User login
‘No Hint of Benefit’ in Large Colchicine Trial
WASHINGTON —
The CLEAR SYNERGY (OASIS 9) study, called “the largest trial ever of colchicine in acute MI,” showed no hint of benefit in an adverse event curve for colchicine relative to placebo over 5 years, which suggests that the role of this drug after myocardial infarction (MI) “is uncertain,” Sanjit Jolly, MD, an interventional cardiologist at Hamilton Health Sciences and a professor of medicine at McMaster University in Hamilton, Ontario, Canada, reported at Transcatheter Cardiovascular Therapeutics (TCT) 2024.
For the primary composite outcome — cardiovascular death, MI, stroke, and ischemia-driven revascularization — the event curves in the colchicine and placebo groups remained essentially superimposed over 5 years of follow-up, with only a slight separation after 4 years. The hazard ratio for the primary endpoint showed a 1% difference in favor of colchicine (hazard ratio [HR], 0.99; P = .93).
There were no meaningful differences in any of the individual endpoint components; all 95% CIs straddled the line of unity. Rates of cardiovascular death (3.3% vs 3.2%) and stroke (1.4% vs 1.2%) were numerically higher in the colchicine group than in the placebo group. Rates of MI (2.9% vs 3.1%) and ischemia-driven revascularization (4.6% vs 4.7%) were numerically lower in the colchicine group.
No Difference
No adverse outcomes, including all-cause death (4.6% vs 5.1%), approached significance, with the exception of noncardiovascular death (13.0% vs 1.9%). For this outcome, the 95% CI stopped just short of the line of unity (HR, 0.68; 95% CI, 0.46-0.99).
Rates of adverse events (31.9% vs 31.7%; P = .86), serious adverse events (6.7% vs 7.4%; P = .22), and serious infections (2.5% vs 2.9%; P = .85) were similar in the colchicine and placebo groups, but diarrhea, a known side effect of colchicine, was higher in the colchicine group (10.2% vs 6.6%; P < .001).
Given these results, a panelist questioned the use of the word “uncertain” to describe the findings during the late-breaker session in which these results were presented.
“I think you are selling yourself short,” said J. Dawn Abbott, MD, director of the Interventional Cardiology Fellowship Training Program at the Lifespan Cardiovascular Institute, Brown University in Providence, Rhode Island. Based on the size and conduct of this trial, she called the results “definitive” and suggested that the guidelines should be adjusted.
The OASIS 9 Trial
In OASIS 9, 3528 patients were randomized to colchicine, and 3534 were randomized to placebo. A second randomization in both groups was to spironolactone or placebo; these results will be presented at the upcoming American Heart Association (AHA) 2024 meeting. Both analyses will be published in The New England Journal of Medicine at that time, Jolly reported.
The study involved 104 sites in Australia, Egypt, Europe, Nepal, and North America. Follow-up in both groups exceeded 99%. Most patients had an ST-elevation MI (STEMI), but about 5% of those enrolled had a non-STEMI. Less than 10% of patients had experienced a previous MI.
Less than 5% of patients were discharged on sodium-glucose cotransporter 2 therapy, and more than 95% were discharged on aspirin and a statin. Nearly 80% were discharged on an angiotensin-converting enzyme inhibitor, and most patients received an anticoagulant. More than 95% of patients were implanted with a drug-eluting stent.
At month 3, C-reactive protein levels were significantly lower in the colchicine group than in the placebo group. C-reactive protein is a biomarker for the anti-inflammatory effect that is considered to be colchicine’s primary mechanism of action. An anti-inflammatory effect has been cited as the probable explanation for the positive results shown in the COLCOT and LODOCO2 trials, published in 2019 and 2020, respectively.
In COLCOT, which randomized 4745 patients who experienced an acute MI in the previous 30 days, colchicine was associated with a 23% reduction in a composite major cardiovascular adverse events endpoint relative to placebo (HR, 0.77; P = .02). In LODOCO2, which randomized 5522 patients with chronic coronary disease, colchicine was associated with a 31% reduction in an adverse event composite endpoint (HR, 0.68; P < .0001).
However, two more recent trials — CONVINCE and CHANCE-3 — showed no difference between colchicine and placebo for the endpoint of recurrent stroke at 90 days. CONVINCE, with approximately 3000 patients, was relatively small, whereas CHANCE-3 randomized more than 8000 patients and showed no effect on the risk for stroke (HR, 0.98; 95% CI, 0.83-1.16).
New Data Challenge Guidelines
Of these trials, COLCOT was the most similar to OASIS 9, according to Jolly. Among the differences, OASIS 9 was initiated earlier and was larger than the other trials, so it had more power to address the study question.
Given the absence of benefit, Jolly indicated that OASIS 9 might disrupt both the joint American College of Cardiology and AHA guidelines, which gave colchicine a class 2b recommendation in 2023, and the European Society of Cardiology guidelines, which gave colchicine a 2a recommendation.
“This is a big deal for me,” said Ajay J. Kirtane, director of the Interventional Cardiovascular Care program at Columbia University in New York City. As someone who is now using colchicine routinely, these data have changed his opinion.
The previous data supporting the use of colchicine “were just so-so,” he explained. “Now I have a good rationale” for foregoing the routine use of this therapy.
Jolly said that he had put his own father on colchicine after an acute MI on the basis of the guidelines, but immediately took him off this therapy when the data from OASIS 9 were unblinded.
“The only signal from this trial was an increased risk of diarrhea,” Jolly said. The results, at the very least, suggest that colchicine “is not for everyone” after an acute MI, although he emphasized that these results do not rule out the potential for benefit from anti-inflammatory therapy. Ongoing trials, including one targeting interleukin 6, a cytokine associated with inflammation, remain of interest, he added.
A version of this article first appeared on Medscape.com.
WASHINGTON —
The CLEAR SYNERGY (OASIS 9) study, called “the largest trial ever of colchicine in acute MI,” showed no hint of benefit in an adverse event curve for colchicine relative to placebo over 5 years, which suggests that the role of this drug after myocardial infarction (MI) “is uncertain,” Sanjit Jolly, MD, an interventional cardiologist at Hamilton Health Sciences and a professor of medicine at McMaster University in Hamilton, Ontario, Canada, reported at Transcatheter Cardiovascular Therapeutics (TCT) 2024.
For the primary composite outcome — cardiovascular death, MI, stroke, and ischemia-driven revascularization — the event curves in the colchicine and placebo groups remained essentially superimposed over 5 years of follow-up, with only a slight separation after 4 years. The hazard ratio for the primary endpoint showed a 1% difference in favor of colchicine (hazard ratio [HR], 0.99; P = .93).
There were no meaningful differences in any of the individual endpoint components; all 95% CIs straddled the line of unity. Rates of cardiovascular death (3.3% vs 3.2%) and stroke (1.4% vs 1.2%) were numerically higher in the colchicine group than in the placebo group. Rates of MI (2.9% vs 3.1%) and ischemia-driven revascularization (4.6% vs 4.7%) were numerically lower in the colchicine group.
No Difference
No adverse outcomes, including all-cause death (4.6% vs 5.1%), approached significance, with the exception of noncardiovascular death (13.0% vs 1.9%). For this outcome, the 95% CI stopped just short of the line of unity (HR, 0.68; 95% CI, 0.46-0.99).
Rates of adverse events (31.9% vs 31.7%; P = .86), serious adverse events (6.7% vs 7.4%; P = .22), and serious infections (2.5% vs 2.9%; P = .85) were similar in the colchicine and placebo groups, but diarrhea, a known side effect of colchicine, was higher in the colchicine group (10.2% vs 6.6%; P < .001).
Given these results, a panelist questioned the use of the word “uncertain” to describe the findings during the late-breaker session in which these results were presented.
“I think you are selling yourself short,” said J. Dawn Abbott, MD, director of the Interventional Cardiology Fellowship Training Program at the Lifespan Cardiovascular Institute, Brown University in Providence, Rhode Island. Based on the size and conduct of this trial, she called the results “definitive” and suggested that the guidelines should be adjusted.
The OASIS 9 Trial
In OASIS 9, 3528 patients were randomized to colchicine, and 3534 were randomized to placebo. A second randomization in both groups was to spironolactone or placebo; these results will be presented at the upcoming American Heart Association (AHA) 2024 meeting. Both analyses will be published in The New England Journal of Medicine at that time, Jolly reported.
The study involved 104 sites in Australia, Egypt, Europe, Nepal, and North America. Follow-up in both groups exceeded 99%. Most patients had an ST-elevation MI (STEMI), but about 5% of those enrolled had a non-STEMI. Less than 10% of patients had experienced a previous MI.
Less than 5% of patients were discharged on sodium-glucose cotransporter 2 therapy, and more than 95% were discharged on aspirin and a statin. Nearly 80% were discharged on an angiotensin-converting enzyme inhibitor, and most patients received an anticoagulant. More than 95% of patients were implanted with a drug-eluting stent.
At month 3, C-reactive protein levels were significantly lower in the colchicine group than in the placebo group. C-reactive protein is a biomarker for the anti-inflammatory effect that is considered to be colchicine’s primary mechanism of action. An anti-inflammatory effect has been cited as the probable explanation for the positive results shown in the COLCOT and LODOCO2 trials, published in 2019 and 2020, respectively.
In COLCOT, which randomized 4745 patients who experienced an acute MI in the previous 30 days, colchicine was associated with a 23% reduction in a composite major cardiovascular adverse events endpoint relative to placebo (HR, 0.77; P = .02). In LODOCO2, which randomized 5522 patients with chronic coronary disease, colchicine was associated with a 31% reduction in an adverse event composite endpoint (HR, 0.68; P < .0001).
However, two more recent trials — CONVINCE and CHANCE-3 — showed no difference between colchicine and placebo for the endpoint of recurrent stroke at 90 days. CONVINCE, with approximately 3000 patients, was relatively small, whereas CHANCE-3 randomized more than 8000 patients and showed no effect on the risk for stroke (HR, 0.98; 95% CI, 0.83-1.16).
New Data Challenge Guidelines
Of these trials, COLCOT was the most similar to OASIS 9, according to Jolly. Among the differences, OASIS 9 was initiated earlier and was larger than the other trials, so it had more power to address the study question.
Given the absence of benefit, Jolly indicated that OASIS 9 might disrupt both the joint American College of Cardiology and AHA guidelines, which gave colchicine a class 2b recommendation in 2023, and the European Society of Cardiology guidelines, which gave colchicine a 2a recommendation.
“This is a big deal for me,” said Ajay J. Kirtane, director of the Interventional Cardiovascular Care program at Columbia University in New York City. As someone who is now using colchicine routinely, these data have changed his opinion.
The previous data supporting the use of colchicine “were just so-so,” he explained. “Now I have a good rationale” for foregoing the routine use of this therapy.
Jolly said that he had put his own father on colchicine after an acute MI on the basis of the guidelines, but immediately took him off this therapy when the data from OASIS 9 were unblinded.
“The only signal from this trial was an increased risk of diarrhea,” Jolly said. The results, at the very least, suggest that colchicine “is not for everyone” after an acute MI, although he emphasized that these results do not rule out the potential for benefit from anti-inflammatory therapy. Ongoing trials, including one targeting interleukin 6, a cytokine associated with inflammation, remain of interest, he added.
A version of this article first appeared on Medscape.com.
WASHINGTON —
The CLEAR SYNERGY (OASIS 9) study, called “the largest trial ever of colchicine in acute MI,” showed no hint of benefit in an adverse event curve for colchicine relative to placebo over 5 years, which suggests that the role of this drug after myocardial infarction (MI) “is uncertain,” Sanjit Jolly, MD, an interventional cardiologist at Hamilton Health Sciences and a professor of medicine at McMaster University in Hamilton, Ontario, Canada, reported at Transcatheter Cardiovascular Therapeutics (TCT) 2024.
For the primary composite outcome — cardiovascular death, MI, stroke, and ischemia-driven revascularization — the event curves in the colchicine and placebo groups remained essentially superimposed over 5 years of follow-up, with only a slight separation after 4 years. The hazard ratio for the primary endpoint showed a 1% difference in favor of colchicine (hazard ratio [HR], 0.99; P = .93).
There were no meaningful differences in any of the individual endpoint components; all 95% CIs straddled the line of unity. Rates of cardiovascular death (3.3% vs 3.2%) and stroke (1.4% vs 1.2%) were numerically higher in the colchicine group than in the placebo group. Rates of MI (2.9% vs 3.1%) and ischemia-driven revascularization (4.6% vs 4.7%) were numerically lower in the colchicine group.
No Difference
No adverse outcomes, including all-cause death (4.6% vs 5.1%), approached significance, with the exception of noncardiovascular death (13.0% vs 1.9%). For this outcome, the 95% CI stopped just short of the line of unity (HR, 0.68; 95% CI, 0.46-0.99).
Rates of adverse events (31.9% vs 31.7%; P = .86), serious adverse events (6.7% vs 7.4%; P = .22), and serious infections (2.5% vs 2.9%; P = .85) were similar in the colchicine and placebo groups, but diarrhea, a known side effect of colchicine, was higher in the colchicine group (10.2% vs 6.6%; P < .001).
Given these results, a panelist questioned the use of the word “uncertain” to describe the findings during the late-breaker session in which these results were presented.
“I think you are selling yourself short,” said J. Dawn Abbott, MD, director of the Interventional Cardiology Fellowship Training Program at the Lifespan Cardiovascular Institute, Brown University in Providence, Rhode Island. Based on the size and conduct of this trial, she called the results “definitive” and suggested that the guidelines should be adjusted.
The OASIS 9 Trial
In OASIS 9, 3528 patients were randomized to colchicine, and 3534 were randomized to placebo. A second randomization in both groups was to spironolactone or placebo; these results will be presented at the upcoming American Heart Association (AHA) 2024 meeting. Both analyses will be published in The New England Journal of Medicine at that time, Jolly reported.
The study involved 104 sites in Australia, Egypt, Europe, Nepal, and North America. Follow-up in both groups exceeded 99%. Most patients had an ST-elevation MI (STEMI), but about 5% of those enrolled had a non-STEMI. Less than 10% of patients had experienced a previous MI.
Less than 5% of patients were discharged on sodium-glucose cotransporter 2 therapy, and more than 95% were discharged on aspirin and a statin. Nearly 80% were discharged on an angiotensin-converting enzyme inhibitor, and most patients received an anticoagulant. More than 95% of patients were implanted with a drug-eluting stent.
At month 3, C-reactive protein levels were significantly lower in the colchicine group than in the placebo group. C-reactive protein is a biomarker for the anti-inflammatory effect that is considered to be colchicine’s primary mechanism of action. An anti-inflammatory effect has been cited as the probable explanation for the positive results shown in the COLCOT and LODOCO2 trials, published in 2019 and 2020, respectively.
In COLCOT, which randomized 4745 patients who experienced an acute MI in the previous 30 days, colchicine was associated with a 23% reduction in a composite major cardiovascular adverse events endpoint relative to placebo (HR, 0.77; P = .02). In LODOCO2, which randomized 5522 patients with chronic coronary disease, colchicine was associated with a 31% reduction in an adverse event composite endpoint (HR, 0.68; P < .0001).
However, two more recent trials — CONVINCE and CHANCE-3 — showed no difference between colchicine and placebo for the endpoint of recurrent stroke at 90 days. CONVINCE, with approximately 3000 patients, was relatively small, whereas CHANCE-3 randomized more than 8000 patients and showed no effect on the risk for stroke (HR, 0.98; 95% CI, 0.83-1.16).
New Data Challenge Guidelines
Of these trials, COLCOT was the most similar to OASIS 9, according to Jolly. Among the differences, OASIS 9 was initiated earlier and was larger than the other trials, so it had more power to address the study question.
Given the absence of benefit, Jolly indicated that OASIS 9 might disrupt both the joint American College of Cardiology and AHA guidelines, which gave colchicine a class 2b recommendation in 2023, and the European Society of Cardiology guidelines, which gave colchicine a 2a recommendation.
“This is a big deal for me,” said Ajay J. Kirtane, director of the Interventional Cardiovascular Care program at Columbia University in New York City. As someone who is now using colchicine routinely, these data have changed his opinion.
The previous data supporting the use of colchicine “were just so-so,” he explained. “Now I have a good rationale” for foregoing the routine use of this therapy.
Jolly said that he had put his own father on colchicine after an acute MI on the basis of the guidelines, but immediately took him off this therapy when the data from OASIS 9 were unblinded.
“The only signal from this trial was an increased risk of diarrhea,” Jolly said. The results, at the very least, suggest that colchicine “is not for everyone” after an acute MI, although he emphasized that these results do not rule out the potential for benefit from anti-inflammatory therapy. Ongoing trials, including one targeting interleukin 6, a cytokine associated with inflammation, remain of interest, he added.
A version of this article first appeared on Medscape.com.
FROM TCT 2024
Study Finds No Increased MACE Risk for JAK Inhibitors in Patients With Atopic Dermatitis
, suggested the results of a large, US-based, retrospective cohort study.
This holds true even in individuals aged 50 years or older, whose age puts them at increased cardiovascular (CV) risk, said Amina El Ayadi, PhD, of the University of Texas Medical Branch at Galveston. He presented the findings at the recent European Academy of Dermatology and Venereology (EADV) 2024 Congress.
Specifically, the analysis looked at treatment with the oral JAK1 inhibitors upadacitinib (Rinvoq) and abrocitinib (Cibinqo), both approved for treating AD in the United States, and found that the relative risk for MACE, such as acute myocardial infarction, cardiac arrest, stroke, or acute deep vein thrombosis, was ≤ 1.0 compared with those not treated with a JAKi.
Similarly, the relative risk for other CV safety endpoints, such as having an abnormal ECG or pericardial effusion, was also around 1.0. There was a slight increase in the relative risk for arrhythmias, peripheral edema, angina pectoris, or heart failure, but no value went > 1.6 and CIs spanned 1.0, indicating the results lack statistical significance.
Reassurance for Dermatologists?
“This suggests that oral administration of these drugs to the patient with atopic dermatitis does not increase the risk of major adverse cardiac events, and dermatologists, based on our data, can safely consider JAK inhibitors for treating moderate to severe dermatitis, even in patients with high risk for these diseases,” El Ayadi said during a late-breaking news session at the meeting.
Yolanda Gilaberte Calzada, MD, PhD, head of the Dermatology Department at Miguel Servet University Hospital in Zaragoza, Spain, who was one of the chairs for the session, said that this was “very good news for us.”
Gilaberte Calzada, president of the Spanish Academy of Dermatology and Venereology, asked if there were any data on the duration of treatment with the two JAKis included in the analysis. El Ayadi said that this was something that would be looked at in future data analyses.
Gilaberte Calzada also observed that because the CIs were wide, with more time, “we will have more defined data.”
Analyses Overview
For the two analyses — one in the overall population of patients with AD and the other in those aged 50 years or older — electronic medical record (EMR) data from the TriNetX Research Network were used. This is a global, federated health research network that contains EMRs for more than 275 million patients from over 120 healthcare organizations, El Ayadi explained.
To perform the analyses, the research team queried the TriNetX database to find all patients diagnosed with AD via the International Classification of Diseases, Tenth Revision code L20. They then determined if patients had been treated with JAKi or not, and specifically, with upadacitinib or abrocitinib. Those who had not received any JAKi treatment were the control population.
For the first analysis, no age-specific filter was applied. The investigators identified 1674 people with AD who had been treated with the JAKis and around 1.2 million who had not. Propensity score matching, based on age at diagnosis, biologic sex, and CV comorbidities, was performed to give a total of 1674 patients who had and 1674 who had not been treated with these medications.
In the second analysis, only those aged 50 years or older were considered; 875 patients who had received JAKi treatment were identified and around 250,000 who had not. Propensity score matching based on the same variables gave two groups of 875 people who had or had not taken a JAKi.
Queried over the age cutoff used, El Ayadi noted, “We did an analysis looking at patients 65 and older. However, we came up with lower patient numbers. … We do have this data, and we did not see any significant risk.”
The study was independently supported. El Ayadi and Gilaberte Calzada reported no conflicts of interest in relation to the presented findings.
A version of this article first appeared on Medscape.com.
, suggested the results of a large, US-based, retrospective cohort study.
This holds true even in individuals aged 50 years or older, whose age puts them at increased cardiovascular (CV) risk, said Amina El Ayadi, PhD, of the University of Texas Medical Branch at Galveston. He presented the findings at the recent European Academy of Dermatology and Venereology (EADV) 2024 Congress.
Specifically, the analysis looked at treatment with the oral JAK1 inhibitors upadacitinib (Rinvoq) and abrocitinib (Cibinqo), both approved for treating AD in the United States, and found that the relative risk for MACE, such as acute myocardial infarction, cardiac arrest, stroke, or acute deep vein thrombosis, was ≤ 1.0 compared with those not treated with a JAKi.
Similarly, the relative risk for other CV safety endpoints, such as having an abnormal ECG or pericardial effusion, was also around 1.0. There was a slight increase in the relative risk for arrhythmias, peripheral edema, angina pectoris, or heart failure, but no value went > 1.6 and CIs spanned 1.0, indicating the results lack statistical significance.
Reassurance for Dermatologists?
“This suggests that oral administration of these drugs to the patient with atopic dermatitis does not increase the risk of major adverse cardiac events, and dermatologists, based on our data, can safely consider JAK inhibitors for treating moderate to severe dermatitis, even in patients with high risk for these diseases,” El Ayadi said during a late-breaking news session at the meeting.
Yolanda Gilaberte Calzada, MD, PhD, head of the Dermatology Department at Miguel Servet University Hospital in Zaragoza, Spain, who was one of the chairs for the session, said that this was “very good news for us.”
Gilaberte Calzada, president of the Spanish Academy of Dermatology and Venereology, asked if there were any data on the duration of treatment with the two JAKis included in the analysis. El Ayadi said that this was something that would be looked at in future data analyses.
Gilaberte Calzada also observed that because the CIs were wide, with more time, “we will have more defined data.”
Analyses Overview
For the two analyses — one in the overall population of patients with AD and the other in those aged 50 years or older — electronic medical record (EMR) data from the TriNetX Research Network were used. This is a global, federated health research network that contains EMRs for more than 275 million patients from over 120 healthcare organizations, El Ayadi explained.
To perform the analyses, the research team queried the TriNetX database to find all patients diagnosed with AD via the International Classification of Diseases, Tenth Revision code L20. They then determined if patients had been treated with JAKi or not, and specifically, with upadacitinib or abrocitinib. Those who had not received any JAKi treatment were the control population.
For the first analysis, no age-specific filter was applied. The investigators identified 1674 people with AD who had been treated with the JAKis and around 1.2 million who had not. Propensity score matching, based on age at diagnosis, biologic sex, and CV comorbidities, was performed to give a total of 1674 patients who had and 1674 who had not been treated with these medications.
In the second analysis, only those aged 50 years or older were considered; 875 patients who had received JAKi treatment were identified and around 250,000 who had not. Propensity score matching based on the same variables gave two groups of 875 people who had or had not taken a JAKi.
Queried over the age cutoff used, El Ayadi noted, “We did an analysis looking at patients 65 and older. However, we came up with lower patient numbers. … We do have this data, and we did not see any significant risk.”
The study was independently supported. El Ayadi and Gilaberte Calzada reported no conflicts of interest in relation to the presented findings.
A version of this article first appeared on Medscape.com.
, suggested the results of a large, US-based, retrospective cohort study.
This holds true even in individuals aged 50 years or older, whose age puts them at increased cardiovascular (CV) risk, said Amina El Ayadi, PhD, of the University of Texas Medical Branch at Galveston. He presented the findings at the recent European Academy of Dermatology and Venereology (EADV) 2024 Congress.
Specifically, the analysis looked at treatment with the oral JAK1 inhibitors upadacitinib (Rinvoq) and abrocitinib (Cibinqo), both approved for treating AD in the United States, and found that the relative risk for MACE, such as acute myocardial infarction, cardiac arrest, stroke, or acute deep vein thrombosis, was ≤ 1.0 compared with those not treated with a JAKi.
Similarly, the relative risk for other CV safety endpoints, such as having an abnormal ECG or pericardial effusion, was also around 1.0. There was a slight increase in the relative risk for arrhythmias, peripheral edema, angina pectoris, or heart failure, but no value went > 1.6 and CIs spanned 1.0, indicating the results lack statistical significance.
Reassurance for Dermatologists?
“This suggests that oral administration of these drugs to the patient with atopic dermatitis does not increase the risk of major adverse cardiac events, and dermatologists, based on our data, can safely consider JAK inhibitors for treating moderate to severe dermatitis, even in patients with high risk for these diseases,” El Ayadi said during a late-breaking news session at the meeting.
Yolanda Gilaberte Calzada, MD, PhD, head of the Dermatology Department at Miguel Servet University Hospital in Zaragoza, Spain, who was one of the chairs for the session, said that this was “very good news for us.”
Gilaberte Calzada, president of the Spanish Academy of Dermatology and Venereology, asked if there were any data on the duration of treatment with the two JAKis included in the analysis. El Ayadi said that this was something that would be looked at in future data analyses.
Gilaberte Calzada also observed that because the CIs were wide, with more time, “we will have more defined data.”
Analyses Overview
For the two analyses — one in the overall population of patients with AD and the other in those aged 50 years or older — electronic medical record (EMR) data from the TriNetX Research Network were used. This is a global, federated health research network that contains EMRs for more than 275 million patients from over 120 healthcare organizations, El Ayadi explained.
To perform the analyses, the research team queried the TriNetX database to find all patients diagnosed with AD via the International Classification of Diseases, Tenth Revision code L20. They then determined if patients had been treated with JAKi or not, and specifically, with upadacitinib or abrocitinib. Those who had not received any JAKi treatment were the control population.
For the first analysis, no age-specific filter was applied. The investigators identified 1674 people with AD who had been treated with the JAKis and around 1.2 million who had not. Propensity score matching, based on age at diagnosis, biologic sex, and CV comorbidities, was performed to give a total of 1674 patients who had and 1674 who had not been treated with these medications.
In the second analysis, only those aged 50 years or older were considered; 875 patients who had received JAKi treatment were identified and around 250,000 who had not. Propensity score matching based on the same variables gave two groups of 875 people who had or had not taken a JAKi.
Queried over the age cutoff used, El Ayadi noted, “We did an analysis looking at patients 65 and older. However, we came up with lower patient numbers. … We do have this data, and we did not see any significant risk.”
The study was independently supported. El Ayadi and Gilaberte Calzada reported no conflicts of interest in relation to the presented findings.
A version of this article first appeared on Medscape.com.
FROM EADV 2024
No Link Between PPI Use and Risk for Cardiovascular Events
TOPLINE:
There is no significant association between the use of proton pump inhibitors (PPIs) and risk for cardiovascular events, a meta-analysis shows. However, patients with gastroesophageal reflux disease (GERD) do experience a slight increase in cardiovascular events with PPI use.
METHODOLOGY:
- PPIs are commonly used gastric acid suppressants; however, they have pleiotropic effects, some of which have been hypothesized to augment cardiovascular disorders.
- Researchers conducted a meta-analysis of randomized clinical trials with at least 100 patients and treatment durations > 30 days, which compared groups receiving PPIs to those on placebo or other active treatments.
- The primary outcome was a composite of nonfatal myocardial infarctions, nonfatal strokes, fatal cardiovascular adverse events, coronary revascularizations, and hospitalizations for unstable angina.
TAKEAWAY:
- Researchers included data from 52 placebo-controlled trials, with 14,988 patients and 8323 patients randomized to receive a PPI or placebo, respectively; the mean treatment duration was 0.45 person-years for those treated with PPIs and 0.32 person-years for those treated with placebo.
- Among placebo-controlled trials, 24 were conducted in patients with GERD.
- Researchers also included 61 active-controlled trials that compared PPIs with histamine-2 receptor antagonists (51 trials) or other active treatments.
- The incidence rate ratio for the primary outcome was 0.72 when comparing PPI to placebo, indicating no significant association between PPI and cardiovascular events.
- Among patients with GERD, cardiovascular events occurred only in those treated with PPIs, leading to approximately one excess cardiovascular event per 100 person-years of PPI treatment relative to placebo.
- Researchers found no association between PPI treatment and the risk for cardiovascular events in trials comparing PPIs with other active treatments.
IN PRACTICE:
“We found no association of cardiovascular events with PPI treatment,” the authors wrote. “Cardiovascular events appeared more frequent with PPI treatment in GERD trials, but results from this subgroup should be interpreted with the limitations of the analysis in mind.”
SOURCE:
The study, led by Andrew D. Mosholder, MD, MPH, Division of Epidemiology, US Food and Drug Administration Center for Drug Evaluation and Research, Silver Spring, Maryland, was published online in The American Journal of Gastroenterology.
LIMITATIONS:
This study lacked individual patient data, which precluded a time-to-event analysis or an analysis accounting for patient characteristics such as age or sex. The mean duration of PPI treatment in these trials was a few months, limiting the assessment of cardiovascular risk with extended use. The risk estimates were influenced the most by data on omeprazole and esomeprazole.
DISCLOSURES:
This study did not receive any funding. The authors declared no conflicts of interests.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
There is no significant association between the use of proton pump inhibitors (PPIs) and risk for cardiovascular events, a meta-analysis shows. However, patients with gastroesophageal reflux disease (GERD) do experience a slight increase in cardiovascular events with PPI use.
METHODOLOGY:
- PPIs are commonly used gastric acid suppressants; however, they have pleiotropic effects, some of which have been hypothesized to augment cardiovascular disorders.
- Researchers conducted a meta-analysis of randomized clinical trials with at least 100 patients and treatment durations > 30 days, which compared groups receiving PPIs to those on placebo or other active treatments.
- The primary outcome was a composite of nonfatal myocardial infarctions, nonfatal strokes, fatal cardiovascular adverse events, coronary revascularizations, and hospitalizations for unstable angina.
TAKEAWAY:
- Researchers included data from 52 placebo-controlled trials, with 14,988 patients and 8323 patients randomized to receive a PPI or placebo, respectively; the mean treatment duration was 0.45 person-years for those treated with PPIs and 0.32 person-years for those treated with placebo.
- Among placebo-controlled trials, 24 were conducted in patients with GERD.
- Researchers also included 61 active-controlled trials that compared PPIs with histamine-2 receptor antagonists (51 trials) or other active treatments.
- The incidence rate ratio for the primary outcome was 0.72 when comparing PPI to placebo, indicating no significant association between PPI and cardiovascular events.
- Among patients with GERD, cardiovascular events occurred only in those treated with PPIs, leading to approximately one excess cardiovascular event per 100 person-years of PPI treatment relative to placebo.
- Researchers found no association between PPI treatment and the risk for cardiovascular events in trials comparing PPIs with other active treatments.
IN PRACTICE:
“We found no association of cardiovascular events with PPI treatment,” the authors wrote. “Cardiovascular events appeared more frequent with PPI treatment in GERD trials, but results from this subgroup should be interpreted with the limitations of the analysis in mind.”
SOURCE:
The study, led by Andrew D. Mosholder, MD, MPH, Division of Epidemiology, US Food and Drug Administration Center for Drug Evaluation and Research, Silver Spring, Maryland, was published online in The American Journal of Gastroenterology.
LIMITATIONS:
This study lacked individual patient data, which precluded a time-to-event analysis or an analysis accounting for patient characteristics such as age or sex. The mean duration of PPI treatment in these trials was a few months, limiting the assessment of cardiovascular risk with extended use. The risk estimates were influenced the most by data on omeprazole and esomeprazole.
DISCLOSURES:
This study did not receive any funding. The authors declared no conflicts of interests.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
There is no significant association between the use of proton pump inhibitors (PPIs) and risk for cardiovascular events, a meta-analysis shows. However, patients with gastroesophageal reflux disease (GERD) do experience a slight increase in cardiovascular events with PPI use.
METHODOLOGY:
- PPIs are commonly used gastric acid suppressants; however, they have pleiotropic effects, some of which have been hypothesized to augment cardiovascular disorders.
- Researchers conducted a meta-analysis of randomized clinical trials with at least 100 patients and treatment durations > 30 days, which compared groups receiving PPIs to those on placebo or other active treatments.
- The primary outcome was a composite of nonfatal myocardial infarctions, nonfatal strokes, fatal cardiovascular adverse events, coronary revascularizations, and hospitalizations for unstable angina.
TAKEAWAY:
- Researchers included data from 52 placebo-controlled trials, with 14,988 patients and 8323 patients randomized to receive a PPI or placebo, respectively; the mean treatment duration was 0.45 person-years for those treated with PPIs and 0.32 person-years for those treated with placebo.
- Among placebo-controlled trials, 24 were conducted in patients with GERD.
- Researchers also included 61 active-controlled trials that compared PPIs with histamine-2 receptor antagonists (51 trials) or other active treatments.
- The incidence rate ratio for the primary outcome was 0.72 when comparing PPI to placebo, indicating no significant association between PPI and cardiovascular events.
- Among patients with GERD, cardiovascular events occurred only in those treated with PPIs, leading to approximately one excess cardiovascular event per 100 person-years of PPI treatment relative to placebo.
- Researchers found no association between PPI treatment and the risk for cardiovascular events in trials comparing PPIs with other active treatments.
IN PRACTICE:
“We found no association of cardiovascular events with PPI treatment,” the authors wrote. “Cardiovascular events appeared more frequent with PPI treatment in GERD trials, but results from this subgroup should be interpreted with the limitations of the analysis in mind.”
SOURCE:
The study, led by Andrew D. Mosholder, MD, MPH, Division of Epidemiology, US Food and Drug Administration Center for Drug Evaluation and Research, Silver Spring, Maryland, was published online in The American Journal of Gastroenterology.
LIMITATIONS:
This study lacked individual patient data, which precluded a time-to-event analysis or an analysis accounting for patient characteristics such as age or sex. The mean duration of PPI treatment in these trials was a few months, limiting the assessment of cardiovascular risk with extended use. The risk estimates were influenced the most by data on omeprazole and esomeprazole.
DISCLOSURES:
This study did not receive any funding. The authors declared no conflicts of interests.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
On Second Thought: Aspirin for Primary Prevention — What We Really Know
This transcript has been edited for clarity.
Our recommendations vis-à-vis aspirin have evolved at a dizzying pace. The young’uns watching us right now don’t know what things were like in the 1980s. The Reagan era was a wild, heady time where nuclear war was imminent and we didn’t prescribe aspirin to patients.
That only started in 1988, which was a banner year in human history. Not because a number of doves were incinerated by the lighting of the Olympic torch at the Seoul Olympics — look it up if you don’t know what I’m talking about — but because 1988 saw the publication of the ISIS-2 trial, which first showed a mortality benefit to prescribing aspirin post–myocardial infarction (MI).
Giving patients aspirin during or after a heart attack is not controversial. It’s one of the few things in this business that isn’t, but that’s secondary prevention — treating somebody after they develop a disease. Primary prevention, treating them before they have their incident event, is a very different ballgame. Here, things are messy.
For one thing, the doses used have been very inconsistent. We should point out that the reason for 81 mg of aspirin is very arbitrary and is rooted in the old apothecary system of weights and measurements. A standard dose of aspirin was 5 grains, where 20 grains made 1 scruple, 3 scruples made 1 dram, 8 drams made 1 oz, and 12 oz made 1 lb - because screw you, metric system. Therefore, 5 grains was 325 mg of aspirin, and 1 quarter of the standard dose became 81 mg if you rounded out the decimal.
People have tried all kinds of dosing structures with aspirin prophylaxis. The Physicians’ Health Study used a full-dose aspirin, 325 mg every 2 days, while the Hypertension Optimal Treatment (HOT) trial tested 75 mg daily and the Women’s Health Study tested 100 mg, but every other day.
Ironically, almost no one has studied 81 mg every day, which is weird if you think about it. The bigger problem here is not the variability of doses used, but the discrepancy when you look at older vs newer studies.
Older studies, like the Physicians’ Health Study, did show a benefit, at least in the subgroup of patients over age 50 years, which is probably where the “everybody over 50 should be taking an aspirin” idea comes from, at least as near as I can tell.
More recent studies, like the Women’s Health Study, ASPREE, or ASPIRE, didn’t show a benefit. I know what you’re thinking: Newer stuff is always better. That’s why you should never trust anybody over age 40 years. The context of primary prevention studies has changed. In the ‘80s and ‘90s, people smoked more and we didn’t have the same medications that we have today. We talked about all this in the beta-blocker video to explain why beta-blockers don’t seem to have a benefit post MI.
We have a similar issue here. The magnitude of the benefit with aspirin primary prevention has decreased because we’re all just healthier overall. So, yay! Progress! Here’s where the numbers matter. No one is saying that aspirin doesn’t help. It does.
If we look at the 2019 meta-analysis published in JAMA, there is a cardiovascular benefit. The numbers bear that out. I know you’re all here for the math, so here we go. Aspirin reduced the composite cardiovascular endpoint from 65.2 to 60.2 events per 10,000 patient-years; or to put it more meaningfully in absolute risk reduction terms, because that’s my jam, an absolute risk reduction of 0.41%, which means a number needed to treat of 241, which is okay-ish. It’s not super-great, but it may be justifiable for something that costs next to nothing.
The tradeoff is bleeding. Major bleeding increased from 16.4 to 23.1 bleeds per 10,000 patient-years, or an absolute risk increase of 0.47%, which is a number needed to harm of 210. That’s the problem. Aspirin does prevent heart disease. The benefit is small, for sure, but the real problem is that it’s outweighed by the risk of bleeding, so you’re not really coming out ahead.
The real tragedy here is that the public is locked into this idea of everyone over age 50 years should be taking an aspirin. Even today, even though guidelines have recommended against aspirin for primary prevention for some time, data from the National Health Interview Survey sample found that nearly one in three older adults take aspirin for primary prevention when they shouldn’t be. That’s a large number of people. That’s millions of Americans — and Canadians, but nobody cares about us. It’s fine.
That’s the point. We’re not debunking aspirin. It does work. The benefits are just really small in a primary prevention population and offset by the admittedly also really small risks of bleeding. It’s a tradeoff that doesn’t really work in your favor.
But that’s aspirin for cardiovascular disease. When it comes to cancer or DVT prophylaxis, that’s another really interesting story. We might have to save that for another time. Do I know how to tease a sequel or what?
Labos, a cardiologist at Kirkland Medical Center, Montreal, Quebec, Canada, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
Our recommendations vis-à-vis aspirin have evolved at a dizzying pace. The young’uns watching us right now don’t know what things were like in the 1980s. The Reagan era was a wild, heady time where nuclear war was imminent and we didn’t prescribe aspirin to patients.
That only started in 1988, which was a banner year in human history. Not because a number of doves were incinerated by the lighting of the Olympic torch at the Seoul Olympics — look it up if you don’t know what I’m talking about — but because 1988 saw the publication of the ISIS-2 trial, which first showed a mortality benefit to prescribing aspirin post–myocardial infarction (MI).
Giving patients aspirin during or after a heart attack is not controversial. It’s one of the few things in this business that isn’t, but that’s secondary prevention — treating somebody after they develop a disease. Primary prevention, treating them before they have their incident event, is a very different ballgame. Here, things are messy.
For one thing, the doses used have been very inconsistent. We should point out that the reason for 81 mg of aspirin is very arbitrary and is rooted in the old apothecary system of weights and measurements. A standard dose of aspirin was 5 grains, where 20 grains made 1 scruple, 3 scruples made 1 dram, 8 drams made 1 oz, and 12 oz made 1 lb - because screw you, metric system. Therefore, 5 grains was 325 mg of aspirin, and 1 quarter of the standard dose became 81 mg if you rounded out the decimal.
People have tried all kinds of dosing structures with aspirin prophylaxis. The Physicians’ Health Study used a full-dose aspirin, 325 mg every 2 days, while the Hypertension Optimal Treatment (HOT) trial tested 75 mg daily and the Women’s Health Study tested 100 mg, but every other day.
Ironically, almost no one has studied 81 mg every day, which is weird if you think about it. The bigger problem here is not the variability of doses used, but the discrepancy when you look at older vs newer studies.
Older studies, like the Physicians’ Health Study, did show a benefit, at least in the subgroup of patients over age 50 years, which is probably where the “everybody over 50 should be taking an aspirin” idea comes from, at least as near as I can tell.
More recent studies, like the Women’s Health Study, ASPREE, or ASPIRE, didn’t show a benefit. I know what you’re thinking: Newer stuff is always better. That’s why you should never trust anybody over age 40 years. The context of primary prevention studies has changed. In the ‘80s and ‘90s, people smoked more and we didn’t have the same medications that we have today. We talked about all this in the beta-blocker video to explain why beta-blockers don’t seem to have a benefit post MI.
We have a similar issue here. The magnitude of the benefit with aspirin primary prevention has decreased because we’re all just healthier overall. So, yay! Progress! Here’s where the numbers matter. No one is saying that aspirin doesn’t help. It does.
If we look at the 2019 meta-analysis published in JAMA, there is a cardiovascular benefit. The numbers bear that out. I know you’re all here for the math, so here we go. Aspirin reduced the composite cardiovascular endpoint from 65.2 to 60.2 events per 10,000 patient-years; or to put it more meaningfully in absolute risk reduction terms, because that’s my jam, an absolute risk reduction of 0.41%, which means a number needed to treat of 241, which is okay-ish. It’s not super-great, but it may be justifiable for something that costs next to nothing.
The tradeoff is bleeding. Major bleeding increased from 16.4 to 23.1 bleeds per 10,000 patient-years, or an absolute risk increase of 0.47%, which is a number needed to harm of 210. That’s the problem. Aspirin does prevent heart disease. The benefit is small, for sure, but the real problem is that it’s outweighed by the risk of bleeding, so you’re not really coming out ahead.
The real tragedy here is that the public is locked into this idea of everyone over age 50 years should be taking an aspirin. Even today, even though guidelines have recommended against aspirin for primary prevention for some time, data from the National Health Interview Survey sample found that nearly one in three older adults take aspirin for primary prevention when they shouldn’t be. That’s a large number of people. That’s millions of Americans — and Canadians, but nobody cares about us. It’s fine.
That’s the point. We’re not debunking aspirin. It does work. The benefits are just really small in a primary prevention population and offset by the admittedly also really small risks of bleeding. It’s a tradeoff that doesn’t really work in your favor.
But that’s aspirin for cardiovascular disease. When it comes to cancer or DVT prophylaxis, that’s another really interesting story. We might have to save that for another time. Do I know how to tease a sequel or what?
Labos, a cardiologist at Kirkland Medical Center, Montreal, Quebec, Canada, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
This transcript has been edited for clarity.
Our recommendations vis-à-vis aspirin have evolved at a dizzying pace. The young’uns watching us right now don’t know what things were like in the 1980s. The Reagan era was a wild, heady time where nuclear war was imminent and we didn’t prescribe aspirin to patients.
That only started in 1988, which was a banner year in human history. Not because a number of doves were incinerated by the lighting of the Olympic torch at the Seoul Olympics — look it up if you don’t know what I’m talking about — but because 1988 saw the publication of the ISIS-2 trial, which first showed a mortality benefit to prescribing aspirin post–myocardial infarction (MI).
Giving patients aspirin during or after a heart attack is not controversial. It’s one of the few things in this business that isn’t, but that’s secondary prevention — treating somebody after they develop a disease. Primary prevention, treating them before they have their incident event, is a very different ballgame. Here, things are messy.
For one thing, the doses used have been very inconsistent. We should point out that the reason for 81 mg of aspirin is very arbitrary and is rooted in the old apothecary system of weights and measurements. A standard dose of aspirin was 5 grains, where 20 grains made 1 scruple, 3 scruples made 1 dram, 8 drams made 1 oz, and 12 oz made 1 lb - because screw you, metric system. Therefore, 5 grains was 325 mg of aspirin, and 1 quarter of the standard dose became 81 mg if you rounded out the decimal.
People have tried all kinds of dosing structures with aspirin prophylaxis. The Physicians’ Health Study used a full-dose aspirin, 325 mg every 2 days, while the Hypertension Optimal Treatment (HOT) trial tested 75 mg daily and the Women’s Health Study tested 100 mg, but every other day.
Ironically, almost no one has studied 81 mg every day, which is weird if you think about it. The bigger problem here is not the variability of doses used, but the discrepancy when you look at older vs newer studies.
Older studies, like the Physicians’ Health Study, did show a benefit, at least in the subgroup of patients over age 50 years, which is probably where the “everybody over 50 should be taking an aspirin” idea comes from, at least as near as I can tell.
More recent studies, like the Women’s Health Study, ASPREE, or ASPIRE, didn’t show a benefit. I know what you’re thinking: Newer stuff is always better. That’s why you should never trust anybody over age 40 years. The context of primary prevention studies has changed. In the ‘80s and ‘90s, people smoked more and we didn’t have the same medications that we have today. We talked about all this in the beta-blocker video to explain why beta-blockers don’t seem to have a benefit post MI.
We have a similar issue here. The magnitude of the benefit with aspirin primary prevention has decreased because we’re all just healthier overall. So, yay! Progress! Here’s where the numbers matter. No one is saying that aspirin doesn’t help. It does.
If we look at the 2019 meta-analysis published in JAMA, there is a cardiovascular benefit. The numbers bear that out. I know you’re all here for the math, so here we go. Aspirin reduced the composite cardiovascular endpoint from 65.2 to 60.2 events per 10,000 patient-years; or to put it more meaningfully in absolute risk reduction terms, because that’s my jam, an absolute risk reduction of 0.41%, which means a number needed to treat of 241, which is okay-ish. It’s not super-great, but it may be justifiable for something that costs next to nothing.
The tradeoff is bleeding. Major bleeding increased from 16.4 to 23.1 bleeds per 10,000 patient-years, or an absolute risk increase of 0.47%, which is a number needed to harm of 210. That’s the problem. Aspirin does prevent heart disease. The benefit is small, for sure, but the real problem is that it’s outweighed by the risk of bleeding, so you’re not really coming out ahead.
The real tragedy here is that the public is locked into this idea of everyone over age 50 years should be taking an aspirin. Even today, even though guidelines have recommended against aspirin for primary prevention for some time, data from the National Health Interview Survey sample found that nearly one in three older adults take aspirin for primary prevention when they shouldn’t be. That’s a large number of people. That’s millions of Americans — and Canadians, but nobody cares about us. It’s fine.
That’s the point. We’re not debunking aspirin. It does work. The benefits are just really small in a primary prevention population and offset by the admittedly also really small risks of bleeding. It’s a tradeoff that doesn’t really work in your favor.
But that’s aspirin for cardiovascular disease. When it comes to cancer or DVT prophylaxis, that’s another really interesting story. We might have to save that for another time. Do I know how to tease a sequel or what?
Labos, a cardiologist at Kirkland Medical Center, Montreal, Quebec, Canada, has disclosed no relevant financial relationships.
A version of this article appeared on Medscape.com.
Brews, Bubbles, & Booze: Stroke Risk and Patients’ Favorite Drinks
This research roundup reviews the latest findings, highlighting both promising insights and remaining uncertainties to help guide discussions with your patients.
Coffee and Tea: Good or Bad?
In the INTERSTROKE study, high coffee consumption (> 4 cups daily) was associated with an significantly increased risk for all strokes (odds ratio [OR], 1.37) or ischemic stroke (OR, 1.31), while low to moderate coffee had no link to increased stroke risk. In contrast, tea consumption was associated with lower odds of all stroke (OR, 0.81 for highest intake) or ischemic stroke (OR, 0.81).
In a recent UK Biobank study, consumption of coffee or tea was associated with reduced risk for stroke and dementia, with the biggest benefit associated with consuming both beverages.
Specifically, the investigators found that individuals who drank two to three cups of coffee and two to three cups of tea per day had a 30% decrease in incidence of stroke and a 28% lower risk for dementia versus those who did not.
A recent systematic review and dose-response meta-analysis showed that each daily cup increase in tea was associated with an average 4% reduced risk for stroke and a 2% reduced risk for cardiovascular disease (CVD) events.
The protective effect of coffee and tea on stroke risk may be driven, in part, by flavonoids, which have antioxidant and anti-inflammatory properties, as well as positive effects on vascular function.
“The advice to patients should be that coffee and tea may protect against stroke, but that sweetening either beverage with sugar probably should be minimized,” said Cheryl Bushnell, MD, MHS, of Wake Forest University School of Medicine in Winston-Salem, North Carolina, and chair of the American Stroke Association (ASA) 2024 Guideline for the Primary Prevention of Stroke.
Taylor Wallace, PhD, a certified food scientist, said, “most people should consume a cup or two of unsweetened tea per day in moderation for cardiometabolic health. It is an easy step in the right direction for good health but not a cure-all.”
When it comes to coffee, adults who like it should drink it “in moderation — just lay off the cream and sugar,” said Wallace, adjunct associate professor at George Washington University, Washington, DC, and Tufts University, Boston, Massachusetts.
“A cup or two of black coffee with low-fat or nonfat milk with breakfast is a healthy way to start the day, especially when you’re like me and have an 8-year-old that is full of energy!” Wallace said.
The Skinny on Soda
When it comes to sugar-sweetened and diet beverages, data from the Nurses’ Health Study and Health Professionals Follow-Up Study, showed a 16% increased risk for stroke with one or more daily servings of sugar-sweetened or low-calorie soda per day (vs none), independent of established dietary and nondietary cardiovascular risk factors.
In the Women’s Health Initiative Observational Study of postmenopausal women, a higher intake of artificially sweetened beverages was associated with increased risk for all stroke (adjusted hazard ratio [aHR], 1.23), ischemic stroke (aHR, 1.31), coronary heart disease (aHR, 1.29) and all-cause mortality (aHR, 1.16).
In the Framingham Heart Study Offspring cohort, consumption of one can of diet soda or more each day (vs none) was associated with a nearly threefold increased risk for stroke and dementia over a 10-year follow-up period.
A separate French study showed that total artificial sweetener intake from all sources was associated with increased overall risk for cardiovascular and cerebrovascular disease.
However, given the limitations of these studies, it’s hard to draw any firm conclusions, Wallace cautioned.
“We know that sugar-sweetened beverages are correlated with weight gain and cardiometabolic dysfunction promotion in children and adults,” he said.
Yet, “there really isn’t any convincing evidence that diet soda has much impact on human health at all. Most observational studies are mixed and likely very confounded by other diet and lifestyle factors. That doesn’t mean go overboard; a daily diet soda is probably fine, but that doesn’t mean go drink 10 of them every day,” he added.
Alcohol: Moderation or Abstinence?
Evidence on alcohol use and stroke risk have been mixed over the years. For decades, the evidence was suggestive that a moderate amount of alcohol daily (one to two drinks in men and one drink in women) may be beneficial at reducing major vascular outcomes.
Yet, over the past few years, some research has found no evidence of benefit with moderate alcohol intake. And the detrimental effects of excessive alcohol use are clear.
A large meta-analysis showed that light to moderate alcohol consumption (up to one drink per day) was associated with a reduced risk for ischemic stroke. However, heavy drinking (more than two drinks per day) significantly increased the risk for both ischemic and hemorrhagic stroke.
A separate study showed young adults who are moderate to heavy drinkers are at increased risk for stroke — and the risk increases with more years of imbibing.
In the INTERSTROKE study, high to moderate alcohol consumption was associated with increased stroke risk, whereas low alcohol consumption conferred no increased risk.
However, Bushnell pointed out that the study data was derived from based on self-report, and that other healthy behaviors may counteract the risk for alcohol consumption.
“For alcohol, regardless of stroke risk, the most important data shows that any alcohol consumption is associated with worse cognitive function, so generally, the lower the alcohol consumption the better,” Bushnell said.
She noted that, currently, the American Heart Association (AHA)/ASA recommend a maximum of two drinks per day for men and one drink per day for women to reduce stroke risk.
“However, the data for the risk for cognitive impairment with any alcohol is convincing and should be kept in mind in addition to the maximum alcohol recommended by the AHA/ASA,” Bushnell advised.
“We know excessive intake puts you at major risk for CVD, cancer, cognitive decline, and a whole host of other health ailments — no question there,” said Wallace.
The impact of moderate intake, on the other hand, is less clear. “Alcohol is a highly biased and political issue and the evidence (or lack thereof) on both sides is shoddy at best,” Wallace added.
A key challenge is that accurate self-reporting of alcohol intake is difficult, even for scientists, and most studies rely on self-reported data from observational cohorts. These often include limited dietary assessments, which provide only a partial picture of long-term consumption patterns, Wallace noted.
“The short answer is we don’t know if moderation is beneficial, detrimental, or null with respect to health,” he said.
Bushnell reports no relevant disclosures. Wallace (www.drtaylorwallace.com) is CEO of Think Healthy Group; editor of The Journal of Dietary Supplements, deputy editor of The Journal of the American Nutrition Association (www.nutrition.org), nutrition section editor of Annals of Medicine, and an advisory board member with Forbes Health.
A version of this article appeared on Medscape.com.
This research roundup reviews the latest findings, highlighting both promising insights and remaining uncertainties to help guide discussions with your patients.
Coffee and Tea: Good or Bad?
In the INTERSTROKE study, high coffee consumption (> 4 cups daily) was associated with an significantly increased risk for all strokes (odds ratio [OR], 1.37) or ischemic stroke (OR, 1.31), while low to moderate coffee had no link to increased stroke risk. In contrast, tea consumption was associated with lower odds of all stroke (OR, 0.81 for highest intake) or ischemic stroke (OR, 0.81).
In a recent UK Biobank study, consumption of coffee or tea was associated with reduced risk for stroke and dementia, with the biggest benefit associated with consuming both beverages.
Specifically, the investigators found that individuals who drank two to three cups of coffee and two to three cups of tea per day had a 30% decrease in incidence of stroke and a 28% lower risk for dementia versus those who did not.
A recent systematic review and dose-response meta-analysis showed that each daily cup increase in tea was associated with an average 4% reduced risk for stroke and a 2% reduced risk for cardiovascular disease (CVD) events.
The protective effect of coffee and tea on stroke risk may be driven, in part, by flavonoids, which have antioxidant and anti-inflammatory properties, as well as positive effects on vascular function.
“The advice to patients should be that coffee and tea may protect against stroke, but that sweetening either beverage with sugar probably should be minimized,” said Cheryl Bushnell, MD, MHS, of Wake Forest University School of Medicine in Winston-Salem, North Carolina, and chair of the American Stroke Association (ASA) 2024 Guideline for the Primary Prevention of Stroke.
Taylor Wallace, PhD, a certified food scientist, said, “most people should consume a cup or two of unsweetened tea per day in moderation for cardiometabolic health. It is an easy step in the right direction for good health but not a cure-all.”
When it comes to coffee, adults who like it should drink it “in moderation — just lay off the cream and sugar,” said Wallace, adjunct associate professor at George Washington University, Washington, DC, and Tufts University, Boston, Massachusetts.
“A cup or two of black coffee with low-fat or nonfat milk with breakfast is a healthy way to start the day, especially when you’re like me and have an 8-year-old that is full of energy!” Wallace said.
The Skinny on Soda
When it comes to sugar-sweetened and diet beverages, data from the Nurses’ Health Study and Health Professionals Follow-Up Study, showed a 16% increased risk for stroke with one or more daily servings of sugar-sweetened or low-calorie soda per day (vs none), independent of established dietary and nondietary cardiovascular risk factors.
In the Women’s Health Initiative Observational Study of postmenopausal women, a higher intake of artificially sweetened beverages was associated with increased risk for all stroke (adjusted hazard ratio [aHR], 1.23), ischemic stroke (aHR, 1.31), coronary heart disease (aHR, 1.29) and all-cause mortality (aHR, 1.16).
In the Framingham Heart Study Offspring cohort, consumption of one can of diet soda or more each day (vs none) was associated with a nearly threefold increased risk for stroke and dementia over a 10-year follow-up period.
A separate French study showed that total artificial sweetener intake from all sources was associated with increased overall risk for cardiovascular and cerebrovascular disease.
However, given the limitations of these studies, it’s hard to draw any firm conclusions, Wallace cautioned.
“We know that sugar-sweetened beverages are correlated with weight gain and cardiometabolic dysfunction promotion in children and adults,” he said.
Yet, “there really isn’t any convincing evidence that diet soda has much impact on human health at all. Most observational studies are mixed and likely very confounded by other diet and lifestyle factors. That doesn’t mean go overboard; a daily diet soda is probably fine, but that doesn’t mean go drink 10 of them every day,” he added.
Alcohol: Moderation or Abstinence?
Evidence on alcohol use and stroke risk have been mixed over the years. For decades, the evidence was suggestive that a moderate amount of alcohol daily (one to two drinks in men and one drink in women) may be beneficial at reducing major vascular outcomes.
Yet, over the past few years, some research has found no evidence of benefit with moderate alcohol intake. And the detrimental effects of excessive alcohol use are clear.
A large meta-analysis showed that light to moderate alcohol consumption (up to one drink per day) was associated with a reduced risk for ischemic stroke. However, heavy drinking (more than two drinks per day) significantly increased the risk for both ischemic and hemorrhagic stroke.
A separate study showed young adults who are moderate to heavy drinkers are at increased risk for stroke — and the risk increases with more years of imbibing.
In the INTERSTROKE study, high to moderate alcohol consumption was associated with increased stroke risk, whereas low alcohol consumption conferred no increased risk.
However, Bushnell pointed out that the study data was derived from based on self-report, and that other healthy behaviors may counteract the risk for alcohol consumption.
“For alcohol, regardless of stroke risk, the most important data shows that any alcohol consumption is associated with worse cognitive function, so generally, the lower the alcohol consumption the better,” Bushnell said.
She noted that, currently, the American Heart Association (AHA)/ASA recommend a maximum of two drinks per day for men and one drink per day for women to reduce stroke risk.
“However, the data for the risk for cognitive impairment with any alcohol is convincing and should be kept in mind in addition to the maximum alcohol recommended by the AHA/ASA,” Bushnell advised.
“We know excessive intake puts you at major risk for CVD, cancer, cognitive decline, and a whole host of other health ailments — no question there,” said Wallace.
The impact of moderate intake, on the other hand, is less clear. “Alcohol is a highly biased and political issue and the evidence (or lack thereof) on both sides is shoddy at best,” Wallace added.
A key challenge is that accurate self-reporting of alcohol intake is difficult, even for scientists, and most studies rely on self-reported data from observational cohorts. These often include limited dietary assessments, which provide only a partial picture of long-term consumption patterns, Wallace noted.
“The short answer is we don’t know if moderation is beneficial, detrimental, or null with respect to health,” he said.
Bushnell reports no relevant disclosures. Wallace (www.drtaylorwallace.com) is CEO of Think Healthy Group; editor of The Journal of Dietary Supplements, deputy editor of The Journal of the American Nutrition Association (www.nutrition.org), nutrition section editor of Annals of Medicine, and an advisory board member with Forbes Health.
A version of this article appeared on Medscape.com.
This research roundup reviews the latest findings, highlighting both promising insights and remaining uncertainties to help guide discussions with your patients.
Coffee and Tea: Good or Bad?
In the INTERSTROKE study, high coffee consumption (> 4 cups daily) was associated with an significantly increased risk for all strokes (odds ratio [OR], 1.37) or ischemic stroke (OR, 1.31), while low to moderate coffee had no link to increased stroke risk. In contrast, tea consumption was associated with lower odds of all stroke (OR, 0.81 for highest intake) or ischemic stroke (OR, 0.81).
In a recent UK Biobank study, consumption of coffee or tea was associated with reduced risk for stroke and dementia, with the biggest benefit associated with consuming both beverages.
Specifically, the investigators found that individuals who drank two to three cups of coffee and two to three cups of tea per day had a 30% decrease in incidence of stroke and a 28% lower risk for dementia versus those who did not.
A recent systematic review and dose-response meta-analysis showed that each daily cup increase in tea was associated with an average 4% reduced risk for stroke and a 2% reduced risk for cardiovascular disease (CVD) events.
The protective effect of coffee and tea on stroke risk may be driven, in part, by flavonoids, which have antioxidant and anti-inflammatory properties, as well as positive effects on vascular function.
“The advice to patients should be that coffee and tea may protect against stroke, but that sweetening either beverage with sugar probably should be minimized,” said Cheryl Bushnell, MD, MHS, of Wake Forest University School of Medicine in Winston-Salem, North Carolina, and chair of the American Stroke Association (ASA) 2024 Guideline for the Primary Prevention of Stroke.
Taylor Wallace, PhD, a certified food scientist, said, “most people should consume a cup or two of unsweetened tea per day in moderation for cardiometabolic health. It is an easy step in the right direction for good health but not a cure-all.”
When it comes to coffee, adults who like it should drink it “in moderation — just lay off the cream and sugar,” said Wallace, adjunct associate professor at George Washington University, Washington, DC, and Tufts University, Boston, Massachusetts.
“A cup or two of black coffee with low-fat or nonfat milk with breakfast is a healthy way to start the day, especially when you’re like me and have an 8-year-old that is full of energy!” Wallace said.
The Skinny on Soda
When it comes to sugar-sweetened and diet beverages, data from the Nurses’ Health Study and Health Professionals Follow-Up Study, showed a 16% increased risk for stroke with one or more daily servings of sugar-sweetened or low-calorie soda per day (vs none), independent of established dietary and nondietary cardiovascular risk factors.
In the Women’s Health Initiative Observational Study of postmenopausal women, a higher intake of artificially sweetened beverages was associated with increased risk for all stroke (adjusted hazard ratio [aHR], 1.23), ischemic stroke (aHR, 1.31), coronary heart disease (aHR, 1.29) and all-cause mortality (aHR, 1.16).
In the Framingham Heart Study Offspring cohort, consumption of one can of diet soda or more each day (vs none) was associated with a nearly threefold increased risk for stroke and dementia over a 10-year follow-up period.
A separate French study showed that total artificial sweetener intake from all sources was associated with increased overall risk for cardiovascular and cerebrovascular disease.
However, given the limitations of these studies, it’s hard to draw any firm conclusions, Wallace cautioned.
“We know that sugar-sweetened beverages are correlated with weight gain and cardiometabolic dysfunction promotion in children and adults,” he said.
Yet, “there really isn’t any convincing evidence that diet soda has much impact on human health at all. Most observational studies are mixed and likely very confounded by other diet and lifestyle factors. That doesn’t mean go overboard; a daily diet soda is probably fine, but that doesn’t mean go drink 10 of them every day,” he added.
Alcohol: Moderation or Abstinence?
Evidence on alcohol use and stroke risk have been mixed over the years. For decades, the evidence was suggestive that a moderate amount of alcohol daily (one to two drinks in men and one drink in women) may be beneficial at reducing major vascular outcomes.
Yet, over the past few years, some research has found no evidence of benefit with moderate alcohol intake. And the detrimental effects of excessive alcohol use are clear.
A large meta-analysis showed that light to moderate alcohol consumption (up to one drink per day) was associated with a reduced risk for ischemic stroke. However, heavy drinking (more than two drinks per day) significantly increased the risk for both ischemic and hemorrhagic stroke.
A separate study showed young adults who are moderate to heavy drinkers are at increased risk for stroke — and the risk increases with more years of imbibing.
In the INTERSTROKE study, high to moderate alcohol consumption was associated with increased stroke risk, whereas low alcohol consumption conferred no increased risk.
However, Bushnell pointed out that the study data was derived from based on self-report, and that other healthy behaviors may counteract the risk for alcohol consumption.
“For alcohol, regardless of stroke risk, the most important data shows that any alcohol consumption is associated with worse cognitive function, so generally, the lower the alcohol consumption the better,” Bushnell said.
She noted that, currently, the American Heart Association (AHA)/ASA recommend a maximum of two drinks per day for men and one drink per day for women to reduce stroke risk.
“However, the data for the risk for cognitive impairment with any alcohol is convincing and should be kept in mind in addition to the maximum alcohol recommended by the AHA/ASA,” Bushnell advised.
“We know excessive intake puts you at major risk for CVD, cancer, cognitive decline, and a whole host of other health ailments — no question there,” said Wallace.
The impact of moderate intake, on the other hand, is less clear. “Alcohol is a highly biased and political issue and the evidence (or lack thereof) on both sides is shoddy at best,” Wallace added.
A key challenge is that accurate self-reporting of alcohol intake is difficult, even for scientists, and most studies rely on self-reported data from observational cohorts. These often include limited dietary assessments, which provide only a partial picture of long-term consumption patterns, Wallace noted.
“The short answer is we don’t know if moderation is beneficial, detrimental, or null with respect to health,” he said.
Bushnell reports no relevant disclosures. Wallace (www.drtaylorwallace.com) is CEO of Think Healthy Group; editor of The Journal of Dietary Supplements, deputy editor of The Journal of the American Nutrition Association (www.nutrition.org), nutrition section editor of Annals of Medicine, and an advisory board member with Forbes Health.
A version of this article appeared on Medscape.com.
Rising Stroke Rates in Californians With Sickle Cell Disease
TOPLINE:
METHODOLOGY:
- Researchers analyzed data from the California Department of Health Care Access and Innovation (HCAI), covering emergency department and hospitalization records from 1991 to 2019.
- A total of 7636 patients with SCD were included in the study cohort.
- Cumulative incidence and rates for primary and recurrent strokes and transient ischemic attacks (TIAs) were determined pre- and post STOP trial.
- Patients with SCD were identified using ICD-9 and ICD-10 codes, with specific criteria for inclusion based on hospitalization records.
- The study utilized Fine and Gray methodology to calculate cumulative incidence functions, accounting for the competing risk for death.
TAKEAWAY:
- The cumulative incidence of first ischemic stroke in patients with SCD was 2.1% by age 20 and 13.5% by age 60.
- Ischemic stroke rates increased significantly in children and adults in the 2010-2019 period, compared with the preceding decade.
- Risk factors for stroke and TIA included increasing age, hypertension, and hyperlipidemia.
- The study found a significant increase in rates of intracranial hemorrhage in adults aged 18-30 years and TIAs in children younger than 18 years from 2010 to 2019, compared with the prior decade.
IN PRACTICE:
“Neurovascular complications, including strokes and transient ischemic attacks (TIAs), are common and cause significant morbidity in individuals with sickle cell disease (SCD). The STOP trial (1998) established chronic transfusions as the standard of care for children with SCD at high risk for stroke,” the study’s authors wrote.
SOURCE:
This study was led by Olubusola B. Oluwole, MD, MS, University of Pittsburgh in Pennsylvania, and was published online in Blood.
LIMITATIONS:
This study’s reliance on administrative data may have introduced systematic errors, particularly with the transition from ICD-9 to ICD-10 codes. The lack of laboratory results and medication data in the HCAI database limited the ability to fully assess patient conditions and treatments. Additionally, the methodology changes in 2014 likely underreported death rates in people without PDD/EDU encounters in the calendar year preceding their death.
DISCLOSURES:
The authors reported no relevant conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Researchers analyzed data from the California Department of Health Care Access and Innovation (HCAI), covering emergency department and hospitalization records from 1991 to 2019.
- A total of 7636 patients with SCD were included in the study cohort.
- Cumulative incidence and rates for primary and recurrent strokes and transient ischemic attacks (TIAs) were determined pre- and post STOP trial.
- Patients with SCD were identified using ICD-9 and ICD-10 codes, with specific criteria for inclusion based on hospitalization records.
- The study utilized Fine and Gray methodology to calculate cumulative incidence functions, accounting for the competing risk for death.
TAKEAWAY:
- The cumulative incidence of first ischemic stroke in patients with SCD was 2.1% by age 20 and 13.5% by age 60.
- Ischemic stroke rates increased significantly in children and adults in the 2010-2019 period, compared with the preceding decade.
- Risk factors for stroke and TIA included increasing age, hypertension, and hyperlipidemia.
- The study found a significant increase in rates of intracranial hemorrhage in adults aged 18-30 years and TIAs in children younger than 18 years from 2010 to 2019, compared with the prior decade.
IN PRACTICE:
“Neurovascular complications, including strokes and transient ischemic attacks (TIAs), are common and cause significant morbidity in individuals with sickle cell disease (SCD). The STOP trial (1998) established chronic transfusions as the standard of care for children with SCD at high risk for stroke,” the study’s authors wrote.
SOURCE:
This study was led by Olubusola B. Oluwole, MD, MS, University of Pittsburgh in Pennsylvania, and was published online in Blood.
LIMITATIONS:
This study’s reliance on administrative data may have introduced systematic errors, particularly with the transition from ICD-9 to ICD-10 codes. The lack of laboratory results and medication data in the HCAI database limited the ability to fully assess patient conditions and treatments. Additionally, the methodology changes in 2014 likely underreported death rates in people without PDD/EDU encounters in the calendar year preceding their death.
DISCLOSURES:
The authors reported no relevant conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
METHODOLOGY:
- Researchers analyzed data from the California Department of Health Care Access and Innovation (HCAI), covering emergency department and hospitalization records from 1991 to 2019.
- A total of 7636 patients with SCD were included in the study cohort.
- Cumulative incidence and rates for primary and recurrent strokes and transient ischemic attacks (TIAs) were determined pre- and post STOP trial.
- Patients with SCD were identified using ICD-9 and ICD-10 codes, with specific criteria for inclusion based on hospitalization records.
- The study utilized Fine and Gray methodology to calculate cumulative incidence functions, accounting for the competing risk for death.
TAKEAWAY:
- The cumulative incidence of first ischemic stroke in patients with SCD was 2.1% by age 20 and 13.5% by age 60.
- Ischemic stroke rates increased significantly in children and adults in the 2010-2019 period, compared with the preceding decade.
- Risk factors for stroke and TIA included increasing age, hypertension, and hyperlipidemia.
- The study found a significant increase in rates of intracranial hemorrhage in adults aged 18-30 years and TIAs in children younger than 18 years from 2010 to 2019, compared with the prior decade.
IN PRACTICE:
“Neurovascular complications, including strokes and transient ischemic attacks (TIAs), are common and cause significant morbidity in individuals with sickle cell disease (SCD). The STOP trial (1998) established chronic transfusions as the standard of care for children with SCD at high risk for stroke,” the study’s authors wrote.
SOURCE:
This study was led by Olubusola B. Oluwole, MD, MS, University of Pittsburgh in Pennsylvania, and was published online in Blood.
LIMITATIONS:
This study’s reliance on administrative data may have introduced systematic errors, particularly with the transition from ICD-9 to ICD-10 codes. The lack of laboratory results and medication data in the HCAI database limited the ability to fully assess patient conditions and treatments. Additionally, the methodology changes in 2014 likely underreported death rates in people without PDD/EDU encounters in the calendar year preceding their death.
DISCLOSURES:
The authors reported no relevant conflicts of interest.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
New Data on DOAC Initiation After Stroke in AF: Final Word?
ABU DHABI, UAE — The long-standing debate as to when to start anticoagulation in patients with an acute ischemic stroke and atrial fibrillation (AF) looks as though it’s settled.
Results of the OPTIMAS trial, the largest trial to address this question, showed that
In addition, a new meta-analysis, known as CATALYST, which included all four randomized trials now available on this issue, showed a clear benefit of earlier initiation (within 4 days) versus later (5 days and up) on its primary endpoint of new ischemic stroke, symptomatic intracerebral hemorrhage, and unclassified stroke at 30 days.
The results of the OPTIMAS trial and the meta-analysis were both presented at the 16th World Stroke Congress (WSC) 2024. The OPTIMAS trial was also simultaneously published online in The Lancet.
“Our findings do not support the guideline recommended practice of delaying DOAC initiation after ischemic stroke with AF regardless of clinical stroke severity, reperfusion or prior anticoagulation,” said OPTIMAS investigator David Werring, PhD, University College London in England.
Presenting the meta-analysis, Signild Åsberg, MD, Uppsala University, Uppsala, Sweden, said his group’s findings “support the early start of DOACs (within 4 days) in clinical practice.”
Werring pointed out that starting anticoagulation early also had important logistical advantages.
“This means we can start anticoagulation before patients are discharged from hospital, thus ensuring that this important secondary prevention medication is always prescribed, when appropriate. That’s going to be a key benefit in the real world.”
Clinical Dilemma
Werring noted that AF accounts for 20%-30% of ischemic strokes, which tend to be more severe than other stroke types. The pivotal trials of DOACs did not include patients within 30 days of an acute ischemic stroke, creating a clinical dilemma on when to start this treatment.
“On the one hand, we wish to start anticoagulation early to reduce early recurrence of ischemic stroke. But on the other hand, there are concerns that if we start anticoagulation early, it could cause intracranial bleeding, including hemorrhagic transformation of the acute infarct. Guidelines on this issue are inconsistent and have called for randomized control trials in this area,” he noted.
So far, three randomized trials on DOAC timing have been conducted, which Werring said suggested early DOAC treatment is safe. However, these trials have provided limited data on moderate to severe stroke, patients with hemorrhagic transformation, or those already taking oral anticoagulants — subgroups in which there are particular concerns about early oral anticoagulation.
The OPTIMAS trial included a broad population of patients with acute ischemic stroke associated with AF including these critical subgroups.
The trial, conducted at 100 hospitals in the United Kingdom, included 3648 patients with AF and acute ischemic stroke who were randomly assigned to early (≤ 4 days from stroke symptom onset) or delayed (7-14 days) anticoagulation initiation with any DOAC.
There was no restriction on stroke severity, and patients with hemorrhagic transformation were allowed, with the exception of parenchymal hematoma type 2, a rare and severe type of hemorrhagic transformation.
Approximately 35% of patients had been taking an oral anticoagulant, mainly DOACs, prior to their stroke, and about 30% had revascularization with thrombolysis, thrombectomy, or both. Nearly 900 participants (25%) had moderate to severe stroke (National Institutes of Health Stroke Scale [NIHSS] score ≥ 11).
The primary outcome was a composite of recurrent ischemic stroke, symptomatic intracranial hemorrhage, unclassifiable stroke, or systemic embolism incidence at 90 days. The initial analysis aimed to show noninferiority of early DOAC initiation, with a noninferiority margin of 2 percentage points, followed by testing for superiority.
Results showed that the primary outcome occurred in 3.3% of both groups (adjusted risk difference, 0.000; 95% CI, −0.011 to 0.012), with noninferiority criteria fulfilled. Superiority was not achieved.
Symptomatic intracranial hemorrhage occurred in 0.6% of patients in the early DOAC initiation group vs 0.7% of those in the delayed group — a nonsignificant difference.
Applicable to Real-World Practice
A time-to-event analysis of the primary outcome showed that there were fewer outcomes in the first 30 days in the early DOAC initiation group, but the curves subsequently came together.
Subgroup analysis showed consistent results across all whole trial population, with no modification of the effect of early DOAC initiation according to stroke severity, reperfusion treatment, or previous anticoagulation.
Werring said that strengths of the OPTIMAS trial included a large sample size, a broad population with generalizability to real-world practice, and the inclusion of patients at higher bleeding risk than included in previous studies.
During the discussion, it was noted that the trial included few (about 3%) patients — about 3% — with very severe stroke (NIHSS score > 21), with the question of whether the findings could be applied to this group.
Werring noted that there was no evidence of heterogeneity, and if anything, patients with more severe strokes may have had a slightly greater benefit with early DOAC initiation. “So my feeling is probably these results do generalize to the more severe patients,” he said.
In a commentary accompanying The Lancet publication of the OPTIMAS trial, Else Charlotte Sandset, MD, University of Oslo, in Norway, and Diana Aguiar de Sousa, MD, Central Lisbon University Hospital Centre, Lisbon, Portugal, noted that the “increasing body of evidence strongly supports the message that initiating anticoagulation early for patients with ischaemic stroke is safe. The consistent absence of heterogeneity in safety outcomes suggests that the risk of symptomatic intracranial haemorrhage is not a major concern, even in patients with large infarcts.”
Regardless of the size of the treatment effect, initiating early anticoagulation makes sense when it can be done safely, as it helps prevent recurrent ischemic strokes and other embolic events. Early intervention reduces embolization risk, particularly in high-risk patients, and allows secondary prevention measures to begin while patients are still hospitalized, they added.
CATALYST Findings
The CATALYST meta-analysis included four trials, namely, TIMING, ELAN, OPTIMAS, and START, of early versus later DOAC administration in a total of 5411 patients with acute ischemic stroke and AF. In this meta-analysis, early was defined as within 4 days of stroke and later as 5 days or more.
The primary outcome was a composite of ischemic stroke, symptomatic, intracerebral hemorrhage, or unclassified stroke at 30 days. This was significantly reduced in the early group (2.12%) versus 3.02% in the later group, giving an odds ratio of 0.70 (95% CI, 0.50-0.98; P =.04).
The results were consistent across all subgroups, all suggesting an advantage for early DOAC.
Further analysis showed a clear benefit of early DOAC initiation in ischemic stroke with the curves separating early.
The rate of symptomatic intracerebral hemorrhage was low in both groups (0.45% in the early group and 0.40% in the later group) as was extracranial hemorrhage (0.45% vs 0.55%).
At 90 days, there were still lower event rates in the early group than the later one, but the difference was no longer statistically significant.
‘Practice Changing’ Results
Commenting on both studies, chair of the WSC session where the results of both OPTIMAS trial and the meta-analysis were presented, Craig Anderson, MD, The George Institute for Global Health, Sydney, Australia, described these latest results as “practice changing.”
“When to start anticoagulation in acute ischemic stroke patients with AF has been uncertain for a long time. The dogma has always been that we should wait. Over the years, we’ve become a little bit more confident, but now we’ve got good data from randomized trials showing that early initiation is safe, with the meta-analysis showing benefit,” he said.
“These new data from OPTIMAS will reassure clinicians that there’s no excessive harm and, more importantly, no excessive harm across all patient groups. And the meta-analysis clearly showed an upfront benefit of starting anticoagulation early. That’s a very convincing result,” he added.
Anderson cautioned that there still may be concerns about starting DOACs early in some groups, including Asian populations that have a higher bleeding risk (these trials included predominantly White patients) and people who are older or frail, who may have extensive small vessel disease.
During the discussion, several questions centered on the lack of imaging data available on the patients in the studies. Anderson said imaging data would help reassure clinicians on the safety of early anticoagulation in patients with large infarcts.
“Stroke clinicians make decisions on the basis of the patient and on the basis of the brain, and we only have the patient information at the moment. We don’t have information on the brain — that comes from imaging.”
Regardless, he believes these new data will lead to a shift in practice. “But maybe, it won’t be as dramatic as we would hope because I think some clinicians may still hesitate to apply these results to patients at high risk of bleeding. With imaging data from the studies that might change.”
The OPTIMAS trial was funded by University College London and the British Heart Foundation. Werring reported consulting fees from Novo Nordisk, National Institute for Health and Care Excellence, and Alnylam; payments or speaker honoraria from Novo Nordisk, Bayer, and AstraZeneca/Alexion; participation on a data safety monitoring board for the OXHARP trial; and participation as steering committee chair for the MACE-ICH and PLINTH trials. Åsberg received institutional research grants and lecture fees to her institution from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, and Institut Produits Synthése. Sandset and de Sousa were both steering committee members of the ELAN trial. Anderson reported grant funding from Penumbra and Takeda China.
A version of this article appeared on Medscape.com.
ABU DHABI, UAE — The long-standing debate as to when to start anticoagulation in patients with an acute ischemic stroke and atrial fibrillation (AF) looks as though it’s settled.
Results of the OPTIMAS trial, the largest trial to address this question, showed that
In addition, a new meta-analysis, known as CATALYST, which included all four randomized trials now available on this issue, showed a clear benefit of earlier initiation (within 4 days) versus later (5 days and up) on its primary endpoint of new ischemic stroke, symptomatic intracerebral hemorrhage, and unclassified stroke at 30 days.
The results of the OPTIMAS trial and the meta-analysis were both presented at the 16th World Stroke Congress (WSC) 2024. The OPTIMAS trial was also simultaneously published online in The Lancet.
“Our findings do not support the guideline recommended practice of delaying DOAC initiation after ischemic stroke with AF regardless of clinical stroke severity, reperfusion or prior anticoagulation,” said OPTIMAS investigator David Werring, PhD, University College London in England.
Presenting the meta-analysis, Signild Åsberg, MD, Uppsala University, Uppsala, Sweden, said his group’s findings “support the early start of DOACs (within 4 days) in clinical practice.”
Werring pointed out that starting anticoagulation early also had important logistical advantages.
“This means we can start anticoagulation before patients are discharged from hospital, thus ensuring that this important secondary prevention medication is always prescribed, when appropriate. That’s going to be a key benefit in the real world.”
Clinical Dilemma
Werring noted that AF accounts for 20%-30% of ischemic strokes, which tend to be more severe than other stroke types. The pivotal trials of DOACs did not include patients within 30 days of an acute ischemic stroke, creating a clinical dilemma on when to start this treatment.
“On the one hand, we wish to start anticoagulation early to reduce early recurrence of ischemic stroke. But on the other hand, there are concerns that if we start anticoagulation early, it could cause intracranial bleeding, including hemorrhagic transformation of the acute infarct. Guidelines on this issue are inconsistent and have called for randomized control trials in this area,” he noted.
So far, three randomized trials on DOAC timing have been conducted, which Werring said suggested early DOAC treatment is safe. However, these trials have provided limited data on moderate to severe stroke, patients with hemorrhagic transformation, or those already taking oral anticoagulants — subgroups in which there are particular concerns about early oral anticoagulation.
The OPTIMAS trial included a broad population of patients with acute ischemic stroke associated with AF including these critical subgroups.
The trial, conducted at 100 hospitals in the United Kingdom, included 3648 patients with AF and acute ischemic stroke who were randomly assigned to early (≤ 4 days from stroke symptom onset) or delayed (7-14 days) anticoagulation initiation with any DOAC.
There was no restriction on stroke severity, and patients with hemorrhagic transformation were allowed, with the exception of parenchymal hematoma type 2, a rare and severe type of hemorrhagic transformation.
Approximately 35% of patients had been taking an oral anticoagulant, mainly DOACs, prior to their stroke, and about 30% had revascularization with thrombolysis, thrombectomy, or both. Nearly 900 participants (25%) had moderate to severe stroke (National Institutes of Health Stroke Scale [NIHSS] score ≥ 11).
The primary outcome was a composite of recurrent ischemic stroke, symptomatic intracranial hemorrhage, unclassifiable stroke, or systemic embolism incidence at 90 days. The initial analysis aimed to show noninferiority of early DOAC initiation, with a noninferiority margin of 2 percentage points, followed by testing for superiority.
Results showed that the primary outcome occurred in 3.3% of both groups (adjusted risk difference, 0.000; 95% CI, −0.011 to 0.012), with noninferiority criteria fulfilled. Superiority was not achieved.
Symptomatic intracranial hemorrhage occurred in 0.6% of patients in the early DOAC initiation group vs 0.7% of those in the delayed group — a nonsignificant difference.
Applicable to Real-World Practice
A time-to-event analysis of the primary outcome showed that there were fewer outcomes in the first 30 days in the early DOAC initiation group, but the curves subsequently came together.
Subgroup analysis showed consistent results across all whole trial population, with no modification of the effect of early DOAC initiation according to stroke severity, reperfusion treatment, or previous anticoagulation.
Werring said that strengths of the OPTIMAS trial included a large sample size, a broad population with generalizability to real-world practice, and the inclusion of patients at higher bleeding risk than included in previous studies.
During the discussion, it was noted that the trial included few (about 3%) patients — about 3% — with very severe stroke (NIHSS score > 21), with the question of whether the findings could be applied to this group.
Werring noted that there was no evidence of heterogeneity, and if anything, patients with more severe strokes may have had a slightly greater benefit with early DOAC initiation. “So my feeling is probably these results do generalize to the more severe patients,” he said.
In a commentary accompanying The Lancet publication of the OPTIMAS trial, Else Charlotte Sandset, MD, University of Oslo, in Norway, and Diana Aguiar de Sousa, MD, Central Lisbon University Hospital Centre, Lisbon, Portugal, noted that the “increasing body of evidence strongly supports the message that initiating anticoagulation early for patients with ischaemic stroke is safe. The consistent absence of heterogeneity in safety outcomes suggests that the risk of symptomatic intracranial haemorrhage is not a major concern, even in patients with large infarcts.”
Regardless of the size of the treatment effect, initiating early anticoagulation makes sense when it can be done safely, as it helps prevent recurrent ischemic strokes and other embolic events. Early intervention reduces embolization risk, particularly in high-risk patients, and allows secondary prevention measures to begin while patients are still hospitalized, they added.
CATALYST Findings
The CATALYST meta-analysis included four trials, namely, TIMING, ELAN, OPTIMAS, and START, of early versus later DOAC administration in a total of 5411 patients with acute ischemic stroke and AF. In this meta-analysis, early was defined as within 4 days of stroke and later as 5 days or more.
The primary outcome was a composite of ischemic stroke, symptomatic, intracerebral hemorrhage, or unclassified stroke at 30 days. This was significantly reduced in the early group (2.12%) versus 3.02% in the later group, giving an odds ratio of 0.70 (95% CI, 0.50-0.98; P =.04).
The results were consistent across all subgroups, all suggesting an advantage for early DOAC.
Further analysis showed a clear benefit of early DOAC initiation in ischemic stroke with the curves separating early.
The rate of symptomatic intracerebral hemorrhage was low in both groups (0.45% in the early group and 0.40% in the later group) as was extracranial hemorrhage (0.45% vs 0.55%).
At 90 days, there were still lower event rates in the early group than the later one, but the difference was no longer statistically significant.
‘Practice Changing’ Results
Commenting on both studies, chair of the WSC session where the results of both OPTIMAS trial and the meta-analysis were presented, Craig Anderson, MD, The George Institute for Global Health, Sydney, Australia, described these latest results as “practice changing.”
“When to start anticoagulation in acute ischemic stroke patients with AF has been uncertain for a long time. The dogma has always been that we should wait. Over the years, we’ve become a little bit more confident, but now we’ve got good data from randomized trials showing that early initiation is safe, with the meta-analysis showing benefit,” he said.
“These new data from OPTIMAS will reassure clinicians that there’s no excessive harm and, more importantly, no excessive harm across all patient groups. And the meta-analysis clearly showed an upfront benefit of starting anticoagulation early. That’s a very convincing result,” he added.
Anderson cautioned that there still may be concerns about starting DOACs early in some groups, including Asian populations that have a higher bleeding risk (these trials included predominantly White patients) and people who are older or frail, who may have extensive small vessel disease.
During the discussion, several questions centered on the lack of imaging data available on the patients in the studies. Anderson said imaging data would help reassure clinicians on the safety of early anticoagulation in patients with large infarcts.
“Stroke clinicians make decisions on the basis of the patient and on the basis of the brain, and we only have the patient information at the moment. We don’t have information on the brain — that comes from imaging.”
Regardless, he believes these new data will lead to a shift in practice. “But maybe, it won’t be as dramatic as we would hope because I think some clinicians may still hesitate to apply these results to patients at high risk of bleeding. With imaging data from the studies that might change.”
The OPTIMAS trial was funded by University College London and the British Heart Foundation. Werring reported consulting fees from Novo Nordisk, National Institute for Health and Care Excellence, and Alnylam; payments or speaker honoraria from Novo Nordisk, Bayer, and AstraZeneca/Alexion; participation on a data safety monitoring board for the OXHARP trial; and participation as steering committee chair for the MACE-ICH and PLINTH trials. Åsberg received institutional research grants and lecture fees to her institution from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, and Institut Produits Synthése. Sandset and de Sousa were both steering committee members of the ELAN trial. Anderson reported grant funding from Penumbra and Takeda China.
A version of this article appeared on Medscape.com.
ABU DHABI, UAE — The long-standing debate as to when to start anticoagulation in patients with an acute ischemic stroke and atrial fibrillation (AF) looks as though it’s settled.
Results of the OPTIMAS trial, the largest trial to address this question, showed that
In addition, a new meta-analysis, known as CATALYST, which included all four randomized trials now available on this issue, showed a clear benefit of earlier initiation (within 4 days) versus later (5 days and up) on its primary endpoint of new ischemic stroke, symptomatic intracerebral hemorrhage, and unclassified stroke at 30 days.
The results of the OPTIMAS trial and the meta-analysis were both presented at the 16th World Stroke Congress (WSC) 2024. The OPTIMAS trial was also simultaneously published online in The Lancet.
“Our findings do not support the guideline recommended practice of delaying DOAC initiation after ischemic stroke with AF regardless of clinical stroke severity, reperfusion or prior anticoagulation,” said OPTIMAS investigator David Werring, PhD, University College London in England.
Presenting the meta-analysis, Signild Åsberg, MD, Uppsala University, Uppsala, Sweden, said his group’s findings “support the early start of DOACs (within 4 days) in clinical practice.”
Werring pointed out that starting anticoagulation early also had important logistical advantages.
“This means we can start anticoagulation before patients are discharged from hospital, thus ensuring that this important secondary prevention medication is always prescribed, when appropriate. That’s going to be a key benefit in the real world.”
Clinical Dilemma
Werring noted that AF accounts for 20%-30% of ischemic strokes, which tend to be more severe than other stroke types. The pivotal trials of DOACs did not include patients within 30 days of an acute ischemic stroke, creating a clinical dilemma on when to start this treatment.
“On the one hand, we wish to start anticoagulation early to reduce early recurrence of ischemic stroke. But on the other hand, there are concerns that if we start anticoagulation early, it could cause intracranial bleeding, including hemorrhagic transformation of the acute infarct. Guidelines on this issue are inconsistent and have called for randomized control trials in this area,” he noted.
So far, three randomized trials on DOAC timing have been conducted, which Werring said suggested early DOAC treatment is safe. However, these trials have provided limited data on moderate to severe stroke, patients with hemorrhagic transformation, or those already taking oral anticoagulants — subgroups in which there are particular concerns about early oral anticoagulation.
The OPTIMAS trial included a broad population of patients with acute ischemic stroke associated with AF including these critical subgroups.
The trial, conducted at 100 hospitals in the United Kingdom, included 3648 patients with AF and acute ischemic stroke who were randomly assigned to early (≤ 4 days from stroke symptom onset) or delayed (7-14 days) anticoagulation initiation with any DOAC.
There was no restriction on stroke severity, and patients with hemorrhagic transformation were allowed, with the exception of parenchymal hematoma type 2, a rare and severe type of hemorrhagic transformation.
Approximately 35% of patients had been taking an oral anticoagulant, mainly DOACs, prior to their stroke, and about 30% had revascularization with thrombolysis, thrombectomy, or both. Nearly 900 participants (25%) had moderate to severe stroke (National Institutes of Health Stroke Scale [NIHSS] score ≥ 11).
The primary outcome was a composite of recurrent ischemic stroke, symptomatic intracranial hemorrhage, unclassifiable stroke, or systemic embolism incidence at 90 days. The initial analysis aimed to show noninferiority of early DOAC initiation, with a noninferiority margin of 2 percentage points, followed by testing for superiority.
Results showed that the primary outcome occurred in 3.3% of both groups (adjusted risk difference, 0.000; 95% CI, −0.011 to 0.012), with noninferiority criteria fulfilled. Superiority was not achieved.
Symptomatic intracranial hemorrhage occurred in 0.6% of patients in the early DOAC initiation group vs 0.7% of those in the delayed group — a nonsignificant difference.
Applicable to Real-World Practice
A time-to-event analysis of the primary outcome showed that there were fewer outcomes in the first 30 days in the early DOAC initiation group, but the curves subsequently came together.
Subgroup analysis showed consistent results across all whole trial population, with no modification of the effect of early DOAC initiation according to stroke severity, reperfusion treatment, or previous anticoagulation.
Werring said that strengths of the OPTIMAS trial included a large sample size, a broad population with generalizability to real-world practice, and the inclusion of patients at higher bleeding risk than included in previous studies.
During the discussion, it was noted that the trial included few (about 3%) patients — about 3% — with very severe stroke (NIHSS score > 21), with the question of whether the findings could be applied to this group.
Werring noted that there was no evidence of heterogeneity, and if anything, patients with more severe strokes may have had a slightly greater benefit with early DOAC initiation. “So my feeling is probably these results do generalize to the more severe patients,” he said.
In a commentary accompanying The Lancet publication of the OPTIMAS trial, Else Charlotte Sandset, MD, University of Oslo, in Norway, and Diana Aguiar de Sousa, MD, Central Lisbon University Hospital Centre, Lisbon, Portugal, noted that the “increasing body of evidence strongly supports the message that initiating anticoagulation early for patients with ischaemic stroke is safe. The consistent absence of heterogeneity in safety outcomes suggests that the risk of symptomatic intracranial haemorrhage is not a major concern, even in patients with large infarcts.”
Regardless of the size of the treatment effect, initiating early anticoagulation makes sense when it can be done safely, as it helps prevent recurrent ischemic strokes and other embolic events. Early intervention reduces embolization risk, particularly in high-risk patients, and allows secondary prevention measures to begin while patients are still hospitalized, they added.
CATALYST Findings
The CATALYST meta-analysis included four trials, namely, TIMING, ELAN, OPTIMAS, and START, of early versus later DOAC administration in a total of 5411 patients with acute ischemic stroke and AF. In this meta-analysis, early was defined as within 4 days of stroke and later as 5 days or more.
The primary outcome was a composite of ischemic stroke, symptomatic, intracerebral hemorrhage, or unclassified stroke at 30 days. This was significantly reduced in the early group (2.12%) versus 3.02% in the later group, giving an odds ratio of 0.70 (95% CI, 0.50-0.98; P =.04).
The results were consistent across all subgroups, all suggesting an advantage for early DOAC.
Further analysis showed a clear benefit of early DOAC initiation in ischemic stroke with the curves separating early.
The rate of symptomatic intracerebral hemorrhage was low in both groups (0.45% in the early group and 0.40% in the later group) as was extracranial hemorrhage (0.45% vs 0.55%).
At 90 days, there were still lower event rates in the early group than the later one, but the difference was no longer statistically significant.
‘Practice Changing’ Results
Commenting on both studies, chair of the WSC session where the results of both OPTIMAS trial and the meta-analysis were presented, Craig Anderson, MD, The George Institute for Global Health, Sydney, Australia, described these latest results as “practice changing.”
“When to start anticoagulation in acute ischemic stroke patients with AF has been uncertain for a long time. The dogma has always been that we should wait. Over the years, we’ve become a little bit more confident, but now we’ve got good data from randomized trials showing that early initiation is safe, with the meta-analysis showing benefit,” he said.
“These new data from OPTIMAS will reassure clinicians that there’s no excessive harm and, more importantly, no excessive harm across all patient groups. And the meta-analysis clearly showed an upfront benefit of starting anticoagulation early. That’s a very convincing result,” he added.
Anderson cautioned that there still may be concerns about starting DOACs early in some groups, including Asian populations that have a higher bleeding risk (these trials included predominantly White patients) and people who are older or frail, who may have extensive small vessel disease.
During the discussion, several questions centered on the lack of imaging data available on the patients in the studies. Anderson said imaging data would help reassure clinicians on the safety of early anticoagulation in patients with large infarcts.
“Stroke clinicians make decisions on the basis of the patient and on the basis of the brain, and we only have the patient information at the moment. We don’t have information on the brain — that comes from imaging.”
Regardless, he believes these new data will lead to a shift in practice. “But maybe, it won’t be as dramatic as we would hope because I think some clinicians may still hesitate to apply these results to patients at high risk of bleeding. With imaging data from the studies that might change.”
The OPTIMAS trial was funded by University College London and the British Heart Foundation. Werring reported consulting fees from Novo Nordisk, National Institute for Health and Care Excellence, and Alnylam; payments or speaker honoraria from Novo Nordisk, Bayer, and AstraZeneca/Alexion; participation on a data safety monitoring board for the OXHARP trial; and participation as steering committee chair for the MACE-ICH and PLINTH trials. Åsberg received institutional research grants and lecture fees to her institution from AstraZeneca, Boehringer Ingelheim, Bristol Myers Squibb, and Institut Produits Synthése. Sandset and de Sousa were both steering committee members of the ELAN trial. Anderson reported grant funding from Penumbra and Takeda China.
A version of this article appeared on Medscape.com.
FROM WSC 2024
Why Scientists Are Linking More Diseases to Light at Night
This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.
It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear.
“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program.
Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.
Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.
But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said.
Bright Lights, Big Problems
For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms.
Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light).
Research has found links between the nighttime glow outside and other diseases:
Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%.
Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.
Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution.
What Happens in Your Body When You’re Exposed to Light at Night
“hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.
Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.
“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.”
This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.
The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half.
When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.
Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers).
Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact.
When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.
A similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
What Can You Do About This?
Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight.
You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.
Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away.
And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.”
A version of this article appeared on WebMD.com.
This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.
It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear.
“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program.
Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.
Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.
But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said.
Bright Lights, Big Problems
For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms.
Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light).
Research has found links between the nighttime glow outside and other diseases:
Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%.
Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.
Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution.
What Happens in Your Body When You’re Exposed to Light at Night
“hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.
Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.
“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.”
This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.
The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half.
When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.
Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers).
Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact.
When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.
A similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
What Can You Do About This?
Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight.
You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.
Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away.
And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.”
A version of this article appeared on WebMD.com.
This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.
It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear.
“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program.
Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.
Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.
But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said.
Bright Lights, Big Problems
For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms.
Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light).
Research has found links between the nighttime glow outside and other diseases:
Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%.
Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.
Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution.
What Happens in Your Body When You’re Exposed to Light at Night
“hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.
Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.
“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.”
This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.
The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half.
When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.
Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers).
Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact.
When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.
A similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
What Can You Do About This?
Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight.
You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.
Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away.
And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.”
A version of this article appeared on WebMD.com.
ASA Releases New Primary Stroke Prevention Guideline
The first update in a decade, the 2024 Guideline for the Primary Prevention of Stroke, replaces the 2014 version and is intended to be a resource for clinicians to help them implement a variety of prevention strategies in patients with no previous history of stroke. It aligns with the American Heart Association’s Life’s Essential 8.
“This guideline is an important and timely update from 2014 for multiple reasons. First, there have been groundbreaking clinical trials that have been published with new medications to not only treat the target disease [including] diabetes/obesity and high cholesterol], but also lower the risk of stroke and heart disease,” said chair of the guideline writing group, Cheryl D. Bushnell, MD, MHS, FAHA, and vice chair of the research, Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
It was published online on October 21 in Stroke.
Up to 80% of Strokes Preventable
Estimates show that every year in the United States, more than 500,000 individuals have a first stroke. However, the guideline authors noted that up to 80% of strokes may be preventable. As a result, they called for better primary stroke prevention that includes improved screening and lifestyle changes.
This includes adoption of the Mediterranean diet, which has been shown to significantly reduce stroke risk, especially when supplemented with consumption of nuts and olive oil.
The guideline recommendations also emphasize the need for physical activity, which is “essential” for cardiovascular health and stroke reduction. The authors underscored this point and provided a new recommendation to screen for sedentary behavior and advise patients to avoid inactivity and engage in regular moderate to vigorous physical activity.
Another new recommendation is based on “robust” data that glucagon-like peptide 1 receptor agonists (GLP-1s) significantly improve the management of type 2 diabetes, weight loss, and lower the risk for cardiovascular disease. As a result, guideline authors called for the use of GLP-1s in patients with diabetes and high cardiovascular risk or established cardiovascular disease.
“The glucagon-like peptide receptor agonists have been shown to not only drastically reduce blood sugars in patients with diabetes, but they also lead to significant weight loss in these patients, which has many downstream benefits. Together, this reduces the risk of stroke and other complications of diabetes,” said Bushnell.
She also noted that another drug class introduced since the 2014 guidelines were published, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven to be highly effective in lowering low-density lipoprotein cholesterol. These medications have also been shown to reduce the risk for stroke.
At Least Two Meds Needed to Reduce BP
Effective blood pressure (BP) management is crucial for stroke prevention. Randomized controlled trials show that a single antihypertensive medication helps only about 30% of participants reach their BP target.
Most patients only achieve the desired BP target with two to three medications. In line with these data, the committee recommends using at least two antihypertensives for primary stroke prevention in most patients who require BP-lowering medications for hypertension.
In patients with antiphospholipid syndrome or systemic lupus erythematosus and no history of stroke or unprovoked venous thromboembolism, the authors recommended antiplatelet therapy to prevent stroke. They added that patients with antiphospholipid syndrome who have had a prior unprovoked venous thrombosis will likely benefit from vitamin K antagonist therapy (target international normalized ratio, 2-3) over direct oral anticoagulants.
Emphasis on Women’s Health
Preventing pregnancy-related stroke is achieved primarily by managing hypertension, the guideline authors noted. They recommended treating verified systolic BP over 160 mm Hg or diastolic BP over 110 mm Hg during pregnancy and up to 6 weeks postpartum to lower the risk for fatal maternal intracerebral hemorrhage.
They noted that adverse pregnancy outcomes are also common and linked to chronic hypertension, which increases stroke risk later in life. Therefore, they recommended screening for these outcomes to assess and manage vascular risk factors. The guideline includes a screening tool to help with this in clinical practice.
Endometriosis, premature ovarian failure (before age 40 years), and early-onset menopause (before age 45 years) are all associated with increased stroke risk. As a result, the guideline authors said screening for all three of these conditions is a “reasonable step in the evaluation and management of vascular risk factors in these individuals to reduce stroke risk.”
Finally, the guideline authors addressed primary stroke prevention in transgender individuals, noting that transgender women undergoing estrogen therapy for gender affirmation are at increased risk. They emphasized that evaluating and modifying risk factors could be beneficial for reducing stroke risk in this patient population.
Challenges Lie Ahead
Now that the guideline has been published, the challenge lies in determining how best to implement “its screening recommendations in primary care and other practices when these clinicians are already pushed to see as many patients as possible,” Bushnell said.
Development of screening tools that can be easily incorporated into the clinic visit or the electronic health record, as well as additional personnel to provide counseling, are probably needed to disseminate them, she added.
Bushnell also emphasized that the guideline includes a strong focus on social determinants of health and related social needs.
“We worked hard to use inclusive language and to consider populations historically excluded from research. In acknowledging that social determinants of health including access to healthcare, access to education, economic stability, neighborhood and geographic location, and social and community context have a tremendous influence on stroke risk, we describe how these factors are closely tied to the prevalence and management of many medical risks like obesity, hypertension, and diabetes.
“Our recommendations offer practical steps for screening and addressing essential health-related social needs, including access to nutritious food, stable housing, and reliable transportation, within clinical practice. By considering these factors more comprehensively, we believe we can make meaningful strides toward reducing the disparities in stroke risk,” said Bushnell.
A version of this article appeared on Medscape.com.
The first update in a decade, the 2024 Guideline for the Primary Prevention of Stroke, replaces the 2014 version and is intended to be a resource for clinicians to help them implement a variety of prevention strategies in patients with no previous history of stroke. It aligns with the American Heart Association’s Life’s Essential 8.
“This guideline is an important and timely update from 2014 for multiple reasons. First, there have been groundbreaking clinical trials that have been published with new medications to not only treat the target disease [including] diabetes/obesity and high cholesterol], but also lower the risk of stroke and heart disease,” said chair of the guideline writing group, Cheryl D. Bushnell, MD, MHS, FAHA, and vice chair of the research, Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
It was published online on October 21 in Stroke.
Up to 80% of Strokes Preventable
Estimates show that every year in the United States, more than 500,000 individuals have a first stroke. However, the guideline authors noted that up to 80% of strokes may be preventable. As a result, they called for better primary stroke prevention that includes improved screening and lifestyle changes.
This includes adoption of the Mediterranean diet, which has been shown to significantly reduce stroke risk, especially when supplemented with consumption of nuts and olive oil.
The guideline recommendations also emphasize the need for physical activity, which is “essential” for cardiovascular health and stroke reduction. The authors underscored this point and provided a new recommendation to screen for sedentary behavior and advise patients to avoid inactivity and engage in regular moderate to vigorous physical activity.
Another new recommendation is based on “robust” data that glucagon-like peptide 1 receptor agonists (GLP-1s) significantly improve the management of type 2 diabetes, weight loss, and lower the risk for cardiovascular disease. As a result, guideline authors called for the use of GLP-1s in patients with diabetes and high cardiovascular risk or established cardiovascular disease.
“The glucagon-like peptide receptor agonists have been shown to not only drastically reduce blood sugars in patients with diabetes, but they also lead to significant weight loss in these patients, which has many downstream benefits. Together, this reduces the risk of stroke and other complications of diabetes,” said Bushnell.
She also noted that another drug class introduced since the 2014 guidelines were published, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven to be highly effective in lowering low-density lipoprotein cholesterol. These medications have also been shown to reduce the risk for stroke.
At Least Two Meds Needed to Reduce BP
Effective blood pressure (BP) management is crucial for stroke prevention. Randomized controlled trials show that a single antihypertensive medication helps only about 30% of participants reach their BP target.
Most patients only achieve the desired BP target with two to three medications. In line with these data, the committee recommends using at least two antihypertensives for primary stroke prevention in most patients who require BP-lowering medications for hypertension.
In patients with antiphospholipid syndrome or systemic lupus erythematosus and no history of stroke or unprovoked venous thromboembolism, the authors recommended antiplatelet therapy to prevent stroke. They added that patients with antiphospholipid syndrome who have had a prior unprovoked venous thrombosis will likely benefit from vitamin K antagonist therapy (target international normalized ratio, 2-3) over direct oral anticoagulants.
Emphasis on Women’s Health
Preventing pregnancy-related stroke is achieved primarily by managing hypertension, the guideline authors noted. They recommended treating verified systolic BP over 160 mm Hg or diastolic BP over 110 mm Hg during pregnancy and up to 6 weeks postpartum to lower the risk for fatal maternal intracerebral hemorrhage.
They noted that adverse pregnancy outcomes are also common and linked to chronic hypertension, which increases stroke risk later in life. Therefore, they recommended screening for these outcomes to assess and manage vascular risk factors. The guideline includes a screening tool to help with this in clinical practice.
Endometriosis, premature ovarian failure (before age 40 years), and early-onset menopause (before age 45 years) are all associated with increased stroke risk. As a result, the guideline authors said screening for all three of these conditions is a “reasonable step in the evaluation and management of vascular risk factors in these individuals to reduce stroke risk.”
Finally, the guideline authors addressed primary stroke prevention in transgender individuals, noting that transgender women undergoing estrogen therapy for gender affirmation are at increased risk. They emphasized that evaluating and modifying risk factors could be beneficial for reducing stroke risk in this patient population.
Challenges Lie Ahead
Now that the guideline has been published, the challenge lies in determining how best to implement “its screening recommendations in primary care and other practices when these clinicians are already pushed to see as many patients as possible,” Bushnell said.
Development of screening tools that can be easily incorporated into the clinic visit or the electronic health record, as well as additional personnel to provide counseling, are probably needed to disseminate them, she added.
Bushnell also emphasized that the guideline includes a strong focus on social determinants of health and related social needs.
“We worked hard to use inclusive language and to consider populations historically excluded from research. In acknowledging that social determinants of health including access to healthcare, access to education, economic stability, neighborhood and geographic location, and social and community context have a tremendous influence on stroke risk, we describe how these factors are closely tied to the prevalence and management of many medical risks like obesity, hypertension, and diabetes.
“Our recommendations offer practical steps for screening and addressing essential health-related social needs, including access to nutritious food, stable housing, and reliable transportation, within clinical practice. By considering these factors more comprehensively, we believe we can make meaningful strides toward reducing the disparities in stroke risk,” said Bushnell.
A version of this article appeared on Medscape.com.
The first update in a decade, the 2024 Guideline for the Primary Prevention of Stroke, replaces the 2014 version and is intended to be a resource for clinicians to help them implement a variety of prevention strategies in patients with no previous history of stroke. It aligns with the American Heart Association’s Life’s Essential 8.
“This guideline is an important and timely update from 2014 for multiple reasons. First, there have been groundbreaking clinical trials that have been published with new medications to not only treat the target disease [including] diabetes/obesity and high cholesterol], but also lower the risk of stroke and heart disease,” said chair of the guideline writing group, Cheryl D. Bushnell, MD, MHS, FAHA, and vice chair of the research, Department of Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
It was published online on October 21 in Stroke.
Up to 80% of Strokes Preventable
Estimates show that every year in the United States, more than 500,000 individuals have a first stroke. However, the guideline authors noted that up to 80% of strokes may be preventable. As a result, they called for better primary stroke prevention that includes improved screening and lifestyle changes.
This includes adoption of the Mediterranean diet, which has been shown to significantly reduce stroke risk, especially when supplemented with consumption of nuts and olive oil.
The guideline recommendations also emphasize the need for physical activity, which is “essential” for cardiovascular health and stroke reduction. The authors underscored this point and provided a new recommendation to screen for sedentary behavior and advise patients to avoid inactivity and engage in regular moderate to vigorous physical activity.
Another new recommendation is based on “robust” data that glucagon-like peptide 1 receptor agonists (GLP-1s) significantly improve the management of type 2 diabetes, weight loss, and lower the risk for cardiovascular disease. As a result, guideline authors called for the use of GLP-1s in patients with diabetes and high cardiovascular risk or established cardiovascular disease.
“The glucagon-like peptide receptor agonists have been shown to not only drastically reduce blood sugars in patients with diabetes, but they also lead to significant weight loss in these patients, which has many downstream benefits. Together, this reduces the risk of stroke and other complications of diabetes,” said Bushnell.
She also noted that another drug class introduced since the 2014 guidelines were published, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, have proven to be highly effective in lowering low-density lipoprotein cholesterol. These medications have also been shown to reduce the risk for stroke.
At Least Two Meds Needed to Reduce BP
Effective blood pressure (BP) management is crucial for stroke prevention. Randomized controlled trials show that a single antihypertensive medication helps only about 30% of participants reach their BP target.
Most patients only achieve the desired BP target with two to three medications. In line with these data, the committee recommends using at least two antihypertensives for primary stroke prevention in most patients who require BP-lowering medications for hypertension.
In patients with antiphospholipid syndrome or systemic lupus erythematosus and no history of stroke or unprovoked venous thromboembolism, the authors recommended antiplatelet therapy to prevent stroke. They added that patients with antiphospholipid syndrome who have had a prior unprovoked venous thrombosis will likely benefit from vitamin K antagonist therapy (target international normalized ratio, 2-3) over direct oral anticoagulants.
Emphasis on Women’s Health
Preventing pregnancy-related stroke is achieved primarily by managing hypertension, the guideline authors noted. They recommended treating verified systolic BP over 160 mm Hg or diastolic BP over 110 mm Hg during pregnancy and up to 6 weeks postpartum to lower the risk for fatal maternal intracerebral hemorrhage.
They noted that adverse pregnancy outcomes are also common and linked to chronic hypertension, which increases stroke risk later in life. Therefore, they recommended screening for these outcomes to assess and manage vascular risk factors. The guideline includes a screening tool to help with this in clinical practice.
Endometriosis, premature ovarian failure (before age 40 years), and early-onset menopause (before age 45 years) are all associated with increased stroke risk. As a result, the guideline authors said screening for all three of these conditions is a “reasonable step in the evaluation and management of vascular risk factors in these individuals to reduce stroke risk.”
Finally, the guideline authors addressed primary stroke prevention in transgender individuals, noting that transgender women undergoing estrogen therapy for gender affirmation are at increased risk. They emphasized that evaluating and modifying risk factors could be beneficial for reducing stroke risk in this patient population.
Challenges Lie Ahead
Now that the guideline has been published, the challenge lies in determining how best to implement “its screening recommendations in primary care and other practices when these clinicians are already pushed to see as many patients as possible,” Bushnell said.
Development of screening tools that can be easily incorporated into the clinic visit or the electronic health record, as well as additional personnel to provide counseling, are probably needed to disseminate them, she added.
Bushnell also emphasized that the guideline includes a strong focus on social determinants of health and related social needs.
“We worked hard to use inclusive language and to consider populations historically excluded from research. In acknowledging that social determinants of health including access to healthcare, access to education, economic stability, neighborhood and geographic location, and social and community context have a tremendous influence on stroke risk, we describe how these factors are closely tied to the prevalence and management of many medical risks like obesity, hypertension, and diabetes.
“Our recommendations offer practical steps for screening and addressing essential health-related social needs, including access to nutritious food, stable housing, and reliable transportation, within clinical practice. By considering these factors more comprehensively, we believe we can make meaningful strides toward reducing the disparities in stroke risk,” said Bushnell.
A version of this article appeared on Medscape.com.
Ultraprocessed Foods and CVD: Myths vs Facts
I’d like to talk with you about ultraprocessed foods (UPFs) and risk for cardiovascular disease (CVD) and try to separate some of the facts from the myths. I’d like to discuss a recent report in The Lancet Regional Health that looks at this topic comprehensively and in detail.
This report includes three large-scale prospective cohort studies of US female and male health professionals, more than 200,000 participants in total. It also includes a meta-analysis of 22 international cohorts with about 1.2 million participants. I’d like to acknowledge that I’m a co-author of this study.
What are UPFs, and why are they important? Why do we care, and what are the knowledge gaps? UPFs are generally packaged foods that contain ingredients to extend shelf life and improve taste and palatability. It’s important because 60%-70% of the US diet, if not more, is made up of UPFs. So, the relationship between UPFs and CVD and other health outcomes is actually very important.
And the research to date on this subject has been quite limited.
In other studies, these UPFs have been linked to weight gain and dyslipidemia; some tissue glycation has been found, and some changes in the microbiome. Some studies have linked higher UPF intake with type 2 diabetes. A few have looked at certain selected UPF foods and found a higher risk for CVD, but a really comprehensive look at this question hasn’t been done.
So, that’s what we did in this paper and in the meta-analysis with the 22 cohorts, and we saw a very clear and distinct significant increase in coronary heart disease by 23%, total CVD by 17%, and stroke by 9% when comparing the highest vs the lowest category [of UPF intake]. When we drilled down deeply into the types of UPFs in the US health professional cohorts, we saw that there were some major differences in the relationship with CVD depending on the type of UPF.
In comparing the highest quintile vs the lowest quintile [of total UPF intake], we saw that some of the UPFs were associated with significant elevations in risk for CVD. These included sugar-sweetened beverages and processed meats. But some UPFs were linked with a lower risk for CVD. These included breakfast cereals, yogurt, some dairy desserts, and whole grains.
Overall, it seemed that UPFs are actually quite diverse in their association with health. It’s not one size fits all. They’re not all created equal, and some of these differences matter. Although overall we would recommend that our diets be focused on whole foods, primarily plant based, lots of fruits and vegetables, whole grains, fish, and other whole foods, it seems from this report and the meta-analysis that certain types of UPFs can be incorporated into a healthy diet and don’t need to be avoided entirely.
Dr. Manson is Professor of Medicine and the Michael and Lee Bell Professor of Women’s Health, Harvard Medical School, and Chief of the Division of Preventive Medicine, Brigham and Women’s Hospital, both in Boston, Massachusetts. She reported receiving donations and infrastructure support from Mars Symbioscience.
A version of this article first appeared on Medscape.com.
I’d like to talk with you about ultraprocessed foods (UPFs) and risk for cardiovascular disease (CVD) and try to separate some of the facts from the myths. I’d like to discuss a recent report in The Lancet Regional Health that looks at this topic comprehensively and in detail.
This report includes three large-scale prospective cohort studies of US female and male health professionals, more than 200,000 participants in total. It also includes a meta-analysis of 22 international cohorts with about 1.2 million participants. I’d like to acknowledge that I’m a co-author of this study.
What are UPFs, and why are they important? Why do we care, and what are the knowledge gaps? UPFs are generally packaged foods that contain ingredients to extend shelf life and improve taste and palatability. It’s important because 60%-70% of the US diet, if not more, is made up of UPFs. So, the relationship between UPFs and CVD and other health outcomes is actually very important.
And the research to date on this subject has been quite limited.
In other studies, these UPFs have been linked to weight gain and dyslipidemia; some tissue glycation has been found, and some changes in the microbiome. Some studies have linked higher UPF intake with type 2 diabetes. A few have looked at certain selected UPF foods and found a higher risk for CVD, but a really comprehensive look at this question hasn’t been done.
So, that’s what we did in this paper and in the meta-analysis with the 22 cohorts, and we saw a very clear and distinct significant increase in coronary heart disease by 23%, total CVD by 17%, and stroke by 9% when comparing the highest vs the lowest category [of UPF intake]. When we drilled down deeply into the types of UPFs in the US health professional cohorts, we saw that there were some major differences in the relationship with CVD depending on the type of UPF.
In comparing the highest quintile vs the lowest quintile [of total UPF intake], we saw that some of the UPFs were associated with significant elevations in risk for CVD. These included sugar-sweetened beverages and processed meats. But some UPFs were linked with a lower risk for CVD. These included breakfast cereals, yogurt, some dairy desserts, and whole grains.
Overall, it seemed that UPFs are actually quite diverse in their association with health. It’s not one size fits all. They’re not all created equal, and some of these differences matter. Although overall we would recommend that our diets be focused on whole foods, primarily plant based, lots of fruits and vegetables, whole grains, fish, and other whole foods, it seems from this report and the meta-analysis that certain types of UPFs can be incorporated into a healthy diet and don’t need to be avoided entirely.
Dr. Manson is Professor of Medicine and the Michael and Lee Bell Professor of Women’s Health, Harvard Medical School, and Chief of the Division of Preventive Medicine, Brigham and Women’s Hospital, both in Boston, Massachusetts. She reported receiving donations and infrastructure support from Mars Symbioscience.
A version of this article first appeared on Medscape.com.
I’d like to talk with you about ultraprocessed foods (UPFs) and risk for cardiovascular disease (CVD) and try to separate some of the facts from the myths. I’d like to discuss a recent report in The Lancet Regional Health that looks at this topic comprehensively and in detail.
This report includes three large-scale prospective cohort studies of US female and male health professionals, more than 200,000 participants in total. It also includes a meta-analysis of 22 international cohorts with about 1.2 million participants. I’d like to acknowledge that I’m a co-author of this study.
What are UPFs, and why are they important? Why do we care, and what are the knowledge gaps? UPFs are generally packaged foods that contain ingredients to extend shelf life and improve taste and palatability. It’s important because 60%-70% of the US diet, if not more, is made up of UPFs. So, the relationship between UPFs and CVD and other health outcomes is actually very important.
And the research to date on this subject has been quite limited.
In other studies, these UPFs have been linked to weight gain and dyslipidemia; some tissue glycation has been found, and some changes in the microbiome. Some studies have linked higher UPF intake with type 2 diabetes. A few have looked at certain selected UPF foods and found a higher risk for CVD, but a really comprehensive look at this question hasn’t been done.
So, that’s what we did in this paper and in the meta-analysis with the 22 cohorts, and we saw a very clear and distinct significant increase in coronary heart disease by 23%, total CVD by 17%, and stroke by 9% when comparing the highest vs the lowest category [of UPF intake]. When we drilled down deeply into the types of UPFs in the US health professional cohorts, we saw that there were some major differences in the relationship with CVD depending on the type of UPF.
In comparing the highest quintile vs the lowest quintile [of total UPF intake], we saw that some of the UPFs were associated with significant elevations in risk for CVD. These included sugar-sweetened beverages and processed meats. But some UPFs were linked with a lower risk for CVD. These included breakfast cereals, yogurt, some dairy desserts, and whole grains.
Overall, it seemed that UPFs are actually quite diverse in their association with health. It’s not one size fits all. They’re not all created equal, and some of these differences matter. Although overall we would recommend that our diets be focused on whole foods, primarily plant based, lots of fruits and vegetables, whole grains, fish, and other whole foods, it seems from this report and the meta-analysis that certain types of UPFs can be incorporated into a healthy diet and don’t need to be avoided entirely.
Dr. Manson is Professor of Medicine and the Michael and Lee Bell Professor of Women’s Health, Harvard Medical School, and Chief of the Division of Preventive Medicine, Brigham and Women’s Hospital, both in Boston, Massachusetts. She reported receiving donations and infrastructure support from Mars Symbioscience.
A version of this article first appeared on Medscape.com.