women, being treated for breast cancer (62%) or NHL (38%) at National Health Service hospitals in England with high-dose anthracycline-based chemotherapy.
Patients were randomized to standard care (six cycles of high-dose doxorubicin-equivalent anthracycline-based chemotherapy) plus the ACE inhibitor enalapril maleate or standard care alone. The mean chemotherapy dose was 328 mg/m2; any dose greater than 300 is considered high.
The starting dose of enalapril was 2.5 mg twice a day, which was titrated up to a maximum of 10 mg twice a day. The ACE inhibitor was started at least 2 days before chemotherapy began and finished 3 weeks after the last anthracycline dose.
During the study, enalapril was titrated to 20 mg in more than 75% of patients, with the mean dose being 17.7 mg.
Myocardial Injury Outcome
The primary outcome was myocardial injury measured by the presence (≥ 14 ng/L) of high sensitivity cardiac troponin T (cTnT) during anthracycline treatment and 1 month after the last dose of anthracycline.
cTnT is highly expressed in cardiomyocytes and has become a preferred biomarker for detecting acute myocardial infarction and other causes of myocardial injury.
Blood sampling for cTnT and cardiac troponin I (cTnI) was performed at baseline, within 72 hours prior to chemotherapy and at trial completion. All patients had negative troponin results at baseline, indicating no heart damage.
A majority of patients experienced elevations in troponin (78% in the enalapril group and 83% in the standard of care group), but there was no statistically significant difference between groups (adjusted odds ratio [OR], 0.65; 95% CI, 0.23-1.78; P = .405).
There was also no significant difference between groups in terms of cTnI, a secondary endpoint. However, the proportion of patients testing positive for cTnI (47% in the enalapril group and 45% in controls) was substantially lower than that for cTnT.
Large Discrepancy
The “large discrepancy in the rate of injury” with cTnT “has implications for the clinical interpretation of cardiac biomarkers in routine practice, and we should proceed with caution,” Dr. Austin told this news organization.
The finding has implications because guidelines don’t currently differentiate based on the type of troponin, Dr. Austin said in a press release. “I was surprised by the difference, and I think this raises the question of what troponin we should be using.”
Secondary outcomes focused on cardiac function, measured using echocardiography and included left ventricular global longitudinal strain (LVGLS) and left ventricular ejection fraction (LVEF). These were measured at baseline, 4 weeks after the last anthracycline dose and 1 year after the final chemotherapy.
There was no between-group difference in LVGLS cardiac function (21% for enalapril vs 22% for standard of care; adjusted OR, 0.95; 95% CI, 0.33-2.74; P = .921). This was also true for LVEF (4% for enalapril vs 0% for standard of care group; adjusted OR, 4.89; 95% CI, 0.40-674.62; P = .236).
Asked what the research team plans to do next, Dr. Austin said “the immediate first step” is to continue following PROACT patients. “We know heart failure events and cardiac dysfunction can occur later down the line.”
Due to the challenge of enrolling patients into trials like PROACT, “we should come together as a sort of a broader cardiovascular/oncology academic community to try to understand how we can better recruit patients into these studies,” said Dr. Austin.
“We need to solve that problem before we then go on to maybe examine other potential preventative therapies.”
He doesn’t think an alternative ACE inhibitor would prove beneficial. “We need to look elsewhere for effective therapies in this area.”
He noted these new findings are “broadly consistent” with other trials that investigated angiotensin receptor blockers.
Tough Population
Commenting on the study during a media briefing, Anita Deswal, chair, medicine, Department of Cardiology, Division of Internal Medicine, The University of Texas, commended the researchers for managing to enroll patients with cancer as this is “a tough” population to get to agree to being in a clinical trial.
“These patients are often overwhelmed financially, physically, and emotionally with the cancer diagnosis, as well as the cancer therapy and, therefore, to enroll them in something to prevent, maybe, some potential cardiac toxicity down the line, is really hard.”
Past trials investigating neuro-hormonal blockers to prevent cardiotoxicity have been criticized for enrolling patients at “too low risk,” said Dr. Deswal. “But investigators here went that step beyond and enrolled patients who were going to receive higher doses of anthracyclines, so kudos to that.”
And she noted investigators managed to get patients on almost the maximum dose of enalapril. “So, the drug was poised to have an effect — if it was there.”
The negative results may have something to do with endpoints. “Maybe we haven’t quite figured out what are the cutoffs for high sensitivity troponin I that identify patients truly at risk” of developing heart failure in the future.
Commenting on the study for this news organization, Anu Lala, MD, assistant professor of medicine at the Icahn School of Medicine at Mount Sinai, New York City, said the results may come as a surprise to some.
“ACE inhibitors are considered cardioprotective and for this reason are often used prophylactically in patients receiving chemotherapy.”
Dr. Lala agrees troponin may not be the right endpoint. “Another question is whether clinical outcomes should be followed in addition to symptoms or onset of any heart failure symptoms, which may hold greater prognostic significance.”
The study was funded by the National Institute for Health and Care Research.
A version of this article appeared on Medscape.com.
a new randomized trial showed.
The results suggested adding an ACE inhibitor doesn’t affect cardiac injury or cardiac function outcomes “and should not be used as a preventative strategy” in these patients, David Austin, MD, consultant cardiologist, Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough, England, and chief investigator for the PROACT study, told this news organization.
But while these negative results are disappointing, he said, “we now have a definitive result in a robustly conducted trial that will take the field forward.”
The findings were presented on April 8, 2024, at the American College of Cardiology (ACC) Scientific Session 2024.
Anthracyclines, which are extracted from Streptomyces bacterium, are chemotherapy drugs widely used to treat several types of cancer. Doxorubicin is among the most clinically important anthracyclines.
While extremely effective, anthracyclines can cause irreversible damage to cardiac cells and ultimately impair cardiac function and even cause heart failure, which may only be evident years after exposure. “Cardiac injury is very common in patients treated with high dose anthracyclines,” noted Dr. Austin.
The open-label PROACT study included 111 adult patients, mean age 58 years and predominantly White and women, being treated for breast cancer (62%) or NHL (38%) at National Health Service hospitals in England with high-dose anthracycline-based chemotherapy.
Patients were randomized to standard care (six cycles of high-dose doxorubicin-equivalent anthracycline-based chemotherapy) plus the ACE inhibitor enalapril maleate or standard care alone. The mean chemotherapy dose was 328 mg/m2; any dose greater than 300 is considered high.
The starting dose of enalapril was 2.5 mg twice a day, which was titrated up to a maximum of 10 mg twice a day. The ACE inhibitor was started at least 2 days before chemotherapy began and finished 3 weeks after the last anthracycline dose.
During the study, enalapril was titrated to 20 mg in more than 75% of patients, with the mean dose being 17.7 mg.
Myocardial Injury Outcome
The primary outcome was myocardial injury measured by the presence (≥ 14 ng/L) of high sensitivity cardiac troponin T (cTnT) during anthracycline treatment and 1 month after the last dose of anthracycline.
cTnT is highly expressed in cardiomyocytes and has become a preferred biomarker for detecting acute myocardial infarction and other causes of myocardial injury.
Blood sampling for cTnT and cardiac troponin I (cTnI) was performed at baseline, within 72 hours prior to chemotherapy and at trial completion. All patients had negative troponin results at baseline, indicating no heart damage.
A majority of patients experienced elevations in troponin (78% in the enalapril group and 83% in the standard of care group), but there was no statistically significant difference between groups (adjusted odds ratio [OR], 0.65; 95% CI, 0.23-1.78; P = .405).
There was also no significant difference between groups in terms of cTnI, a secondary endpoint. However, the proportion of patients testing positive for cTnI (47% in the enalapril group and 45% in controls) was substantially lower than that for cTnT.
Large Discrepancy
The “large discrepancy in the rate of injury” with cTnT “has implications for the clinical interpretation of cardiac biomarkers in routine practice, and we should proceed with caution,” Dr. Austin told this news organization.
The finding has implications because guidelines don’t currently differentiate based on the type of troponin, Dr. Austin said in a press release. “I was surprised by the difference, and I think this raises the question of what troponin we should be using.”
Secondary outcomes focused on cardiac function, measured using echocardiography and included left ventricular global longitudinal strain (LVGLS) and left ventricular ejection fraction (LVEF). These were measured at baseline, 4 weeks after the last anthracycline dose and 1 year after the final chemotherapy.
There was no between-group difference in LVGLS cardiac function (21% for enalapril vs 22% for standard of care; adjusted OR, 0.95; 95% CI, 0.33-2.74; P = .921). This was also true for LVEF (4% for enalapril vs 0% for standard of care group; adjusted OR, 4.89; 95% CI, 0.40-674.62; P = .236).
Asked what the research team plans to do next, Dr. Austin said “the immediate first step” is to continue following PROACT patients. “We know heart failure events and cardiac dysfunction can occur later down the line.”
Due to the challenge of enrolling patients into trials like PROACT, “we should come together as a sort of a broader cardiovascular/oncology academic community to try to understand how we can better recruit patients into these studies,” said Dr. Austin.
“We need to solve that problem before we then go on to maybe examine other potential preventative therapies.”
He doesn’t think an alternative ACE inhibitor would prove beneficial. “We need to look elsewhere for effective therapies in this area.”
He noted these new findings are “broadly consistent” with other trials that investigated angiotensin receptor blockers.
Tough Population
Commenting on the study during a media briefing, Anita Deswal, chair, medicine, Department of Cardiology, Division of Internal Medicine, The University of Texas, commended the researchers for managing to enroll patients with cancer as this is “a tough” population to get to agree to being in a clinical trial.
“These patients are often overwhelmed financially, physically, and emotionally with the cancer diagnosis, as well as the cancer therapy and, therefore, to enroll them in something to prevent, maybe, some potential cardiac toxicity down the line, is really hard.”
Past trials investigating neuro-hormonal blockers to prevent cardiotoxicity have been criticized for enrolling patients at “too low risk,” said Dr. Deswal. “But investigators here went that step beyond and enrolled patients who were going to receive higher doses of anthracyclines, so kudos to that.”
And she noted investigators managed to get patients on almost the maximum dose of enalapril. “So, the drug was poised to have an effect — if it was there.”
The negative results may have something to do with endpoints. “Maybe we haven’t quite figured out what are the cutoffs for high sensitivity troponin I that identify patients truly at risk” of developing heart failure in the future.
Commenting on the study for this news organization, Anu Lala, MD, assistant professor of medicine at the Icahn School of Medicine at Mount Sinai, New York City, said the results may come as a surprise to some.
“ACE inhibitors are considered cardioprotective and for this reason are often used prophylactically in patients receiving chemotherapy.”
Dr. Lala agrees troponin may not be the right endpoint. “Another question is whether clinical outcomes should be followed in addition to symptoms or onset of any heart failure symptoms, which may hold greater prognostic significance.”
The study was funded by the National Institute for Health and Care Research.
A version of this article appeared on Medscape.com.
a new randomized trial showed.
The results suggested adding an ACE inhibitor doesn’t affect cardiac injury or cardiac function outcomes “and should not be used as a preventative strategy” in these patients, David Austin, MD, consultant cardiologist, Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough, England, and chief investigator for the PROACT study, told this news organization.
But while these negative results are disappointing, he said, “we now have a definitive result in a robustly conducted trial that will take the field forward.”
The findings were presented on April 8, 2024, at the American College of Cardiology (ACC) Scientific Session 2024.
Anthracyclines, which are extracted from Streptomyces bacterium, are chemotherapy drugs widely used to treat several types of cancer. Doxorubicin is among the most clinically important anthracyclines.
While extremely effective, anthracyclines can cause irreversible damage to cardiac cells and ultimately impair cardiac function and even cause heart failure, which may only be evident years after exposure. “Cardiac injury is very common in patients treated with high dose anthracyclines,” noted Dr. Austin.
The open-label PROACT study included 111 adult patients, mean age 58 years and predominantly White and women, being treated for breast cancer (62%) or NHL (38%) at National Health Service hospitals in England with high-dose anthracycline-based chemotherapy.
Patients were randomized to standard care (six cycles of high-dose doxorubicin-equivalent anthracycline-based chemotherapy) plus the ACE inhibitor enalapril maleate or standard care alone. The mean chemotherapy dose was 328 mg/m2; any dose greater than 300 is considered high.
The starting dose of enalapril was 2.5 mg twice a day, which was titrated up to a maximum of 10 mg twice a day. The ACE inhibitor was started at least 2 days before chemotherapy began and finished 3 weeks after the last anthracycline dose.
During the study, enalapril was titrated to 20 mg in more than 75% of patients, with the mean dose being 17.7 mg.
Myocardial Injury Outcome
The primary outcome was myocardial injury measured by the presence (≥ 14 ng/L) of high sensitivity cardiac troponin T (cTnT) during anthracycline treatment and 1 month after the last dose of anthracycline.
cTnT is highly expressed in cardiomyocytes and has become a preferred biomarker for detecting acute myocardial infarction and other causes of myocardial injury.
Blood sampling for cTnT and cardiac troponin I (cTnI) was performed at baseline, within 72 hours prior to chemotherapy and at trial completion. All patients had negative troponin results at baseline, indicating no heart damage.
A majority of patients experienced elevations in troponin (78% in the enalapril group and 83% in the standard of care group), but there was no statistically significant difference between groups (adjusted odds ratio [OR], 0.65; 95% CI, 0.23-1.78; P = .405).
There was also no significant difference between groups in terms of cTnI, a secondary endpoint. However, the proportion of patients testing positive for cTnI (47% in the enalapril group and 45% in controls) was substantially lower than that for cTnT.
Large Discrepancy
The “large discrepancy in the rate of injury” with cTnT “has implications for the clinical interpretation of cardiac biomarkers in routine practice, and we should proceed with caution,” Dr. Austin told this news organization.
The finding has implications because guidelines don’t currently differentiate based on the type of troponin, Dr. Austin said in a press release. “I was surprised by the difference, and I think this raises the question of what troponin we should be using.”
Secondary outcomes focused on cardiac function, measured using echocardiography and included left ventricular global longitudinal strain (LVGLS) and left ventricular ejection fraction (LVEF). These were measured at baseline, 4 weeks after the last anthracycline dose and 1 year after the final chemotherapy.
There was no between-group difference in LVGLS cardiac function (21% for enalapril vs 22% for standard of care; adjusted OR, 0.95; 95% CI, 0.33-2.74; P = .921). This was also true for LVEF (4% for enalapril vs 0% for standard of care group; adjusted OR, 4.89; 95% CI, 0.40-674.62; P = .236).
Asked what the research team plans to do next, Dr. Austin said “the immediate first step” is to continue following PROACT patients. “We know heart failure events and cardiac dysfunction can occur later down the line.”
Due to the challenge of enrolling patients into trials like PROACT, “we should come together as a sort of a broader cardiovascular/oncology academic community to try to understand how we can better recruit patients into these studies,” said Dr. Austin.
“We need to solve that problem before we then go on to maybe examine other potential preventative therapies.”
He doesn’t think an alternative ACE inhibitor would prove beneficial. “We need to look elsewhere for effective therapies in this area.”
He noted these new findings are “broadly consistent” with other trials that investigated angiotensin receptor blockers.
Tough Population
Commenting on the study during a media briefing, Anita Deswal, chair, medicine, Department of Cardiology, Division of Internal Medicine, The University of Texas, commended the researchers for managing to enroll patients with cancer as this is “a tough” population to get to agree to being in a clinical trial.
“These patients are often overwhelmed financially, physically, and emotionally with the cancer diagnosis, as well as the cancer therapy and, therefore, to enroll them in something to prevent, maybe, some potential cardiac toxicity down the line, is really hard.”
Past trials investigating neuro-hormonal blockers to prevent cardiotoxicity have been criticized for enrolling patients at “too low risk,” said Dr. Deswal. “But investigators here went that step beyond and enrolled patients who were going to receive higher doses of anthracyclines, so kudos to that.”
And she noted investigators managed to get patients on almost the maximum dose of enalapril. “So, the drug was poised to have an effect — if it was there.”
The negative results may have something to do with endpoints. “Maybe we haven’t quite figured out what are the cutoffs for high sensitivity troponin I that identify patients truly at risk” of developing heart failure in the future.
Commenting on the study for this news organization, Anu Lala, MD, assistant professor of medicine at the Icahn School of Medicine at Mount Sinai, New York City, said the results may come as a surprise to some.
“ACE inhibitors are considered cardioprotective and for this reason are often used prophylactically in patients receiving chemotherapy.”
Dr. Lala agrees troponin may not be the right endpoint. “Another question is whether clinical outcomes should be followed in addition to symptoms or onset of any heart failure symptoms, which may hold greater prognostic significance.”
The study was funded by the National Institute for Health and Care Research.
A version of this article appeared on Medscape.com.
FROM THE ACC 2024
Timing Is Everything: CAR T for Follicular Lymphoma
“CAR T-cells offer patients with relapsed or refractory follicular lymphoma the most durable responses and improved chance of survival beyond all other available therapies. This holds true for a broad range of high-risk disease features in patients with relapsed or refractory FL. Furthermore, it accomplishes this with a single infusion, and a discrete toxicity that is predictable, reversible and manageable,” said Caron Jacobson, MD, MMSc, of the Dana-Farber Cancer Institute in Boston.
Presenting at the Great Debates & Updates Hematologic Malignancies conference, held April 5-6 in New York City, Dr. Jacobson argued that more patients with R/R FL should be treated with CAR T.
She cited follow-up results from the ZUMA-5 study indicating that patients with R/R FL treated with the CAR T axicabtagene ciloleucel (YESCARTA; Kite Pharma) have a median progression free survival (PFS) of 57.3 months and a complete response rate (CR) of 80%. Furthermore, the lymphoma-specific four-year PFS appears to be reaching a plateau, suggesting that some patients treated with the agent may be cured.
The most significant drawback of treatment with axicabtagene ciloleucel is cytokine release syndrome (CRS) and neurotoxicity, which occurred at grade three and higher in 6% and 15%, of ZUMA-5 participants, respectively.
Two newer studies of anti-CD-19 CAR T-cell therapy in R/R FL, tisagenlecleucel in ELARA and lisocabtagene maraleucel in TRANSCEND FL, suggest that other CAR T-cell treatments can be as effective as axicabtagene ciloleucel, but with fewer side effects.
At a median follow up of 29 months, CR among patients in the ELARA study was 68.1%, and the overall response rate (ORR) was 86.2%. Fewer than half of patients had any CRS, and none had grade three or higher. Only 10% of patients had serious neurologic events, with only 1% of these events rated as grade three or higher.
At a median of 18.1 months, patients in the TRANSCEND FL study had a CR of 94% and an ORR of 97%. Over 58% of patients had CRS but it was grade three or higher only 1% of the time (one patient); 15% of patients had neurologic toxicity, but it was grade three or higher only 2% of the time (three patients).
Dr. Jacobson’s opponent in the debate, Peter Martin, MD, of NewYork–Presbyterian Hospital, Weill Cornell Medicine in New York City, acknowledged the strong performance of CAR T in R/R FL patients but argued that they should be used only in a small subset of patients.
“About 20% of patients will experience an early recurrence or progression of diseases within 24 months (PoD-24) which is associated with worse outcomes. About half of those patients experienced transformation, so they have diffuse large B-cell lymphoma, and they’re getting CAR T-cells. In the end, only 10% of patients with follicular lymphoma are relapsed or refractory and should consider getting Car T-cell therapy,” said Dr. Martin, who focused the rest of his presentation on the best options for treating patients with indolent R/R FL who did not have PoD-24.
He said these patients may be able to avoid the side effects of CAR T and perform well when treated with lenalidomide rituximab (R2) or bispecific antibodies. Data from the MAGNIFY trial of patients with R/R FL indicate that patients treated with R2 who did not experience relapse less than 24 months after starting treatment and were not heavily refractory to rituximab achieved a median PFS of over 4 years, with grade 3 or higher adverse events occurring in 5% of patients or less.
Treatment with bispecific antibodies, although inferior in performance to CAR T-cell therapy, may offer durable responses in some R/R CL patients without the risk of side effects associated with CAR T.
Mosunetuzumab, a bispecific antibody that is currently approved for follicular lymphoma, is designed with step-up dosing to reduce cytokine release syndrome and “achieved a complete response rate of 60% and a median PFS that looks like it’s probably about two years,” said Dr. Martin, noting that some patients continue to do well after the 3-year mark and speculated that “there will be some really long-term responders.”
In addition to the possibly durable nature of bispecific antibodies, they induce cytokine release syndrome at a much lower rate than CAR T, and most side effects are manageable in an outpatient setting, “usually just with Tylenol occasionally with a dose of steroids,” said Dr. Martin.
He contrasted this response with CAR T-cell therapy, which requires referral and travel to a specialized center for at least 1 month around the time of therapy.
Despite the differences of opinion between the presenters about whether CAR T should be used more or less in R/R FL, essentially the two specialists were making recommendations for different patient groups.
Dr. Jacobson observed that “Dr. Martin is looking at the 80% of people who do really well with follicular lymphoma." Those are the people who don’t require a third line of therapy. They are the people who don’t have PoD-24. I’m looking at the 20% of people who either do require a third line of therapy or who do have PoD-24, and we’re not treating nearly enough of those patients with follicular lymphoma.
“We’re actually arguing about treatment strategies for different populations of patients. And I think ultimately, we agree more than we disagree in the end,” she concluded.
The notion that CAR T, chemotherapy, and bispecific antibodies all have a place in treating R/R FL patients is supported by Charalambos (Babis) Andreadis, MD, hematologist at the University of California San Francisco’s Helen Diller Family Comprehensive Care Center. “If I had a patient with follicular who relapsed 24 months or later after primary therapy and had active disease that needed treatment, most providers would do a lenalidomide-based or chemo-based regimen. Down the line either bispecific or CAR T would be appropriate in third line,” said Dr. Andreadis.
However, he noted,“for someone who is an early progressor, I would similarly not be able to use either [chemotherapy or bispecific antibodies] in second line [therapy] but would definitely think that early CART would be a good option to consider given the longevity of the observed responses so far.”
Dr. Martin disclosed ties with AbbVie, AstraZeneca, BeiGene, Daiichi Sankyo, Epizyme, Genentech, Janssen, Merck, and PeproMene. Dr. Jacobson reported relationships with AbbVie, Abintus Bio, ADC Therapeutics, Appia Bio, AstraZeneca, BMS/Celgene, Caribou Bio, Daiichi Sankyo, ImmPACT Bio, Ipsen, Janssen, Kite/Gilead, MorphoSys, Novartis, Sana, Synthekine, Kite/Gilead, and Pfizer. Dr. Andreadis had no disclosures.
“CAR T-cells offer patients with relapsed or refractory follicular lymphoma the most durable responses and improved chance of survival beyond all other available therapies. This holds true for a broad range of high-risk disease features in patients with relapsed or refractory FL. Furthermore, it accomplishes this with a single infusion, and a discrete toxicity that is predictable, reversible and manageable,” said Caron Jacobson, MD, MMSc, of the Dana-Farber Cancer Institute in Boston.
Presenting at the Great Debates & Updates Hematologic Malignancies conference, held April 5-6 in New York City, Dr. Jacobson argued that more patients with R/R FL should be treated with CAR T.
She cited follow-up results from the ZUMA-5 study indicating that patients with R/R FL treated with the CAR T axicabtagene ciloleucel (YESCARTA; Kite Pharma) have a median progression free survival (PFS) of 57.3 months and a complete response rate (CR) of 80%. Furthermore, the lymphoma-specific four-year PFS appears to be reaching a plateau, suggesting that some patients treated with the agent may be cured.
The most significant drawback of treatment with axicabtagene ciloleucel is cytokine release syndrome (CRS) and neurotoxicity, which occurred at grade three and higher in 6% and 15%, of ZUMA-5 participants, respectively.
Two newer studies of anti-CD-19 CAR T-cell therapy in R/R FL, tisagenlecleucel in ELARA and lisocabtagene maraleucel in TRANSCEND FL, suggest that other CAR T-cell treatments can be as effective as axicabtagene ciloleucel, but with fewer side effects.
At a median follow up of 29 months, CR among patients in the ELARA study was 68.1%, and the overall response rate (ORR) was 86.2%. Fewer than half of patients had any CRS, and none had grade three or higher. Only 10% of patients had serious neurologic events, with only 1% of these events rated as grade three or higher.
At a median of 18.1 months, patients in the TRANSCEND FL study had a CR of 94% and an ORR of 97%. Over 58% of patients had CRS but it was grade three or higher only 1% of the time (one patient); 15% of patients had neurologic toxicity, but it was grade three or higher only 2% of the time (three patients).
Dr. Jacobson’s opponent in the debate, Peter Martin, MD, of NewYork–Presbyterian Hospital, Weill Cornell Medicine in New York City, acknowledged the strong performance of CAR T in R/R FL patients but argued that they should be used only in a small subset of patients.
“About 20% of patients will experience an early recurrence or progression of diseases within 24 months (PoD-24) which is associated with worse outcomes. About half of those patients experienced transformation, so they have diffuse large B-cell lymphoma, and they’re getting CAR T-cells. In the end, only 10% of patients with follicular lymphoma are relapsed or refractory and should consider getting Car T-cell therapy,” said Dr. Martin, who focused the rest of his presentation on the best options for treating patients with indolent R/R FL who did not have PoD-24.
He said these patients may be able to avoid the side effects of CAR T and perform well when treated with lenalidomide rituximab (R2) or bispecific antibodies. Data from the MAGNIFY trial of patients with R/R FL indicate that patients treated with R2 who did not experience relapse less than 24 months after starting treatment and were not heavily refractory to rituximab achieved a median PFS of over 4 years, with grade 3 or higher adverse events occurring in 5% of patients or less.
Treatment with bispecific antibodies, although inferior in performance to CAR T-cell therapy, may offer durable responses in some R/R CL patients without the risk of side effects associated with CAR T.
Mosunetuzumab, a bispecific antibody that is currently approved for follicular lymphoma, is designed with step-up dosing to reduce cytokine release syndrome and “achieved a complete response rate of 60% and a median PFS that looks like it’s probably about two years,” said Dr. Martin, noting that some patients continue to do well after the 3-year mark and speculated that “there will be some really long-term responders.”
In addition to the possibly durable nature of bispecific antibodies, they induce cytokine release syndrome at a much lower rate than CAR T, and most side effects are manageable in an outpatient setting, “usually just with Tylenol occasionally with a dose of steroids,” said Dr. Martin.
He contrasted this response with CAR T-cell therapy, which requires referral and travel to a specialized center for at least 1 month around the time of therapy.
Despite the differences of opinion between the presenters about whether CAR T should be used more or less in R/R FL, essentially the two specialists were making recommendations for different patient groups.
Dr. Jacobson observed that “Dr. Martin is looking at the 80% of people who do really well with follicular lymphoma." Those are the people who don’t require a third line of therapy. They are the people who don’t have PoD-24. I’m looking at the 20% of people who either do require a third line of therapy or who do have PoD-24, and we’re not treating nearly enough of those patients with follicular lymphoma.
“We’re actually arguing about treatment strategies for different populations of patients. And I think ultimately, we agree more than we disagree in the end,” she concluded.
The notion that CAR T, chemotherapy, and bispecific antibodies all have a place in treating R/R FL patients is supported by Charalambos (Babis) Andreadis, MD, hematologist at the University of California San Francisco’s Helen Diller Family Comprehensive Care Center. “If I had a patient with follicular who relapsed 24 months or later after primary therapy and had active disease that needed treatment, most providers would do a lenalidomide-based or chemo-based regimen. Down the line either bispecific or CAR T would be appropriate in third line,” said Dr. Andreadis.
However, he noted,“for someone who is an early progressor, I would similarly not be able to use either [chemotherapy or bispecific antibodies] in second line [therapy] but would definitely think that early CART would be a good option to consider given the longevity of the observed responses so far.”
Dr. Martin disclosed ties with AbbVie, AstraZeneca, BeiGene, Daiichi Sankyo, Epizyme, Genentech, Janssen, Merck, and PeproMene. Dr. Jacobson reported relationships with AbbVie, Abintus Bio, ADC Therapeutics, Appia Bio, AstraZeneca, BMS/Celgene, Caribou Bio, Daiichi Sankyo, ImmPACT Bio, Ipsen, Janssen, Kite/Gilead, MorphoSys, Novartis, Sana, Synthekine, Kite/Gilead, and Pfizer. Dr. Andreadis had no disclosures.
“CAR T-cells offer patients with relapsed or refractory follicular lymphoma the most durable responses and improved chance of survival beyond all other available therapies. This holds true for a broad range of high-risk disease features in patients with relapsed or refractory FL. Furthermore, it accomplishes this with a single infusion, and a discrete toxicity that is predictable, reversible and manageable,” said Caron Jacobson, MD, MMSc, of the Dana-Farber Cancer Institute in Boston.
Presenting at the Great Debates & Updates Hematologic Malignancies conference, held April 5-6 in New York City, Dr. Jacobson argued that more patients with R/R FL should be treated with CAR T.
She cited follow-up results from the ZUMA-5 study indicating that patients with R/R FL treated with the CAR T axicabtagene ciloleucel (YESCARTA; Kite Pharma) have a median progression free survival (PFS) of 57.3 months and a complete response rate (CR) of 80%. Furthermore, the lymphoma-specific four-year PFS appears to be reaching a plateau, suggesting that some patients treated with the agent may be cured.
The most significant drawback of treatment with axicabtagene ciloleucel is cytokine release syndrome (CRS) and neurotoxicity, which occurred at grade three and higher in 6% and 15%, of ZUMA-5 participants, respectively.
Two newer studies of anti-CD-19 CAR T-cell therapy in R/R FL, tisagenlecleucel in ELARA and lisocabtagene maraleucel in TRANSCEND FL, suggest that other CAR T-cell treatments can be as effective as axicabtagene ciloleucel, but with fewer side effects.
At a median follow up of 29 months, CR among patients in the ELARA study was 68.1%, and the overall response rate (ORR) was 86.2%. Fewer than half of patients had any CRS, and none had grade three or higher. Only 10% of patients had serious neurologic events, with only 1% of these events rated as grade three or higher.
At a median of 18.1 months, patients in the TRANSCEND FL study had a CR of 94% and an ORR of 97%. Over 58% of patients had CRS but it was grade three or higher only 1% of the time (one patient); 15% of patients had neurologic toxicity, but it was grade three or higher only 2% of the time (three patients).
Dr. Jacobson’s opponent in the debate, Peter Martin, MD, of NewYork–Presbyterian Hospital, Weill Cornell Medicine in New York City, acknowledged the strong performance of CAR T in R/R FL patients but argued that they should be used only in a small subset of patients.
“About 20% of patients will experience an early recurrence or progression of diseases within 24 months (PoD-24) which is associated with worse outcomes. About half of those patients experienced transformation, so they have diffuse large B-cell lymphoma, and they’re getting CAR T-cells. In the end, only 10% of patients with follicular lymphoma are relapsed or refractory and should consider getting Car T-cell therapy,” said Dr. Martin, who focused the rest of his presentation on the best options for treating patients with indolent R/R FL who did not have PoD-24.
He said these patients may be able to avoid the side effects of CAR T and perform well when treated with lenalidomide rituximab (R2) or bispecific antibodies. Data from the MAGNIFY trial of patients with R/R FL indicate that patients treated with R2 who did not experience relapse less than 24 months after starting treatment and were not heavily refractory to rituximab achieved a median PFS of over 4 years, with grade 3 or higher adverse events occurring in 5% of patients or less.
Treatment with bispecific antibodies, although inferior in performance to CAR T-cell therapy, may offer durable responses in some R/R CL patients without the risk of side effects associated with CAR T.
Mosunetuzumab, a bispecific antibody that is currently approved for follicular lymphoma, is designed with step-up dosing to reduce cytokine release syndrome and “achieved a complete response rate of 60% and a median PFS that looks like it’s probably about two years,” said Dr. Martin, noting that some patients continue to do well after the 3-year mark and speculated that “there will be some really long-term responders.”
In addition to the possibly durable nature of bispecific antibodies, they induce cytokine release syndrome at a much lower rate than CAR T, and most side effects are manageable in an outpatient setting, “usually just with Tylenol occasionally with a dose of steroids,” said Dr. Martin.
He contrasted this response with CAR T-cell therapy, which requires referral and travel to a specialized center for at least 1 month around the time of therapy.
Despite the differences of opinion between the presenters about whether CAR T should be used more or less in R/R FL, essentially the two specialists were making recommendations for different patient groups.
Dr. Jacobson observed that “Dr. Martin is looking at the 80% of people who do really well with follicular lymphoma." Those are the people who don’t require a third line of therapy. They are the people who don’t have PoD-24. I’m looking at the 20% of people who either do require a third line of therapy or who do have PoD-24, and we’re not treating nearly enough of those patients with follicular lymphoma.
“We’re actually arguing about treatment strategies for different populations of patients. And I think ultimately, we agree more than we disagree in the end,” she concluded.
The notion that CAR T, chemotherapy, and bispecific antibodies all have a place in treating R/R FL patients is supported by Charalambos (Babis) Andreadis, MD, hematologist at the University of California San Francisco’s Helen Diller Family Comprehensive Care Center. “If I had a patient with follicular who relapsed 24 months or later after primary therapy and had active disease that needed treatment, most providers would do a lenalidomide-based or chemo-based regimen. Down the line either bispecific or CAR T would be appropriate in third line,” said Dr. Andreadis.
However, he noted,“for someone who is an early progressor, I would similarly not be able to use either [chemotherapy or bispecific antibodies] in second line [therapy] but would definitely think that early CART would be a good option to consider given the longevity of the observed responses so far.”
Dr. Martin disclosed ties with AbbVie, AstraZeneca, BeiGene, Daiichi Sankyo, Epizyme, Genentech, Janssen, Merck, and PeproMene. Dr. Jacobson reported relationships with AbbVie, Abintus Bio, ADC Therapeutics, Appia Bio, AstraZeneca, BMS/Celgene, Caribou Bio, Daiichi Sankyo, ImmPACT Bio, Ipsen, Janssen, Kite/Gilead, MorphoSys, Novartis, Sana, Synthekine, Kite/Gilead, and Pfizer. Dr. Andreadis had no disclosures.
Most Targeted Cancer Drugs Lack Substantial Clinical Benefit
TOPLINE:
METHODOLOGY:
- The strength and quality of evidence supporting genome-targeted cancer drug approvals vary. A big reason is the growing number of cancer drug approvals based on surrogate endpoints, such as disease-free and progression-free survival, instead of clinical endpoints, such as overall survival or quality of life. The US Food and Drug Administration (FDA) has also approved genome-targeted cancer drugs based on phase 1 or single-arm trials.
- Given these less rigorous considerations for approval, “the validity and value of the targets and surrogate measures underlying FDA genome-targeted cancer drug approvals are uncertain,” the researchers explained.
- In the current analysis, researchers assessed the validity of the molecular targets as well as the clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022 based on results from pivotal trials.
- The researchers evaluated the strength of evidence supporting molecular targetability using the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) and the clinical benefit using the ESMO–Magnitude of Clinical Benefit Scale (ESMO-MCBS).
- The authors defined a substantial clinical benefit as an A or B grade for curative intent and a 4 or 5 for noncurative intent. High-benefit genomic-based cancer treatments were defined as those associated with a substantial clinical benefit (ESMO-MCBS) and that qualified as ESCAT category level I-A (a clinical benefit based on prospective randomized data) or I-B (prospective nonrandomized data).
TAKEAWAY:
- The analyses focused on 50 molecular-targeted cancer drugs covering 84 indications. Of which, 45 indications (54%) were approved based on phase 1 or 2 pivotal trials, 45 (54%) were supported by single-arm pivotal trials and the remaining 39 (46%) by randomized trial, and 48 (57%) were approved based on subgroup analyses.
- Among the 84 indications, more than half (55%) of the pivotal trials supporting approval used overall response rate as a primary endpoint, 31% used progression-free survival, and 6% used disease-free survival. Only seven indications (8%) were supported by pivotal trials demonstrating an improvement in overall survival.
- Among the 84 trials, 24 (29%) met the ESMO-MCBS threshold for substantial clinical benefit.
- Overall, when combining all ratings, only 24 of the 84 indications (29%) were considered high-benefit genomic-based cancer treatments.
IN PRACTICE:
“We applied the ESMO-MCBS and ESCAT value frameworks to identify therapies and molecular targets providing high clinical value that should be widely available to patients” and “found that drug indications supported by these characteristics represent a minority of cancer drug approvals in recent years,” the authors said. Using these value frameworks could help payers, governments, and individual patients “prioritize the availability of high-value molecular-targeted therapies.”
SOURCE:
The study, with first author Ariadna Tibau, MD, PhD, Brigham and Women’s Hospital and Harvard Medical School, Boston, was published online in JAMA Oncology.
LIMITATIONS:
The study evaluated only trials that supported regulatory approval and did not include outcomes of postapproval clinical studies, which could lead to changes in ESMO-MCBS grades and ESCAT levels of evidence over time.
DISCLOSURES:
The study was funded by the Kaiser Permanente Institute for Health Policy, Arnold Ventures, and the Commonwealth Fund. The authors had no relevant disclosures.
A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- The strength and quality of evidence supporting genome-targeted cancer drug approvals vary. A big reason is the growing number of cancer drug approvals based on surrogate endpoints, such as disease-free and progression-free survival, instead of clinical endpoints, such as overall survival or quality of life. The US Food and Drug Administration (FDA) has also approved genome-targeted cancer drugs based on phase 1 or single-arm trials.
- Given these less rigorous considerations for approval, “the validity and value of the targets and surrogate measures underlying FDA genome-targeted cancer drug approvals are uncertain,” the researchers explained.
- In the current analysis, researchers assessed the validity of the molecular targets as well as the clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022 based on results from pivotal trials.
- The researchers evaluated the strength of evidence supporting molecular targetability using the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) and the clinical benefit using the ESMO–Magnitude of Clinical Benefit Scale (ESMO-MCBS).
- The authors defined a substantial clinical benefit as an A or B grade for curative intent and a 4 or 5 for noncurative intent. High-benefit genomic-based cancer treatments were defined as those associated with a substantial clinical benefit (ESMO-MCBS) and that qualified as ESCAT category level I-A (a clinical benefit based on prospective randomized data) or I-B (prospective nonrandomized data).
TAKEAWAY:
- The analyses focused on 50 molecular-targeted cancer drugs covering 84 indications. Of which, 45 indications (54%) were approved based on phase 1 or 2 pivotal trials, 45 (54%) were supported by single-arm pivotal trials and the remaining 39 (46%) by randomized trial, and 48 (57%) were approved based on subgroup analyses.
- Among the 84 indications, more than half (55%) of the pivotal trials supporting approval used overall response rate as a primary endpoint, 31% used progression-free survival, and 6% used disease-free survival. Only seven indications (8%) were supported by pivotal trials demonstrating an improvement in overall survival.
- Among the 84 trials, 24 (29%) met the ESMO-MCBS threshold for substantial clinical benefit.
- Overall, when combining all ratings, only 24 of the 84 indications (29%) were considered high-benefit genomic-based cancer treatments.
IN PRACTICE:
“We applied the ESMO-MCBS and ESCAT value frameworks to identify therapies and molecular targets providing high clinical value that should be widely available to patients” and “found that drug indications supported by these characteristics represent a minority of cancer drug approvals in recent years,” the authors said. Using these value frameworks could help payers, governments, and individual patients “prioritize the availability of high-value molecular-targeted therapies.”
SOURCE:
The study, with first author Ariadna Tibau, MD, PhD, Brigham and Women’s Hospital and Harvard Medical School, Boston, was published online in JAMA Oncology.
LIMITATIONS:
The study evaluated only trials that supported regulatory approval and did not include outcomes of postapproval clinical studies, which could lead to changes in ESMO-MCBS grades and ESCAT levels of evidence over time.
DISCLOSURES:
The study was funded by the Kaiser Permanente Institute for Health Policy, Arnold Ventures, and the Commonwealth Fund. The authors had no relevant disclosures.
A version of this article appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- The strength and quality of evidence supporting genome-targeted cancer drug approvals vary. A big reason is the growing number of cancer drug approvals based on surrogate endpoints, such as disease-free and progression-free survival, instead of clinical endpoints, such as overall survival or quality of life. The US Food and Drug Administration (FDA) has also approved genome-targeted cancer drugs based on phase 1 or single-arm trials.
- Given these less rigorous considerations for approval, “the validity and value of the targets and surrogate measures underlying FDA genome-targeted cancer drug approvals are uncertain,” the researchers explained.
- In the current analysis, researchers assessed the validity of the molecular targets as well as the clinical benefits of genome-targeted cancer drugs approved in the United States from 2015 to 2022 based on results from pivotal trials.
- The researchers evaluated the strength of evidence supporting molecular targetability using the European Society for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) and the clinical benefit using the ESMO–Magnitude of Clinical Benefit Scale (ESMO-MCBS).
- The authors defined a substantial clinical benefit as an A or B grade for curative intent and a 4 or 5 for noncurative intent. High-benefit genomic-based cancer treatments were defined as those associated with a substantial clinical benefit (ESMO-MCBS) and that qualified as ESCAT category level I-A (a clinical benefit based on prospective randomized data) or I-B (prospective nonrandomized data).
TAKEAWAY:
- The analyses focused on 50 molecular-targeted cancer drugs covering 84 indications. Of which, 45 indications (54%) were approved based on phase 1 or 2 pivotal trials, 45 (54%) were supported by single-arm pivotal trials and the remaining 39 (46%) by randomized trial, and 48 (57%) were approved based on subgroup analyses.
- Among the 84 indications, more than half (55%) of the pivotal trials supporting approval used overall response rate as a primary endpoint, 31% used progression-free survival, and 6% used disease-free survival. Only seven indications (8%) were supported by pivotal trials demonstrating an improvement in overall survival.
- Among the 84 trials, 24 (29%) met the ESMO-MCBS threshold for substantial clinical benefit.
- Overall, when combining all ratings, only 24 of the 84 indications (29%) were considered high-benefit genomic-based cancer treatments.
IN PRACTICE:
“We applied the ESMO-MCBS and ESCAT value frameworks to identify therapies and molecular targets providing high clinical value that should be widely available to patients” and “found that drug indications supported by these characteristics represent a minority of cancer drug approvals in recent years,” the authors said. Using these value frameworks could help payers, governments, and individual patients “prioritize the availability of high-value molecular-targeted therapies.”
SOURCE:
The study, with first author Ariadna Tibau, MD, PhD, Brigham and Women’s Hospital and Harvard Medical School, Boston, was published online in JAMA Oncology.
LIMITATIONS:
The study evaluated only trials that supported regulatory approval and did not include outcomes of postapproval clinical studies, which could lead to changes in ESMO-MCBS grades and ESCAT levels of evidence over time.
DISCLOSURES:
The study was funded by the Kaiser Permanente Institute for Health Policy, Arnold Ventures, and the Commonwealth Fund. The authors had no relevant disclosures.
A version of this article appeared on Medscape.com.
Physicians Own Less Than Half of US Practices; Federal Agencies Want Outside Input
Physician practice ownership by corporations, including health insurers, private equity firms, and large pharmacy chains, reached 30.1% as of January for the first time surpassing ownership by hospitals and health systems (28.4%), according to a new report.
As a result, about three in five physician practices are now owned by nonphysicians.
In early 2020, corporations owned just about 17% of US medical practices, while hospitals and health systems owned about 25%, according to the report released Thursday by nonprofit Physician Advocacy Institute (PAI). But corporate ownership of medical groups surged during the pandemic.
These trends raise questions about how best to protect patients and physicians in a changing employment landscape, said Kelly Kenney, PAI’s chief executive officer, in a statement.
“Corporate entities are assuming control of physician practices and changing the face of medicine in the United States with little to no scrutiny from regulators,” Ms. Kenney said.
The research, conducted by consulting group Avalere for PAI, used the IQVIA OneKey database that contains physician and practice location information on hospital and health system ownership.
By 2022-2023, there was a 7.3% increase in the percentage of practices owned by hospitals and 5.9% increase in the percentage of physicians employed by these organizations, PAI said. In the same time frame, there was an 11% increase in the percentage of practices owned by corporations and a 3.0% increase in the percentage of physicians employed by these entities.
“Physicians have an ethical responsibility to their patients’ health,” Ms. Kenney said. “Corporate entities have a fiduciary responsibility to their shareholders and are motivated to put profits first…these interests can conflict with providing the best medical care to patients.”
Federal Scrutiny Increases
However, both federal and state regulators are paying more attention to what happens to patients and physicians when corporations acquire practices.
“Given recent trends, we are concerned that some transactions may generate profits for those firms at the expense of patients’ health, workers’ safety, quality of care, and affordable healthcare for patients and taxpayers,” said the Federal Trade Commission (FTC) and the Justice (DOJ) and Health and Human Services (HHS) departments.
This statement appears in those agencies’ joint request for information (RFI) announced in March. An RFI is a tool that federal agencies can use to gauge the level of both support and opposition they would face if they were to try to change policies. Public comments are due May 6.
Corporations and advocacy groups often submit detailed comments outlining reasons why the federal government should or should not act on an issue. But individuals also can make their case in this forum.
The FTC, DOJ, and HHS are looking broadly at consolidation in healthcare, but they also spell out potential concerns related to acquisition of physician practices.
For example, they asked clinicians and support staff to provide feedback about whether acquisitions lead to changes in:
- Take-home pay
- Staffing levels
- Workplace safety
- Compensation model (eg, from fixed salary to volume based)
- Policies regarding patient referrals
- Mix of patients
- The volume of patients
- The way providers practice medicine (eg, incentives, prescribing decisions, forced protocols, restrictions on time spent with patients, or mandatory coding practices)
- Administrative or managerial organization (eg, transition to a management services organization).
A version of this article appeared on Medscape.com.
Physician practice ownership by corporations, including health insurers, private equity firms, and large pharmacy chains, reached 30.1% as of January for the first time surpassing ownership by hospitals and health systems (28.4%), according to a new report.
As a result, about three in five physician practices are now owned by nonphysicians.
In early 2020, corporations owned just about 17% of US medical practices, while hospitals and health systems owned about 25%, according to the report released Thursday by nonprofit Physician Advocacy Institute (PAI). But corporate ownership of medical groups surged during the pandemic.
These trends raise questions about how best to protect patients and physicians in a changing employment landscape, said Kelly Kenney, PAI’s chief executive officer, in a statement.
“Corporate entities are assuming control of physician practices and changing the face of medicine in the United States with little to no scrutiny from regulators,” Ms. Kenney said.
The research, conducted by consulting group Avalere for PAI, used the IQVIA OneKey database that contains physician and practice location information on hospital and health system ownership.
By 2022-2023, there was a 7.3% increase in the percentage of practices owned by hospitals and 5.9% increase in the percentage of physicians employed by these organizations, PAI said. In the same time frame, there was an 11% increase in the percentage of practices owned by corporations and a 3.0% increase in the percentage of physicians employed by these entities.
“Physicians have an ethical responsibility to their patients’ health,” Ms. Kenney said. “Corporate entities have a fiduciary responsibility to their shareholders and are motivated to put profits first…these interests can conflict with providing the best medical care to patients.”
Federal Scrutiny Increases
However, both federal and state regulators are paying more attention to what happens to patients and physicians when corporations acquire practices.
“Given recent trends, we are concerned that some transactions may generate profits for those firms at the expense of patients’ health, workers’ safety, quality of care, and affordable healthcare for patients and taxpayers,” said the Federal Trade Commission (FTC) and the Justice (DOJ) and Health and Human Services (HHS) departments.
This statement appears in those agencies’ joint request for information (RFI) announced in March. An RFI is a tool that federal agencies can use to gauge the level of both support and opposition they would face if they were to try to change policies. Public comments are due May 6.
Corporations and advocacy groups often submit detailed comments outlining reasons why the federal government should or should not act on an issue. But individuals also can make their case in this forum.
The FTC, DOJ, and HHS are looking broadly at consolidation in healthcare, but they also spell out potential concerns related to acquisition of physician practices.
For example, they asked clinicians and support staff to provide feedback about whether acquisitions lead to changes in:
- Take-home pay
- Staffing levels
- Workplace safety
- Compensation model (eg, from fixed salary to volume based)
- Policies regarding patient referrals
- Mix of patients
- The volume of patients
- The way providers practice medicine (eg, incentives, prescribing decisions, forced protocols, restrictions on time spent with patients, or mandatory coding practices)
- Administrative or managerial organization (eg, transition to a management services organization).
A version of this article appeared on Medscape.com.
Physician practice ownership by corporations, including health insurers, private equity firms, and large pharmacy chains, reached 30.1% as of January for the first time surpassing ownership by hospitals and health systems (28.4%), according to a new report.
As a result, about three in five physician practices are now owned by nonphysicians.
In early 2020, corporations owned just about 17% of US medical practices, while hospitals and health systems owned about 25%, according to the report released Thursday by nonprofit Physician Advocacy Institute (PAI). But corporate ownership of medical groups surged during the pandemic.
These trends raise questions about how best to protect patients and physicians in a changing employment landscape, said Kelly Kenney, PAI’s chief executive officer, in a statement.
“Corporate entities are assuming control of physician practices and changing the face of medicine in the United States with little to no scrutiny from regulators,” Ms. Kenney said.
The research, conducted by consulting group Avalere for PAI, used the IQVIA OneKey database that contains physician and practice location information on hospital and health system ownership.
By 2022-2023, there was a 7.3% increase in the percentage of practices owned by hospitals and 5.9% increase in the percentage of physicians employed by these organizations, PAI said. In the same time frame, there was an 11% increase in the percentage of practices owned by corporations and a 3.0% increase in the percentage of physicians employed by these entities.
“Physicians have an ethical responsibility to their patients’ health,” Ms. Kenney said. “Corporate entities have a fiduciary responsibility to their shareholders and are motivated to put profits first…these interests can conflict with providing the best medical care to patients.”
Federal Scrutiny Increases
However, both federal and state regulators are paying more attention to what happens to patients and physicians when corporations acquire practices.
“Given recent trends, we are concerned that some transactions may generate profits for those firms at the expense of patients’ health, workers’ safety, quality of care, and affordable healthcare for patients and taxpayers,” said the Federal Trade Commission (FTC) and the Justice (DOJ) and Health and Human Services (HHS) departments.
This statement appears in those agencies’ joint request for information (RFI) announced in March. An RFI is a tool that federal agencies can use to gauge the level of both support and opposition they would face if they were to try to change policies. Public comments are due May 6.
Corporations and advocacy groups often submit detailed comments outlining reasons why the federal government should or should not act on an issue. But individuals also can make their case in this forum.
The FTC, DOJ, and HHS are looking broadly at consolidation in healthcare, but they also spell out potential concerns related to acquisition of physician practices.
For example, they asked clinicians and support staff to provide feedback about whether acquisitions lead to changes in:
- Take-home pay
- Staffing levels
- Workplace safety
- Compensation model (eg, from fixed salary to volume based)
- Policies regarding patient referrals
- Mix of patients
- The volume of patients
- The way providers practice medicine (eg, incentives, prescribing decisions, forced protocols, restrictions on time spent with patients, or mandatory coding practices)
- Administrative or managerial organization (eg, transition to a management services organization).
A version of this article appeared on Medscape.com.
‘Difficult Patient’: Stigmatizing Words and Medical Error
This transcript has been edited for clarity.
When I was doing my nephrology training, I had an attending who would write notes that were, well, kind of funny. I remember one time we were seeing a patient whose first name was “Lucky.” He dryly opened his section of the consult note as follows: “This is a 56-year-old woman with an ironic name who presents with acute renal failure.”
As an exhausted renal fellow, I appreciated the bit of color amid the ongoing series of tragedies that was the consult service. But let’s be clear — writing like this in the medical record is not a good idea. It wasn’t a good idea then, when any record might end up disclosed during a malpractice suit, and it’s really not a good idea now, when patients have ready and automated access to all the notes we write about them.
And yet, worse language than that of my attending appears in hospital notes all the time; there is research about this. Specifically, I’m talking about language that does not have high clinical utility but telegraphs the biases of the person writing the note. This is known as “stigmatizing language” and it can be overt or subtle.
For example, a physician wrote “I listed several fictitious medication names and she reported she was taking them.”
This casts suspicions about the patient’s credibility, as does the more subtle statement, “he claims nicotine patches don’t work for him.” Stigmatizing language may cast the patient in a difficult light, like this note: “she persevered on the fact that ... ‘you wouldn’t understand.’ ”
Stay with me.
We are going to start by defining a very sick patient population: those admitted to the hospital and who, within 48 hours, have either been transferred to the intensive care unit or died. Because of the severity of illness in this population we’ve just defined, figuring out whether a diagnostic or other error was made would be extremely high yield; these can mean the difference between life and death.
In a letter appearing in JAMA Internal Medicine, researchers examined a group of more than 2300 patients just like this from 29 hospitals, scouring the medical records for evidence of these types of errors.
Nearly one in four (23.2%) had at least one diagnostic error, which could include a missed physical exam finding, failure to ask a key question on history taking, inadequate testing, and so on.
Understanding why we make these errors is clearly critical to improving care for these patients. The researchers hypothesized that stigmatizing language might lead to errors like this. For example, by demonstrating that you don’t find a patient credible, you may ignore statements that would help make a better diagnosis.
Just over 5% of these patients had evidence of stigmatizing language in their medical notes. Like earlier studies, this language was more common if the patient was Black or had unstable housing.
Critically, stigmatizing language was more likely to be found among those who had diagnostic errors — a rate of 8.2% vs 4.1%. After adjustment for factors like race, the presence of stigmatizing language was associated with roughly a doubling of the risk for diagnostic errors.
Now, I’m all for eliminating stigmatizing language from our medical notes. And, given the increased transparency of all medical notes these days, I expect that we’ll see less of this over time. But of course, the fact that a physician doesn’t write something that disparages the patient does not necessarily mean that they don’t retain that bias. That said, those comments have an effect on all the other team members who care for that patient as well; it sets a tone and can entrench an individual’s bias more broadly. We should strive to eliminate our biases when it comes to caring for patients. But perhaps the second best thing is to work to keep those biases to ourselves.
Dr. Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Conn. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
When I was doing my nephrology training, I had an attending who would write notes that were, well, kind of funny. I remember one time we were seeing a patient whose first name was “Lucky.” He dryly opened his section of the consult note as follows: “This is a 56-year-old woman with an ironic name who presents with acute renal failure.”
As an exhausted renal fellow, I appreciated the bit of color amid the ongoing series of tragedies that was the consult service. But let’s be clear — writing like this in the medical record is not a good idea. It wasn’t a good idea then, when any record might end up disclosed during a malpractice suit, and it’s really not a good idea now, when patients have ready and automated access to all the notes we write about them.
And yet, worse language than that of my attending appears in hospital notes all the time; there is research about this. Specifically, I’m talking about language that does not have high clinical utility but telegraphs the biases of the person writing the note. This is known as “stigmatizing language” and it can be overt or subtle.
For example, a physician wrote “I listed several fictitious medication names and she reported she was taking them.”
This casts suspicions about the patient’s credibility, as does the more subtle statement, “he claims nicotine patches don’t work for him.” Stigmatizing language may cast the patient in a difficult light, like this note: “she persevered on the fact that ... ‘you wouldn’t understand.’ ”
Stay with me.
We are going to start by defining a very sick patient population: those admitted to the hospital and who, within 48 hours, have either been transferred to the intensive care unit or died. Because of the severity of illness in this population we’ve just defined, figuring out whether a diagnostic or other error was made would be extremely high yield; these can mean the difference between life and death.
In a letter appearing in JAMA Internal Medicine, researchers examined a group of more than 2300 patients just like this from 29 hospitals, scouring the medical records for evidence of these types of errors.
Nearly one in four (23.2%) had at least one diagnostic error, which could include a missed physical exam finding, failure to ask a key question on history taking, inadequate testing, and so on.
Understanding why we make these errors is clearly critical to improving care for these patients. The researchers hypothesized that stigmatizing language might lead to errors like this. For example, by demonstrating that you don’t find a patient credible, you may ignore statements that would help make a better diagnosis.
Just over 5% of these patients had evidence of stigmatizing language in their medical notes. Like earlier studies, this language was more common if the patient was Black or had unstable housing.
Critically, stigmatizing language was more likely to be found among those who had diagnostic errors — a rate of 8.2% vs 4.1%. After adjustment for factors like race, the presence of stigmatizing language was associated with roughly a doubling of the risk for diagnostic errors.
Now, I’m all for eliminating stigmatizing language from our medical notes. And, given the increased transparency of all medical notes these days, I expect that we’ll see less of this over time. But of course, the fact that a physician doesn’t write something that disparages the patient does not necessarily mean that they don’t retain that bias. That said, those comments have an effect on all the other team members who care for that patient as well; it sets a tone and can entrench an individual’s bias more broadly. We should strive to eliminate our biases when it comes to caring for patients. But perhaps the second best thing is to work to keep those biases to ourselves.
Dr. Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Conn. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
When I was doing my nephrology training, I had an attending who would write notes that were, well, kind of funny. I remember one time we were seeing a patient whose first name was “Lucky.” He dryly opened his section of the consult note as follows: “This is a 56-year-old woman with an ironic name who presents with acute renal failure.”
As an exhausted renal fellow, I appreciated the bit of color amid the ongoing series of tragedies that was the consult service. But let’s be clear — writing like this in the medical record is not a good idea. It wasn’t a good idea then, when any record might end up disclosed during a malpractice suit, and it’s really not a good idea now, when patients have ready and automated access to all the notes we write about them.
And yet, worse language than that of my attending appears in hospital notes all the time; there is research about this. Specifically, I’m talking about language that does not have high clinical utility but telegraphs the biases of the person writing the note. This is known as “stigmatizing language” and it can be overt or subtle.
For example, a physician wrote “I listed several fictitious medication names and she reported she was taking them.”
This casts suspicions about the patient’s credibility, as does the more subtle statement, “he claims nicotine patches don’t work for him.” Stigmatizing language may cast the patient in a difficult light, like this note: “she persevered on the fact that ... ‘you wouldn’t understand.’ ”
Stay with me.
We are going to start by defining a very sick patient population: those admitted to the hospital and who, within 48 hours, have either been transferred to the intensive care unit or died. Because of the severity of illness in this population we’ve just defined, figuring out whether a diagnostic or other error was made would be extremely high yield; these can mean the difference between life and death.
In a letter appearing in JAMA Internal Medicine, researchers examined a group of more than 2300 patients just like this from 29 hospitals, scouring the medical records for evidence of these types of errors.
Nearly one in four (23.2%) had at least one diagnostic error, which could include a missed physical exam finding, failure to ask a key question on history taking, inadequate testing, and so on.
Understanding why we make these errors is clearly critical to improving care for these patients. The researchers hypothesized that stigmatizing language might lead to errors like this. For example, by demonstrating that you don’t find a patient credible, you may ignore statements that would help make a better diagnosis.
Just over 5% of these patients had evidence of stigmatizing language in their medical notes. Like earlier studies, this language was more common if the patient was Black or had unstable housing.
Critically, stigmatizing language was more likely to be found among those who had diagnostic errors — a rate of 8.2% vs 4.1%. After adjustment for factors like race, the presence of stigmatizing language was associated with roughly a doubling of the risk for diagnostic errors.
Now, I’m all for eliminating stigmatizing language from our medical notes. And, given the increased transparency of all medical notes these days, I expect that we’ll see less of this over time. But of course, the fact that a physician doesn’t write something that disparages the patient does not necessarily mean that they don’t retain that bias. That said, those comments have an effect on all the other team members who care for that patient as well; it sets a tone and can entrench an individual’s bias more broadly. We should strive to eliminate our biases when it comes to caring for patients. But perhaps the second best thing is to work to keep those biases to ourselves.
Dr. Wilson is associate professor of medicine and public health and director of the Clinical and Translational Research Accelerator at Yale University, New Haven, Conn. He has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Panel: MRD Tests May Speed Myeloma Tx Approvals
The Oncologic Drugs Advisory Committee (ODAC) of the US Food and Drug Administration (FDA) voted 12-0 on April 12 on the following question: Does the evidence support the use of MRD as an accelerated approval endpoint in multiple myeloma clinical trials?
The FDA is not bound to accept the recommendations of its panels, but often does so.
ODAC panelists said they felt comfortable in this recommendation because they expected the FDA to mandate confirmatory studies of any drugs to be given accelerated approval based on MRD data.
There’s a risk that MRD results might mislead regulators into clearing a drug later found to lack benefit, said Christopher Hourigan, DM, DPhil, an ODAC panelist and a physician-scientist at Virginia Tech, Blacksburg, Virginia, who treats people with blood cancer. Further tests would ultimately show if drugs cleared based on MRD data actually delivered benefits such as extending progression-free survival (PFS).
“That’s why we’re talking about accelerated approval,” Dr. Hourigan said. “There is harm to inaction. We’re not currently curing people in multiple myeloma. I’m not willing to make patients wait on principle for a theoretical perfect that may never come.”
“Our responsibility is to accept the world as messy and be agile enough to adapt and iterate that the evidence develops rather than create barriers to the work of discovering effective new therapies for these patients,” he added.
Advances in testing now allow for detection of the presence of malignant cells at orders of magnitude below previous assessments. MRD assays used in tracking what’s happening with myeloma generally have a sensitivity level of 10-5, or a detection capacity of one cell of 100,000, said Ola Landgren, MD, PhD, of the University of Miami, Miami, Florida, during a presentation at the meeting.
The April 12 meeting was somewhat unusual for ODAC.
Instead of reviewing the benefits and risks of a specific drug, the panel reviewed results from two separate major research efforts done to see how MRD could be used in development of drugs.
These were Dr. Landgren’s EVIDENCE (Evaluating minimal residual disease as an intermediate clinical endpoint for multiple myeloma) meta-analysis, and the similar work of the i2TEAMM group, affiliated with the International Myeloma Foundation.
In its review, the FDA staff noted differences in the approaches of the two groups. In its analysis, the i2TEAMM removed information about patients with missing MRD data, while the University of Miami team retained information about these kinds of patients in the analyses and assigned their status to be MRD positive.
The FDA staff also noted in their review and presentations weaknesses in the case for MRD. For example, the FDA staff noted that the treatment effect on MRD negativity was not statistically significant in 4 of the 8 treatment comparisons in the work from Dr. Landgren and colleagues.
The FDA staff looked at what these analyses suggested at both an individual level and trial level. The data from these two research projects taken as a whole showed “strong individual-level” associations between negative MRD findings and later positive outcomes for patients, although trial-level associations were “weak to moderate” in some cases, the staff wrote.
The FDA staff concluded that the research appeared to support arguments in favor of the “prognostic value,” even with outstanding questions about how best to use this test.
In the briefing document for the meeting, the FDA also emphasized the need for new treatments.
Multiple myeloma remains an incurable disease with a 5-year relative survival rate of 59.8%, even after significant recent progress in treatment, the agency said. In the past decade, the FDA has approved 15 new drugs and greater than 20 new indications have been approved for the treatment of patients with multiple myeloma.
The FDA has been working with drugmakers and academic researchers for several years to address the potential of MRD in development of blood cancers. The agency in 2020 issued a guidance document on this issue.
Several ODAC members praised the i2TEAMM and Dr. Landgren’s EVIDENCE teams for their work, which took place across several nations and extended over many years.
“This was a herculean effort. It really changes the playbook for how we think about biomarkers across all cancer types,” said ODAC panelist Neil Vasan, MD, PhD, of Columbia University, New York, NY. “To me, the important word was reasonable. Is this a reasonable surrogate endpoint? Is this a reasonable intermediate endpoint? I think it is more than reasonable.”
Still, ODAC panelist Jorge Nieva, MD, raised a point of concern about how use of MRD as an endpoint could change the design of studies. He urged caution among researchers about potential ramping up of collection of MRD tests in search of more robust data, which could lead to more testing for patients.
“I have this tremendous fear that this is going to mean every myeloma protocol has a marrow biopsy every six weeks on the patients forever,” said Dr. Nieva of the Keck School of Medicine, University of Southern California, Los Angeles. “I just don’t want to see that happen. So I think we need to balance these two things.”
The Oncologic Drugs Advisory Committee (ODAC) of the US Food and Drug Administration (FDA) voted 12-0 on April 12 on the following question: Does the evidence support the use of MRD as an accelerated approval endpoint in multiple myeloma clinical trials?
The FDA is not bound to accept the recommendations of its panels, but often does so.
ODAC panelists said they felt comfortable in this recommendation because they expected the FDA to mandate confirmatory studies of any drugs to be given accelerated approval based on MRD data.
There’s a risk that MRD results might mislead regulators into clearing a drug later found to lack benefit, said Christopher Hourigan, DM, DPhil, an ODAC panelist and a physician-scientist at Virginia Tech, Blacksburg, Virginia, who treats people with blood cancer. Further tests would ultimately show if drugs cleared based on MRD data actually delivered benefits such as extending progression-free survival (PFS).
“That’s why we’re talking about accelerated approval,” Dr. Hourigan said. “There is harm to inaction. We’re not currently curing people in multiple myeloma. I’m not willing to make patients wait on principle for a theoretical perfect that may never come.”
“Our responsibility is to accept the world as messy and be agile enough to adapt and iterate that the evidence develops rather than create barriers to the work of discovering effective new therapies for these patients,” he added.
Advances in testing now allow for detection of the presence of malignant cells at orders of magnitude below previous assessments. MRD assays used in tracking what’s happening with myeloma generally have a sensitivity level of 10-5, or a detection capacity of one cell of 100,000, said Ola Landgren, MD, PhD, of the University of Miami, Miami, Florida, during a presentation at the meeting.
The April 12 meeting was somewhat unusual for ODAC.
Instead of reviewing the benefits and risks of a specific drug, the panel reviewed results from two separate major research efforts done to see how MRD could be used in development of drugs.
These were Dr. Landgren’s EVIDENCE (Evaluating minimal residual disease as an intermediate clinical endpoint for multiple myeloma) meta-analysis, and the similar work of the i2TEAMM group, affiliated with the International Myeloma Foundation.
In its review, the FDA staff noted differences in the approaches of the two groups. In its analysis, the i2TEAMM removed information about patients with missing MRD data, while the University of Miami team retained information about these kinds of patients in the analyses and assigned their status to be MRD positive.
The FDA staff also noted in their review and presentations weaknesses in the case for MRD. For example, the FDA staff noted that the treatment effect on MRD negativity was not statistically significant in 4 of the 8 treatment comparisons in the work from Dr. Landgren and colleagues.
The FDA staff looked at what these analyses suggested at both an individual level and trial level. The data from these two research projects taken as a whole showed “strong individual-level” associations between negative MRD findings and later positive outcomes for patients, although trial-level associations were “weak to moderate” in some cases, the staff wrote.
The FDA staff concluded that the research appeared to support arguments in favor of the “prognostic value,” even with outstanding questions about how best to use this test.
In the briefing document for the meeting, the FDA also emphasized the need for new treatments.
Multiple myeloma remains an incurable disease with a 5-year relative survival rate of 59.8%, even after significant recent progress in treatment, the agency said. In the past decade, the FDA has approved 15 new drugs and greater than 20 new indications have been approved for the treatment of patients with multiple myeloma.
The FDA has been working with drugmakers and academic researchers for several years to address the potential of MRD in development of blood cancers. The agency in 2020 issued a guidance document on this issue.
Several ODAC members praised the i2TEAMM and Dr. Landgren’s EVIDENCE teams for their work, which took place across several nations and extended over many years.
“This was a herculean effort. It really changes the playbook for how we think about biomarkers across all cancer types,” said ODAC panelist Neil Vasan, MD, PhD, of Columbia University, New York, NY. “To me, the important word was reasonable. Is this a reasonable surrogate endpoint? Is this a reasonable intermediate endpoint? I think it is more than reasonable.”
Still, ODAC panelist Jorge Nieva, MD, raised a point of concern about how use of MRD as an endpoint could change the design of studies. He urged caution among researchers about potential ramping up of collection of MRD tests in search of more robust data, which could lead to more testing for patients.
“I have this tremendous fear that this is going to mean every myeloma protocol has a marrow biopsy every six weeks on the patients forever,” said Dr. Nieva of the Keck School of Medicine, University of Southern California, Los Angeles. “I just don’t want to see that happen. So I think we need to balance these two things.”
The Oncologic Drugs Advisory Committee (ODAC) of the US Food and Drug Administration (FDA) voted 12-0 on April 12 on the following question: Does the evidence support the use of MRD as an accelerated approval endpoint in multiple myeloma clinical trials?
The FDA is not bound to accept the recommendations of its panels, but often does so.
ODAC panelists said they felt comfortable in this recommendation because they expected the FDA to mandate confirmatory studies of any drugs to be given accelerated approval based on MRD data.
There’s a risk that MRD results might mislead regulators into clearing a drug later found to lack benefit, said Christopher Hourigan, DM, DPhil, an ODAC panelist and a physician-scientist at Virginia Tech, Blacksburg, Virginia, who treats people with blood cancer. Further tests would ultimately show if drugs cleared based on MRD data actually delivered benefits such as extending progression-free survival (PFS).
“That’s why we’re talking about accelerated approval,” Dr. Hourigan said. “There is harm to inaction. We’re not currently curing people in multiple myeloma. I’m not willing to make patients wait on principle for a theoretical perfect that may never come.”
“Our responsibility is to accept the world as messy and be agile enough to adapt and iterate that the evidence develops rather than create barriers to the work of discovering effective new therapies for these patients,” he added.
Advances in testing now allow for detection of the presence of malignant cells at orders of magnitude below previous assessments. MRD assays used in tracking what’s happening with myeloma generally have a sensitivity level of 10-5, or a detection capacity of one cell of 100,000, said Ola Landgren, MD, PhD, of the University of Miami, Miami, Florida, during a presentation at the meeting.
The April 12 meeting was somewhat unusual for ODAC.
Instead of reviewing the benefits and risks of a specific drug, the panel reviewed results from two separate major research efforts done to see how MRD could be used in development of drugs.
These were Dr. Landgren’s EVIDENCE (Evaluating minimal residual disease as an intermediate clinical endpoint for multiple myeloma) meta-analysis, and the similar work of the i2TEAMM group, affiliated with the International Myeloma Foundation.
In its review, the FDA staff noted differences in the approaches of the two groups. In its analysis, the i2TEAMM removed information about patients with missing MRD data, while the University of Miami team retained information about these kinds of patients in the analyses and assigned their status to be MRD positive.
The FDA staff also noted in their review and presentations weaknesses in the case for MRD. For example, the FDA staff noted that the treatment effect on MRD negativity was not statistically significant in 4 of the 8 treatment comparisons in the work from Dr. Landgren and colleagues.
The FDA staff looked at what these analyses suggested at both an individual level and trial level. The data from these two research projects taken as a whole showed “strong individual-level” associations between negative MRD findings and later positive outcomes for patients, although trial-level associations were “weak to moderate” in some cases, the staff wrote.
The FDA staff concluded that the research appeared to support arguments in favor of the “prognostic value,” even with outstanding questions about how best to use this test.
In the briefing document for the meeting, the FDA also emphasized the need for new treatments.
Multiple myeloma remains an incurable disease with a 5-year relative survival rate of 59.8%, even after significant recent progress in treatment, the agency said. In the past decade, the FDA has approved 15 new drugs and greater than 20 new indications have been approved for the treatment of patients with multiple myeloma.
The FDA has been working with drugmakers and academic researchers for several years to address the potential of MRD in development of blood cancers. The agency in 2020 issued a guidance document on this issue.
Several ODAC members praised the i2TEAMM and Dr. Landgren’s EVIDENCE teams for their work, which took place across several nations and extended over many years.
“This was a herculean effort. It really changes the playbook for how we think about biomarkers across all cancer types,” said ODAC panelist Neil Vasan, MD, PhD, of Columbia University, New York, NY. “To me, the important word was reasonable. Is this a reasonable surrogate endpoint? Is this a reasonable intermediate endpoint? I think it is more than reasonable.”
Still, ODAC panelist Jorge Nieva, MD, raised a point of concern about how use of MRD as an endpoint could change the design of studies. He urged caution among researchers about potential ramping up of collection of MRD tests in search of more robust data, which could lead to more testing for patients.
“I have this tremendous fear that this is going to mean every myeloma protocol has a marrow biopsy every six weeks on the patients forever,” said Dr. Nieva of the Keck School of Medicine, University of Southern California, Los Angeles. “I just don’t want to see that happen. So I think we need to balance these two things.”