LayerRx Mapping ID
140
Slot System
Featured Buckets
Featured Buckets Admin
Medscape Lead Concept
5000473

Psychiatric, Autoimmune Comorbidities Increased in Patients with Alopecia Areata

Article Type
Changed
Tue, 08/06/2024 - 09:39

 

TOPLINE:

Patients with alopecia areata (AA) had a higher prevalence of several psychiatric and autoimmune comorbidities at baseline and were at greater risk of developing those comorbidities after diagnosis.

METHODOLOGY:

  • Researchers evaluated 63,384 patients with AA and 3,309,107 individuals without AA (aged 12-64 years) from the Merative MarketScan Research Databases.
  • The matched cohorts included 16,512 patients with AA and 66,048 control individuals.
  • Outcomes were the prevalence of psychiatric and autoimmune diseases at baseline and the incidence of new-onset psychiatric and autoimmune diseases during the year after diagnosis.

TAKEAWAY:

  • Overall, patients with AA showed a greater prevalence of any psychiatric disease (30.9% vs 26.8%; P < .001) and any immune-mediated or autoimmune disease (16.1% vs 8.9%; P < .0001) than those with controls.
  • In matched cohorts, patients with AA also showed a higher incidence of any new-onset psychiatric diseases (10.2% vs 6.8%; P < .001) or immune-mediated or autoimmune disease (6.2% vs 1.5%; P <.001) within the first 12 months of AA diagnosis than those with controls.
  • Among patients with AA, the risk of developing a psychiatric comorbidity was higher (adjusted hazard ratio [aHR], 1.3; 95% CI, 1.3-1.4). The highest risks were seen for adjustment disorder (aHR, 1.5), panic disorder (aHR, 1.4), and sexual dysfunction (aHR, 1.4).
  • Compared with controls, patients with AA were also at an increased risk of developing immune-mediated or autoimmune comorbidities (aHR, 2.7; 95% CI, 2.5-2.8), with the highest for systemic lupus (aHR, 5.7), atopic dermatitis (aHR, 4.3), and vitiligo (aHR, 3.8).

IN PRACTICE:

“Routine monitoring of patients with AA, especially those at risk of developing comorbidities, may permit earlier and more effective intervention,” the authors wrote.


SOURCE:

The study was led by Arash Mostaghimi, MD, MPA, MPH, Brigham and Women’s Hospital and Harvard University, Boston. It was published online on July 31, 2024, in JAMA Dermatology.

LIMITATIONS:

Causality could not be inferred because of the retrospective nature of the study. Comorbidities were solely diagnosed on the basis of diagnostic codes, and researchers did not have access to characteristics such as lab values that could have indicated any underlying comorbidity before the AA diagnosis. This study also did not account for the varying levels of severity of the disease, which may have led to an underestimation of disease burden and the risk for comorbidities.

DISCLOSURES:

AbbVie provided funding for this study. Mostaghimi disclosed receiving personal fees from Abbvie and several other companies outside of this work. The other four authors were current or former employees of Abbvie and have or may have stock and/or stock options in AbbVie.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Patients with alopecia areata (AA) had a higher prevalence of several psychiatric and autoimmune comorbidities at baseline and were at greater risk of developing those comorbidities after diagnosis.

METHODOLOGY:

  • Researchers evaluated 63,384 patients with AA and 3,309,107 individuals without AA (aged 12-64 years) from the Merative MarketScan Research Databases.
  • The matched cohorts included 16,512 patients with AA and 66,048 control individuals.
  • Outcomes were the prevalence of psychiatric and autoimmune diseases at baseline and the incidence of new-onset psychiatric and autoimmune diseases during the year after diagnosis.

TAKEAWAY:

  • Overall, patients with AA showed a greater prevalence of any psychiatric disease (30.9% vs 26.8%; P < .001) and any immune-mediated or autoimmune disease (16.1% vs 8.9%; P < .0001) than those with controls.
  • In matched cohorts, patients with AA also showed a higher incidence of any new-onset psychiatric diseases (10.2% vs 6.8%; P < .001) or immune-mediated or autoimmune disease (6.2% vs 1.5%; P <.001) within the first 12 months of AA diagnosis than those with controls.
  • Among patients with AA, the risk of developing a psychiatric comorbidity was higher (adjusted hazard ratio [aHR], 1.3; 95% CI, 1.3-1.4). The highest risks were seen for adjustment disorder (aHR, 1.5), panic disorder (aHR, 1.4), and sexual dysfunction (aHR, 1.4).
  • Compared with controls, patients with AA were also at an increased risk of developing immune-mediated or autoimmune comorbidities (aHR, 2.7; 95% CI, 2.5-2.8), with the highest for systemic lupus (aHR, 5.7), atopic dermatitis (aHR, 4.3), and vitiligo (aHR, 3.8).

IN PRACTICE:

“Routine monitoring of patients with AA, especially those at risk of developing comorbidities, may permit earlier and more effective intervention,” the authors wrote.


SOURCE:

The study was led by Arash Mostaghimi, MD, MPA, MPH, Brigham and Women’s Hospital and Harvard University, Boston. It was published online on July 31, 2024, in JAMA Dermatology.

LIMITATIONS:

Causality could not be inferred because of the retrospective nature of the study. Comorbidities were solely diagnosed on the basis of diagnostic codes, and researchers did not have access to characteristics such as lab values that could have indicated any underlying comorbidity before the AA diagnosis. This study also did not account for the varying levels of severity of the disease, which may have led to an underestimation of disease burden and the risk for comorbidities.

DISCLOSURES:

AbbVie provided funding for this study. Mostaghimi disclosed receiving personal fees from Abbvie and several other companies outside of this work. The other four authors were current or former employees of Abbvie and have or may have stock and/or stock options in AbbVie.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Patients with alopecia areata (AA) had a higher prevalence of several psychiatric and autoimmune comorbidities at baseline and were at greater risk of developing those comorbidities after diagnosis.

METHODOLOGY:

  • Researchers evaluated 63,384 patients with AA and 3,309,107 individuals without AA (aged 12-64 years) from the Merative MarketScan Research Databases.
  • The matched cohorts included 16,512 patients with AA and 66,048 control individuals.
  • Outcomes were the prevalence of psychiatric and autoimmune diseases at baseline and the incidence of new-onset psychiatric and autoimmune diseases during the year after diagnosis.

TAKEAWAY:

  • Overall, patients with AA showed a greater prevalence of any psychiatric disease (30.9% vs 26.8%; P < .001) and any immune-mediated or autoimmune disease (16.1% vs 8.9%; P < .0001) than those with controls.
  • In matched cohorts, patients with AA also showed a higher incidence of any new-onset psychiatric diseases (10.2% vs 6.8%; P < .001) or immune-mediated or autoimmune disease (6.2% vs 1.5%; P <.001) within the first 12 months of AA diagnosis than those with controls.
  • Among patients with AA, the risk of developing a psychiatric comorbidity was higher (adjusted hazard ratio [aHR], 1.3; 95% CI, 1.3-1.4). The highest risks were seen for adjustment disorder (aHR, 1.5), panic disorder (aHR, 1.4), and sexual dysfunction (aHR, 1.4).
  • Compared with controls, patients with AA were also at an increased risk of developing immune-mediated or autoimmune comorbidities (aHR, 2.7; 95% CI, 2.5-2.8), with the highest for systemic lupus (aHR, 5.7), atopic dermatitis (aHR, 4.3), and vitiligo (aHR, 3.8).

IN PRACTICE:

“Routine monitoring of patients with AA, especially those at risk of developing comorbidities, may permit earlier and more effective intervention,” the authors wrote.


SOURCE:

The study was led by Arash Mostaghimi, MD, MPA, MPH, Brigham and Women’s Hospital and Harvard University, Boston. It was published online on July 31, 2024, in JAMA Dermatology.

LIMITATIONS:

Causality could not be inferred because of the retrospective nature of the study. Comorbidities were solely diagnosed on the basis of diagnostic codes, and researchers did not have access to characteristics such as lab values that could have indicated any underlying comorbidity before the AA diagnosis. This study also did not account for the varying levels of severity of the disease, which may have led to an underestimation of disease burden and the risk for comorbidities.

DISCLOSURES:

AbbVie provided funding for this study. Mostaghimi disclosed receiving personal fees from Abbvie and several other companies outside of this work. The other four authors were current or former employees of Abbvie and have or may have stock and/or stock options in AbbVie.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Wearables May Confirm Sleep Disruption Impact on Chronic Disease

Article Type
Changed
Fri, 08/02/2024 - 15:26

Rapid eye movement (REM) sleep, deep sleep, and sleep irregularity were significantly associated with increased risk for a range of chronic diseases, based on a new study of > 6000 individuals. 

“Most of what we think we know about sleep patterns in adults comes from either self-report surveys, which are widely used but have all sorts of problems with over- and under-estimating sleep duration and quality, or single-night sleep studies,” corresponding author Evan L. Brittain, MD, of Vanderbilt University, Nashville, Tennessee, said in an interview. 

The single-night study yields the highest quality data but is limited by extrapolating a single night’s sleep to represent habitual sleep patterns, which is often not the case, he said. In the current study, published in Nature Medicine, “we had a unique opportunity to understand sleep using a large cohort of individuals using wearable devices that measure sleep duration, quality, and variability. The All of Us Research Program is the first to link wearables data to the electronic health record at scale and allowed us to study long-term, real-world sleep behavior,” Dr. Brittain said.

The timing of the study is important because the American Heart Association now recognizes sleep as a key component of heart health, and public awareness of the value of sleep is increasing, he added. 

The researchers reviewed objectively measured, longitudinal sleep data from 6785 adults who used commercial wearable devices (Fitbit) linked to electronic health record data in the All of Us Research Program. The median age of the participants was 50.2 years, 71% were women, and 84% self-identified as White individuals. The median period of sleep monitoring was 4.5 years.

REM sleep and deep sleep were inversely associated with the odds of incident heart rhythm and heart rate abnormalities. Each percent increase in REM sleep was associated with a reduced incidence of atrial fibrillation (odds ratio [OR], 0.86), atrial flutter (OR, 0.78), and sinoatrial node dysfunction/bradycardia (OR, 0.72). A higher percentage of deep sleep was associated with reduced odds of atrial fibrillation (OR, 0.87), major depressive disorder (OR, 0.93), and anxiety disorder (OR, 0.94). 

Increased irregular sleep was significantly associated with increased odds of incident obesity (OR, 1.49), hyperlipidemia (OR, 1.39), and hypertension (OR, 1.56), as well as major depressive disorder (OR, 1.75), anxiety disorder (OR, 1.55), and bipolar disorder (OR, 2.27). 

The researchers also identified J-shaped associations between average daily sleep duration and hypertension (P for nonlinearity = .003), as well as major depressive disorder and generalized anxiety disorder (both P < .001). 

The study was limited by several factors including the relatively young, White, and female study population. However, the results illustrate how sleep stages, duration, and regularity are associated with chronic disease development, and may inform evidence-based recommendations on healthy sleeping habits, the researchers wrote.
 

Findings Support Need for Sleep Consistency 

“The biggest surprise for me was the impact of sleep variability of health,” Dr. Brittain told this news organization. “The more your sleep duration varies, the higher your risk of numerous chronic diseases across the entire spectrum of organ systems. Sleep duration and quality were also important but that was less surprising,” he said. 

The clinical implications of the findings are that sleep duration, quality, and variability are all important, said Dr. Brittain. “To me, the easiest finding to translate into the clinic is the importance of reducing the variability of sleep duration as much as possible,” he said. For patients, that means explaining that they need to go to sleep and wake up at roughly the same time night to night, he said. 

“Commercial wearable devices are not perfect compared with research grade devices, but our study showed that they nonetheless collect clinically relevant information,” Dr. Brittain added. “For patients who own a device, I have adopted the practice of reviewing my patients’ sleep and activity data which gives objective insight into behavior that is not always accurate through routine questioning,” he said.

As for other limitations, “Our cohort was limited to individuals who already owned a Fitbit; not surprisingly, these individuals differ from a random sample of the community in important ways, both demographic and behavioral, and our findings need to be validated in a more diverse population,” said Dr. Brittain. 

Looking ahead, “we are interested in using commercial devices as a tool for sleep interventions to test the impact of improving sleep hygiene on chronic disease incidence, severity, and progression,” he said.
 

Device Data Will Evolve to Inform Patient Care

“With the increasing use of commercial wearable devices, it is crucial to identify and understand the data they can collect,” said Arianne K. Baldomero, MD, a pulmonologist and assistant professor of medicine at the University of Minnesota, Minneapolis, in an interview. “This study specifically analyzed sleep data from Fitbit devices among participants in the All of Us Research Program to assess sleep patterns and their association with chronic disease risk,” said Dr. Baldomero, who was not involved in the study. 

The significant relationships between sleep patterns and risk for chronic diseases were not surprising, said Dr. Baldomero. The findings of an association between shorter sleep duration and greater sleep irregularity with obesity and sleep apnea validated previous studies in large-scale population surveys, she said. Findings from the current study also reflect data from the literature on sleep duration associated with hypertension, major depressive disorder, and generalized anxiety findings, she added.

“This study reinforces the importance of adequate sleep, typically around 7 hours per night, and suggests that insufficient or poor-quality sleep may be associated with chronic diseases,” Dr. Baldomero told this news organization. “Pulmonologists should remain vigilant about sleep-related issues, and consider further investigation and referrals to sleep specialty clinics for patients suspected of having sleep disturbances,” she said.

“What remains unclear is whether abnormal sleep patterns are a cause or an effect of chronic diseases,” Dr. Baldomero noted. “Additionally, it is essential to ensure that these devices accurately capture sleep patterns and continue to validate their data against gold standard measures of sleep disturbances,” she said.

The study was based on work that was partially funded by an unrestricted gift from Google, and the study itself was supported by National Institutes of Health. Dr. Brittain disclosed received research funds unrelated to this work from United Therapeutics. Dr. Baldomero had no financial conflicts to disclose.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Rapid eye movement (REM) sleep, deep sleep, and sleep irregularity were significantly associated with increased risk for a range of chronic diseases, based on a new study of > 6000 individuals. 

“Most of what we think we know about sleep patterns in adults comes from either self-report surveys, which are widely used but have all sorts of problems with over- and under-estimating sleep duration and quality, or single-night sleep studies,” corresponding author Evan L. Brittain, MD, of Vanderbilt University, Nashville, Tennessee, said in an interview. 

The single-night study yields the highest quality data but is limited by extrapolating a single night’s sleep to represent habitual sleep patterns, which is often not the case, he said. In the current study, published in Nature Medicine, “we had a unique opportunity to understand sleep using a large cohort of individuals using wearable devices that measure sleep duration, quality, and variability. The All of Us Research Program is the first to link wearables data to the electronic health record at scale and allowed us to study long-term, real-world sleep behavior,” Dr. Brittain said.

The timing of the study is important because the American Heart Association now recognizes sleep as a key component of heart health, and public awareness of the value of sleep is increasing, he added. 

The researchers reviewed objectively measured, longitudinal sleep data from 6785 adults who used commercial wearable devices (Fitbit) linked to electronic health record data in the All of Us Research Program. The median age of the participants was 50.2 years, 71% were women, and 84% self-identified as White individuals. The median period of sleep monitoring was 4.5 years.

REM sleep and deep sleep were inversely associated with the odds of incident heart rhythm and heart rate abnormalities. Each percent increase in REM sleep was associated with a reduced incidence of atrial fibrillation (odds ratio [OR], 0.86), atrial flutter (OR, 0.78), and sinoatrial node dysfunction/bradycardia (OR, 0.72). A higher percentage of deep sleep was associated with reduced odds of atrial fibrillation (OR, 0.87), major depressive disorder (OR, 0.93), and anxiety disorder (OR, 0.94). 

Increased irregular sleep was significantly associated with increased odds of incident obesity (OR, 1.49), hyperlipidemia (OR, 1.39), and hypertension (OR, 1.56), as well as major depressive disorder (OR, 1.75), anxiety disorder (OR, 1.55), and bipolar disorder (OR, 2.27). 

The researchers also identified J-shaped associations between average daily sleep duration and hypertension (P for nonlinearity = .003), as well as major depressive disorder and generalized anxiety disorder (both P < .001). 

The study was limited by several factors including the relatively young, White, and female study population. However, the results illustrate how sleep stages, duration, and regularity are associated with chronic disease development, and may inform evidence-based recommendations on healthy sleeping habits, the researchers wrote.
 

Findings Support Need for Sleep Consistency 

“The biggest surprise for me was the impact of sleep variability of health,” Dr. Brittain told this news organization. “The more your sleep duration varies, the higher your risk of numerous chronic diseases across the entire spectrum of organ systems. Sleep duration and quality were also important but that was less surprising,” he said. 

The clinical implications of the findings are that sleep duration, quality, and variability are all important, said Dr. Brittain. “To me, the easiest finding to translate into the clinic is the importance of reducing the variability of sleep duration as much as possible,” he said. For patients, that means explaining that they need to go to sleep and wake up at roughly the same time night to night, he said. 

“Commercial wearable devices are not perfect compared with research grade devices, but our study showed that they nonetheless collect clinically relevant information,” Dr. Brittain added. “For patients who own a device, I have adopted the practice of reviewing my patients’ sleep and activity data which gives objective insight into behavior that is not always accurate through routine questioning,” he said.

As for other limitations, “Our cohort was limited to individuals who already owned a Fitbit; not surprisingly, these individuals differ from a random sample of the community in important ways, both demographic and behavioral, and our findings need to be validated in a more diverse population,” said Dr. Brittain. 

Looking ahead, “we are interested in using commercial devices as a tool for sleep interventions to test the impact of improving sleep hygiene on chronic disease incidence, severity, and progression,” he said.
 

Device Data Will Evolve to Inform Patient Care

“With the increasing use of commercial wearable devices, it is crucial to identify and understand the data they can collect,” said Arianne K. Baldomero, MD, a pulmonologist and assistant professor of medicine at the University of Minnesota, Minneapolis, in an interview. “This study specifically analyzed sleep data from Fitbit devices among participants in the All of Us Research Program to assess sleep patterns and their association with chronic disease risk,” said Dr. Baldomero, who was not involved in the study. 

The significant relationships between sleep patterns and risk for chronic diseases were not surprising, said Dr. Baldomero. The findings of an association between shorter sleep duration and greater sleep irregularity with obesity and sleep apnea validated previous studies in large-scale population surveys, she said. Findings from the current study also reflect data from the literature on sleep duration associated with hypertension, major depressive disorder, and generalized anxiety findings, she added.

“This study reinforces the importance of adequate sleep, typically around 7 hours per night, and suggests that insufficient or poor-quality sleep may be associated with chronic diseases,” Dr. Baldomero told this news organization. “Pulmonologists should remain vigilant about sleep-related issues, and consider further investigation and referrals to sleep specialty clinics for patients suspected of having sleep disturbances,” she said.

“What remains unclear is whether abnormal sleep patterns are a cause or an effect of chronic diseases,” Dr. Baldomero noted. “Additionally, it is essential to ensure that these devices accurately capture sleep patterns and continue to validate their data against gold standard measures of sleep disturbances,” she said.

The study was based on work that was partially funded by an unrestricted gift from Google, and the study itself was supported by National Institutes of Health. Dr. Brittain disclosed received research funds unrelated to this work from United Therapeutics. Dr. Baldomero had no financial conflicts to disclose.

A version of this article first appeared on Medscape.com.

Rapid eye movement (REM) sleep, deep sleep, and sleep irregularity were significantly associated with increased risk for a range of chronic diseases, based on a new study of > 6000 individuals. 

“Most of what we think we know about sleep patterns in adults comes from either self-report surveys, which are widely used but have all sorts of problems with over- and under-estimating sleep duration and quality, or single-night sleep studies,” corresponding author Evan L. Brittain, MD, of Vanderbilt University, Nashville, Tennessee, said in an interview. 

The single-night study yields the highest quality data but is limited by extrapolating a single night’s sleep to represent habitual sleep patterns, which is often not the case, he said. In the current study, published in Nature Medicine, “we had a unique opportunity to understand sleep using a large cohort of individuals using wearable devices that measure sleep duration, quality, and variability. The All of Us Research Program is the first to link wearables data to the electronic health record at scale and allowed us to study long-term, real-world sleep behavior,” Dr. Brittain said.

The timing of the study is important because the American Heart Association now recognizes sleep as a key component of heart health, and public awareness of the value of sleep is increasing, he added. 

The researchers reviewed objectively measured, longitudinal sleep data from 6785 adults who used commercial wearable devices (Fitbit) linked to electronic health record data in the All of Us Research Program. The median age of the participants was 50.2 years, 71% were women, and 84% self-identified as White individuals. The median period of sleep monitoring was 4.5 years.

REM sleep and deep sleep were inversely associated with the odds of incident heart rhythm and heart rate abnormalities. Each percent increase in REM sleep was associated with a reduced incidence of atrial fibrillation (odds ratio [OR], 0.86), atrial flutter (OR, 0.78), and sinoatrial node dysfunction/bradycardia (OR, 0.72). A higher percentage of deep sleep was associated with reduced odds of atrial fibrillation (OR, 0.87), major depressive disorder (OR, 0.93), and anxiety disorder (OR, 0.94). 

Increased irregular sleep was significantly associated with increased odds of incident obesity (OR, 1.49), hyperlipidemia (OR, 1.39), and hypertension (OR, 1.56), as well as major depressive disorder (OR, 1.75), anxiety disorder (OR, 1.55), and bipolar disorder (OR, 2.27). 

The researchers also identified J-shaped associations between average daily sleep duration and hypertension (P for nonlinearity = .003), as well as major depressive disorder and generalized anxiety disorder (both P < .001). 

The study was limited by several factors including the relatively young, White, and female study population. However, the results illustrate how sleep stages, duration, and regularity are associated with chronic disease development, and may inform evidence-based recommendations on healthy sleeping habits, the researchers wrote.
 

Findings Support Need for Sleep Consistency 

“The biggest surprise for me was the impact of sleep variability of health,” Dr. Brittain told this news organization. “The more your sleep duration varies, the higher your risk of numerous chronic diseases across the entire spectrum of organ systems. Sleep duration and quality were also important but that was less surprising,” he said. 

The clinical implications of the findings are that sleep duration, quality, and variability are all important, said Dr. Brittain. “To me, the easiest finding to translate into the clinic is the importance of reducing the variability of sleep duration as much as possible,” he said. For patients, that means explaining that they need to go to sleep and wake up at roughly the same time night to night, he said. 

“Commercial wearable devices are not perfect compared with research grade devices, but our study showed that they nonetheless collect clinically relevant information,” Dr. Brittain added. “For patients who own a device, I have adopted the practice of reviewing my patients’ sleep and activity data which gives objective insight into behavior that is not always accurate through routine questioning,” he said.

As for other limitations, “Our cohort was limited to individuals who already owned a Fitbit; not surprisingly, these individuals differ from a random sample of the community in important ways, both demographic and behavioral, and our findings need to be validated in a more diverse population,” said Dr. Brittain. 

Looking ahead, “we are interested in using commercial devices as a tool for sleep interventions to test the impact of improving sleep hygiene on chronic disease incidence, severity, and progression,” he said.
 

Device Data Will Evolve to Inform Patient Care

“With the increasing use of commercial wearable devices, it is crucial to identify and understand the data they can collect,” said Arianne K. Baldomero, MD, a pulmonologist and assistant professor of medicine at the University of Minnesota, Minneapolis, in an interview. “This study specifically analyzed sleep data from Fitbit devices among participants in the All of Us Research Program to assess sleep patterns and their association with chronic disease risk,” said Dr. Baldomero, who was not involved in the study. 

The significant relationships between sleep patterns and risk for chronic diseases were not surprising, said Dr. Baldomero. The findings of an association between shorter sleep duration and greater sleep irregularity with obesity and sleep apnea validated previous studies in large-scale population surveys, she said. Findings from the current study also reflect data from the literature on sleep duration associated with hypertension, major depressive disorder, and generalized anxiety findings, she added.

“This study reinforces the importance of adequate sleep, typically around 7 hours per night, and suggests that insufficient or poor-quality sleep may be associated with chronic diseases,” Dr. Baldomero told this news organization. “Pulmonologists should remain vigilant about sleep-related issues, and consider further investigation and referrals to sleep specialty clinics for patients suspected of having sleep disturbances,” she said.

“What remains unclear is whether abnormal sleep patterns are a cause or an effect of chronic diseases,” Dr. Baldomero noted. “Additionally, it is essential to ensure that these devices accurately capture sleep patterns and continue to validate their data against gold standard measures of sleep disturbances,” she said.

The study was based on work that was partially funded by an unrestricted gift from Google, and the study itself was supported by National Institutes of Health. Dr. Brittain disclosed received research funds unrelated to this work from United Therapeutics. Dr. Baldomero had no financial conflicts to disclose.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

When Is Sexual Behavior Out of Control?

Article Type
Changed
Thu, 08/08/2024 - 11:02

A 25-year-old man comes in with a pulled muscle. You ask if he has anything else to discuss. Sheepishly, he says he is concerned about his use of pornography. 

A 45-year-old woman struggling with depression finds herself persistently seeking sex outside the bounds of her long-term relationship. Her partner is threatening to leave. She is devastated and tells you she doesn’t understand her own behavior. 

Do these patients have some form of sex addiction? How should a primary care clinician intervene? Is a referral to a 12-step program for sex addiction the right choice? What other options exist? Is a diagnosis — let alone treatment — possible or appropriate? 
 

‘Who Are You Calling “Abnormal” ’?

Normal is not a meaningful concept in human sexual behavior. To quote the sex therapist Marty Klein, PhD: “Normal is just a setting on the dryer.” 

The same goes among partners: What is “normal” for one person in a sexual relationship may discomfit another. In partnerships, we have differences around all sorts of issues, from finances to parenting to how to load the dishwasher. Why should sex, sexual desire, and sexual frequency be different? 

Remember: Shame, fear, and secrecy often play a role in perpetuating behaviors that cause distress. Helping our patients accept and embrace their whole selves can provide important healing, relief from anxiety, and may even help them regulate their actions. Feeling less shame, fear, and secrecy may facilitate safer choices about sex, as well as testing and treatment for sexually transmitted infections.

The International Classification of Diseases-11 includes compulsive sexual behavior disorder (CSBD)as an attempt to create consensus around a complicated, and hotly debated, problem to facilitate diagnosis and research. Syndromes similar to CSBD have had many names: “hypersexual disorder,” “sexual addiction,” “sexual compulsivity,” and “out-of-control sexual behavior.” A sizable cohort of the sexuality research community casts doubt on whether CSBD is even a discrete diagnosis. 

According to the ICD-11, CSBD is characterized by “intense, repetitive sexual impulses or urges that are experienced as irresistible or uncontrollable” and result in significant distress or functional impairment.

This diagnosis has several important rule-outs. First, paraphilias, defined as a set of nonconsensual sexual behaviors and interests, are excluded. Another is that distress exclusively related to moral judgment or social disapproval is not sufficient for a diagnosis of CSBD. Finally, the diagnosis hinges on distress and does not rely on frequency of any type of sexual behavior. Some people experience significant distress over behaviors in which they engage infrequently, whereas others may have no distress from activities in which they engage quite frequently. 

In one study from Germany, 5% of men and 3% of women met criteria for CSBD. A small US study found the number to be 10% and 7%, respectively. The diagnosis is not simple. Compulsive sexual behavior can be secondary to other mental health or medical conditions. Behaviors sometimes confused with CSBD can result from neurologic diseases, such as frontal brain lesions or frontotemporal dementia, as well as the use of substances and medications that enhance dopaminergic activity. 

Impaired control over sexual impulses occurs in manic and hypomanic episodes. Compulsive sexual behavior frequently co-occurs with mood disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and substance use disorders. Those meeting criteria for CSBD may engage in sexual behaviors as a way of coping with depression, anxiety, boredom, loneliness, or other negative affective states.  

The diagnosis of CSBD may be useful for clinicians. However, many, perhaps most, patients who present with concerns about their sexual behavior will fail to meet most criteria for CSBD. Their problem is of shorter duration, related to morality, external disapproval, lack of sexual health information, and anxiety about diverse erotic interests. It may be helpful for them to understand that they are not in the grip of a lifelong disorder but are experiencing common life challenges. 

Societal concerns about sexually explicit media, often called pornography, are complex, conflicting, and catastrophizing. Some studies indicate that sexually explicit media are positive for both individual and relational sexual satisfaction; other studies have found negative effects on sexual function. Concerns about pornography often are conflated with taboos about solo sexual activity. Ironically, use of pornography is associated with fear of addiction to pornography, creating a spiral of negative self-perception

Consequences of sexual behavior may induce distress, even if a person doesn’t meet criteria for CSBD, such as potential dissolution of a marriage, loss of a job, excessive spending, sexually transmitted infections, other health concerns, and even legal problems. Sexual behavior might not be the central issue but rather an offshoot of relational distress, a mental health disorder, or a dysfunctional coping style. 

Guilt and shame can act as potent contributors to maintaining the behaviors as well as promoting secrecy around them. Sexual medicine experts recommend avoiding interventions that increase the experience of discrimination and stigma and avoiding the pathologization of the behaviors of sexually diverse individuals. As in so many aspects of medical care, we must walk in our patients’ shoes and avoid imposing on them our own moral or religious values. 
 

 

 

What Can a Primary Care Provider Do?  

When a patient is concerned about sexual behavior that feels out of control, primary care providers have an important role in evaluating for neurologic disease or side effects related to the use of medication or other substances, and facilitating psychiatric assessment to evaluate for mental health comorbidities, past trauma, and associated attachment disorders

Our patients need resources to tease out the individual and relational problems that may arise. Seek out well-trained sex therapy colleagues in your community. The American Association of Sexuality Educators, Counselors, and Therapists (AASECT) is one certifying body in the United States for sex therapy. 

Because of the heterogeneity of those who present with out-of-control sexual behavior, no one treatment fits all. Twelve-step programs, especially those with a focus on sexual “abstinence,” may not be the best choice. Many psychotherapeutic modalities are effective and often focus on addressing underlying or unrecognized mental health concerns, provide training on self-regulation and urge management, and relationship skills. Most important, the therapist needs to be sexologically informed and aware of their own biases around sexuality. Medical treatments are not recommended without concurrent psychological intervention. 

Relational sex therapy can help couples create clear relational agreements that work for both parties (or, in polyamorous relationships, everyone involved). Relational distress also may be a stimulus for individual psychotherapy. 

Back to these two patients. 

The 25-year-old could be counseled that use of sexually explicit media and solo sex are not inherently bad or damaging. When used for pleasure and enjoyment, they do not lead to problems with partnered sex or cause sexual dysfunction. Counseling him to move toward social engagement and life goals, rather than away from pornography, may be all that is necessary. 

Our second patient probably will need more intensive treatment, including medication management for her mood and referral to a certified sex therapist who has expertise in working with out-of-control sexual behavior. When she returns to see you in follow-up, she ideally expresses reduced shame, more autonomy, and renewed connection to her values, and she is keeping her relational agreements without sacrificing her sexual needs. 
 

Dr. Kranz is medical director, Rochester Center for Sexual Wellness; assistant professor of Clinical Family Medicine and Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York. Dr. Kranz has disclosed no relevant financial relationships. Dr. Rosen is director of Behavioral Health, Rochester Center for Sexual Wellness, Rochester, New York. He has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

A 25-year-old man comes in with a pulled muscle. You ask if he has anything else to discuss. Sheepishly, he says he is concerned about his use of pornography. 

A 45-year-old woman struggling with depression finds herself persistently seeking sex outside the bounds of her long-term relationship. Her partner is threatening to leave. She is devastated and tells you she doesn’t understand her own behavior. 

Do these patients have some form of sex addiction? How should a primary care clinician intervene? Is a referral to a 12-step program for sex addiction the right choice? What other options exist? Is a diagnosis — let alone treatment — possible or appropriate? 
 

‘Who Are You Calling “Abnormal” ’?

Normal is not a meaningful concept in human sexual behavior. To quote the sex therapist Marty Klein, PhD: “Normal is just a setting on the dryer.” 

The same goes among partners: What is “normal” for one person in a sexual relationship may discomfit another. In partnerships, we have differences around all sorts of issues, from finances to parenting to how to load the dishwasher. Why should sex, sexual desire, and sexual frequency be different? 

Remember: Shame, fear, and secrecy often play a role in perpetuating behaviors that cause distress. Helping our patients accept and embrace their whole selves can provide important healing, relief from anxiety, and may even help them regulate their actions. Feeling less shame, fear, and secrecy may facilitate safer choices about sex, as well as testing and treatment for sexually transmitted infections.

The International Classification of Diseases-11 includes compulsive sexual behavior disorder (CSBD)as an attempt to create consensus around a complicated, and hotly debated, problem to facilitate diagnosis and research. Syndromes similar to CSBD have had many names: “hypersexual disorder,” “sexual addiction,” “sexual compulsivity,” and “out-of-control sexual behavior.” A sizable cohort of the sexuality research community casts doubt on whether CSBD is even a discrete diagnosis. 

According to the ICD-11, CSBD is characterized by “intense, repetitive sexual impulses or urges that are experienced as irresistible or uncontrollable” and result in significant distress or functional impairment.

This diagnosis has several important rule-outs. First, paraphilias, defined as a set of nonconsensual sexual behaviors and interests, are excluded. Another is that distress exclusively related to moral judgment or social disapproval is not sufficient for a diagnosis of CSBD. Finally, the diagnosis hinges on distress and does not rely on frequency of any type of sexual behavior. Some people experience significant distress over behaviors in which they engage infrequently, whereas others may have no distress from activities in which they engage quite frequently. 

In one study from Germany, 5% of men and 3% of women met criteria for CSBD. A small US study found the number to be 10% and 7%, respectively. The diagnosis is not simple. Compulsive sexual behavior can be secondary to other mental health or medical conditions. Behaviors sometimes confused with CSBD can result from neurologic diseases, such as frontal brain lesions or frontotemporal dementia, as well as the use of substances and medications that enhance dopaminergic activity. 

Impaired control over sexual impulses occurs in manic and hypomanic episodes. Compulsive sexual behavior frequently co-occurs with mood disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and substance use disorders. Those meeting criteria for CSBD may engage in sexual behaviors as a way of coping with depression, anxiety, boredom, loneliness, or other negative affective states.  

The diagnosis of CSBD may be useful for clinicians. However, many, perhaps most, patients who present with concerns about their sexual behavior will fail to meet most criteria for CSBD. Their problem is of shorter duration, related to morality, external disapproval, lack of sexual health information, and anxiety about diverse erotic interests. It may be helpful for them to understand that they are not in the grip of a lifelong disorder but are experiencing common life challenges. 

Societal concerns about sexually explicit media, often called pornography, are complex, conflicting, and catastrophizing. Some studies indicate that sexually explicit media are positive for both individual and relational sexual satisfaction; other studies have found negative effects on sexual function. Concerns about pornography often are conflated with taboos about solo sexual activity. Ironically, use of pornography is associated with fear of addiction to pornography, creating a spiral of negative self-perception

Consequences of sexual behavior may induce distress, even if a person doesn’t meet criteria for CSBD, such as potential dissolution of a marriage, loss of a job, excessive spending, sexually transmitted infections, other health concerns, and even legal problems. Sexual behavior might not be the central issue but rather an offshoot of relational distress, a mental health disorder, or a dysfunctional coping style. 

Guilt and shame can act as potent contributors to maintaining the behaviors as well as promoting secrecy around them. Sexual medicine experts recommend avoiding interventions that increase the experience of discrimination and stigma and avoiding the pathologization of the behaviors of sexually diverse individuals. As in so many aspects of medical care, we must walk in our patients’ shoes and avoid imposing on them our own moral or religious values. 
 

 

 

What Can a Primary Care Provider Do?  

When a patient is concerned about sexual behavior that feels out of control, primary care providers have an important role in evaluating for neurologic disease or side effects related to the use of medication or other substances, and facilitating psychiatric assessment to evaluate for mental health comorbidities, past trauma, and associated attachment disorders

Our patients need resources to tease out the individual and relational problems that may arise. Seek out well-trained sex therapy colleagues in your community. The American Association of Sexuality Educators, Counselors, and Therapists (AASECT) is one certifying body in the United States for sex therapy. 

Because of the heterogeneity of those who present with out-of-control sexual behavior, no one treatment fits all. Twelve-step programs, especially those with a focus on sexual “abstinence,” may not be the best choice. Many psychotherapeutic modalities are effective and often focus on addressing underlying or unrecognized mental health concerns, provide training on self-regulation and urge management, and relationship skills. Most important, the therapist needs to be sexologically informed and aware of their own biases around sexuality. Medical treatments are not recommended without concurrent psychological intervention. 

Relational sex therapy can help couples create clear relational agreements that work for both parties (or, in polyamorous relationships, everyone involved). Relational distress also may be a stimulus for individual psychotherapy. 

Back to these two patients. 

The 25-year-old could be counseled that use of sexually explicit media and solo sex are not inherently bad or damaging. When used for pleasure and enjoyment, they do not lead to problems with partnered sex or cause sexual dysfunction. Counseling him to move toward social engagement and life goals, rather than away from pornography, may be all that is necessary. 

Our second patient probably will need more intensive treatment, including medication management for her mood and referral to a certified sex therapist who has expertise in working with out-of-control sexual behavior. When she returns to see you in follow-up, she ideally expresses reduced shame, more autonomy, and renewed connection to her values, and she is keeping her relational agreements without sacrificing her sexual needs. 
 

Dr. Kranz is medical director, Rochester Center for Sexual Wellness; assistant professor of Clinical Family Medicine and Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York. Dr. Kranz has disclosed no relevant financial relationships. Dr. Rosen is director of Behavioral Health, Rochester Center for Sexual Wellness, Rochester, New York. He has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

A 25-year-old man comes in with a pulled muscle. You ask if he has anything else to discuss. Sheepishly, he says he is concerned about his use of pornography. 

A 45-year-old woman struggling with depression finds herself persistently seeking sex outside the bounds of her long-term relationship. Her partner is threatening to leave. She is devastated and tells you she doesn’t understand her own behavior. 

Do these patients have some form of sex addiction? How should a primary care clinician intervene? Is a referral to a 12-step program for sex addiction the right choice? What other options exist? Is a diagnosis — let alone treatment — possible or appropriate? 
 

‘Who Are You Calling “Abnormal” ’?

Normal is not a meaningful concept in human sexual behavior. To quote the sex therapist Marty Klein, PhD: “Normal is just a setting on the dryer.” 

The same goes among partners: What is “normal” for one person in a sexual relationship may discomfit another. In partnerships, we have differences around all sorts of issues, from finances to parenting to how to load the dishwasher. Why should sex, sexual desire, and sexual frequency be different? 

Remember: Shame, fear, and secrecy often play a role in perpetuating behaviors that cause distress. Helping our patients accept and embrace their whole selves can provide important healing, relief from anxiety, and may even help them regulate their actions. Feeling less shame, fear, and secrecy may facilitate safer choices about sex, as well as testing and treatment for sexually transmitted infections.

The International Classification of Diseases-11 includes compulsive sexual behavior disorder (CSBD)as an attempt to create consensus around a complicated, and hotly debated, problem to facilitate diagnosis and research. Syndromes similar to CSBD have had many names: “hypersexual disorder,” “sexual addiction,” “sexual compulsivity,” and “out-of-control sexual behavior.” A sizable cohort of the sexuality research community casts doubt on whether CSBD is even a discrete diagnosis. 

According to the ICD-11, CSBD is characterized by “intense, repetitive sexual impulses or urges that are experienced as irresistible or uncontrollable” and result in significant distress or functional impairment.

This diagnosis has several important rule-outs. First, paraphilias, defined as a set of nonconsensual sexual behaviors and interests, are excluded. Another is that distress exclusively related to moral judgment or social disapproval is not sufficient for a diagnosis of CSBD. Finally, the diagnosis hinges on distress and does not rely on frequency of any type of sexual behavior. Some people experience significant distress over behaviors in which they engage infrequently, whereas others may have no distress from activities in which they engage quite frequently. 

In one study from Germany, 5% of men and 3% of women met criteria for CSBD. A small US study found the number to be 10% and 7%, respectively. The diagnosis is not simple. Compulsive sexual behavior can be secondary to other mental health or medical conditions. Behaviors sometimes confused with CSBD can result from neurologic diseases, such as frontal brain lesions or frontotemporal dementia, as well as the use of substances and medications that enhance dopaminergic activity. 

Impaired control over sexual impulses occurs in manic and hypomanic episodes. Compulsive sexual behavior frequently co-occurs with mood disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, and substance use disorders. Those meeting criteria for CSBD may engage in sexual behaviors as a way of coping with depression, anxiety, boredom, loneliness, or other negative affective states.  

The diagnosis of CSBD may be useful for clinicians. However, many, perhaps most, patients who present with concerns about their sexual behavior will fail to meet most criteria for CSBD. Their problem is of shorter duration, related to morality, external disapproval, lack of sexual health information, and anxiety about diverse erotic interests. It may be helpful for them to understand that they are not in the grip of a lifelong disorder but are experiencing common life challenges. 

Societal concerns about sexually explicit media, often called pornography, are complex, conflicting, and catastrophizing. Some studies indicate that sexually explicit media are positive for both individual and relational sexual satisfaction; other studies have found negative effects on sexual function. Concerns about pornography often are conflated with taboos about solo sexual activity. Ironically, use of pornography is associated with fear of addiction to pornography, creating a spiral of negative self-perception

Consequences of sexual behavior may induce distress, even if a person doesn’t meet criteria for CSBD, such as potential dissolution of a marriage, loss of a job, excessive spending, sexually transmitted infections, other health concerns, and even legal problems. Sexual behavior might not be the central issue but rather an offshoot of relational distress, a mental health disorder, or a dysfunctional coping style. 

Guilt and shame can act as potent contributors to maintaining the behaviors as well as promoting secrecy around them. Sexual medicine experts recommend avoiding interventions that increase the experience of discrimination and stigma and avoiding the pathologization of the behaviors of sexually diverse individuals. As in so many aspects of medical care, we must walk in our patients’ shoes and avoid imposing on them our own moral or religious values. 
 

 

 

What Can a Primary Care Provider Do?  

When a patient is concerned about sexual behavior that feels out of control, primary care providers have an important role in evaluating for neurologic disease or side effects related to the use of medication or other substances, and facilitating psychiatric assessment to evaluate for mental health comorbidities, past trauma, and associated attachment disorders

Our patients need resources to tease out the individual and relational problems that may arise. Seek out well-trained sex therapy colleagues in your community. The American Association of Sexuality Educators, Counselors, and Therapists (AASECT) is one certifying body in the United States for sex therapy. 

Because of the heterogeneity of those who present with out-of-control sexual behavior, no one treatment fits all. Twelve-step programs, especially those with a focus on sexual “abstinence,” may not be the best choice. Many psychotherapeutic modalities are effective and often focus on addressing underlying or unrecognized mental health concerns, provide training on self-regulation and urge management, and relationship skills. Most important, the therapist needs to be sexologically informed and aware of their own biases around sexuality. Medical treatments are not recommended without concurrent psychological intervention. 

Relational sex therapy can help couples create clear relational agreements that work for both parties (or, in polyamorous relationships, everyone involved). Relational distress also may be a stimulus for individual psychotherapy. 

Back to these two patients. 

The 25-year-old could be counseled that use of sexually explicit media and solo sex are not inherently bad or damaging. When used for pleasure and enjoyment, they do not lead to problems with partnered sex or cause sexual dysfunction. Counseling him to move toward social engagement and life goals, rather than away from pornography, may be all that is necessary. 

Our second patient probably will need more intensive treatment, including medication management for her mood and referral to a certified sex therapist who has expertise in working with out-of-control sexual behavior. When she returns to see you in follow-up, she ideally expresses reduced shame, more autonomy, and renewed connection to her values, and she is keeping her relational agreements without sacrificing her sexual needs. 
 

Dr. Kranz is medical director, Rochester Center for Sexual Wellness; assistant professor of Clinical Family Medicine and Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York. Dr. Kranz has disclosed no relevant financial relationships. Dr. Rosen is director of Behavioral Health, Rochester Center for Sexual Wellness, Rochester, New York. He has disclosed no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Waiting for Therapy? There’s an App for That

Article Type
Changed
Mon, 07/29/2024 - 11:34

 

TOPLINE:

Smartphone apps, including those using cognitive-behavioral therapy (CBT) and mindfulness techniques, showed comparable efficacy in reducing depression, anxiety, and suicidality in patients with psychiatric conditions waiting for appointments with psychiatrists or therapists.

METHODOLOGY:

  • Participants were adults aged 18 years or older seeking outpatient psychiatric services from several mental and behavioral health clinics within the University of Michigan Health System.
  • Eligible participants were those with either a scheduled future mental health appointment or an initial appointment completed within the past 60 days and daily access to a smartphone.
  • After completing a baseline survey that gathered data on participants’ depression, anxiety, and suicidality scores, 2080 participants were randomly assigned to one of five groups:
  • Enhanced personalized feedback (EPF) only (n = 690)
  • SilverCloud only (SilverCloud, a mobile application designed to deliver CBT strategies; n = 345)
  • SilverCloud plus EPF (n = 346)
  • Headspace only (Headspace, a mobile application designed to train users in mindfulness practices; n = 349)
  • Headspace plus EPF (n = 349)

TAKEAWAY:

  • The mean baseline Patient Health Questionnaire-9 depression score was 12.7 (6.4% patients). Overall, depression scores significantly decreased by 2.5 points from baseline to the 6-week follow-up for all five arms, with marginal mean differences in mean change ranging from −2.1 to −2.9 (P < .001).
  • The magnitude of change was not significantly different across the five arms on most measures (P = .31). Additionally, the groups did not differ in decrease of anxiety or substance use symptoms.
  • The Headspace arms reported significantly greater improvements on a suicidality measure subscale than the SilverCloud arms (mean difference in mean change, 0.63; P = .004).

IN PRACTICE:

“Having this type of option, especially for people who are motivated enough to seek an appointment and wait for it, could be very valuable when providers have long wait lists,” lead author Adam Horwitz, PhD, University of Michigan, Ann Arbor, said in a press release.

“These individuals want to be doing something about their mental health but don’t yet have access, so this suggests that providing them with some sort of digital option when their motivation is already high, and they are ready to do something, could begin to make a difference.”
 

SOURCE:

Dr. Horwitz led the study, which was published online in JAMA Network Open.

LIMITATIONS:

There may have been aspects of formal or in-person care that contributed to the improvement in symptoms across groups and diluted the ability to identify differences between applications in effects on symptom reduction.

DISCLOSURES:

This study was funded by a grant from Precision Health, the Eisenberg Family Depression Center, and the National Institute of Mental Health. Disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Smartphone apps, including those using cognitive-behavioral therapy (CBT) and mindfulness techniques, showed comparable efficacy in reducing depression, anxiety, and suicidality in patients with psychiatric conditions waiting for appointments with psychiatrists or therapists.

METHODOLOGY:

  • Participants were adults aged 18 years or older seeking outpatient psychiatric services from several mental and behavioral health clinics within the University of Michigan Health System.
  • Eligible participants were those with either a scheduled future mental health appointment or an initial appointment completed within the past 60 days and daily access to a smartphone.
  • After completing a baseline survey that gathered data on participants’ depression, anxiety, and suicidality scores, 2080 participants were randomly assigned to one of five groups:
  • Enhanced personalized feedback (EPF) only (n = 690)
  • SilverCloud only (SilverCloud, a mobile application designed to deliver CBT strategies; n = 345)
  • SilverCloud plus EPF (n = 346)
  • Headspace only (Headspace, a mobile application designed to train users in mindfulness practices; n = 349)
  • Headspace plus EPF (n = 349)

TAKEAWAY:

  • The mean baseline Patient Health Questionnaire-9 depression score was 12.7 (6.4% patients). Overall, depression scores significantly decreased by 2.5 points from baseline to the 6-week follow-up for all five arms, with marginal mean differences in mean change ranging from −2.1 to −2.9 (P < .001).
  • The magnitude of change was not significantly different across the five arms on most measures (P = .31). Additionally, the groups did not differ in decrease of anxiety or substance use symptoms.
  • The Headspace arms reported significantly greater improvements on a suicidality measure subscale than the SilverCloud arms (mean difference in mean change, 0.63; P = .004).

IN PRACTICE:

“Having this type of option, especially for people who are motivated enough to seek an appointment and wait for it, could be very valuable when providers have long wait lists,” lead author Adam Horwitz, PhD, University of Michigan, Ann Arbor, said in a press release.

“These individuals want to be doing something about their mental health but don’t yet have access, so this suggests that providing them with some sort of digital option when their motivation is already high, and they are ready to do something, could begin to make a difference.”
 

SOURCE:

Dr. Horwitz led the study, which was published online in JAMA Network Open.

LIMITATIONS:

There may have been aspects of formal or in-person care that contributed to the improvement in symptoms across groups and diluted the ability to identify differences between applications in effects on symptom reduction.

DISCLOSURES:

This study was funded by a grant from Precision Health, the Eisenberg Family Depression Center, and the National Institute of Mental Health. Disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.A version of this article first appeared on Medscape.com.

 

TOPLINE:

Smartphone apps, including those using cognitive-behavioral therapy (CBT) and mindfulness techniques, showed comparable efficacy in reducing depression, anxiety, and suicidality in patients with psychiatric conditions waiting for appointments with psychiatrists or therapists.

METHODOLOGY:

  • Participants were adults aged 18 years or older seeking outpatient psychiatric services from several mental and behavioral health clinics within the University of Michigan Health System.
  • Eligible participants were those with either a scheduled future mental health appointment or an initial appointment completed within the past 60 days and daily access to a smartphone.
  • After completing a baseline survey that gathered data on participants’ depression, anxiety, and suicidality scores, 2080 participants were randomly assigned to one of five groups:
  • Enhanced personalized feedback (EPF) only (n = 690)
  • SilverCloud only (SilverCloud, a mobile application designed to deliver CBT strategies; n = 345)
  • SilverCloud plus EPF (n = 346)
  • Headspace only (Headspace, a mobile application designed to train users in mindfulness practices; n = 349)
  • Headspace plus EPF (n = 349)

TAKEAWAY:

  • The mean baseline Patient Health Questionnaire-9 depression score was 12.7 (6.4% patients). Overall, depression scores significantly decreased by 2.5 points from baseline to the 6-week follow-up for all five arms, with marginal mean differences in mean change ranging from −2.1 to −2.9 (P < .001).
  • The magnitude of change was not significantly different across the five arms on most measures (P = .31). Additionally, the groups did not differ in decrease of anxiety or substance use symptoms.
  • The Headspace arms reported significantly greater improvements on a suicidality measure subscale than the SilverCloud arms (mean difference in mean change, 0.63; P = .004).

IN PRACTICE:

“Having this type of option, especially for people who are motivated enough to seek an appointment and wait for it, could be very valuable when providers have long wait lists,” lead author Adam Horwitz, PhD, University of Michigan, Ann Arbor, said in a press release.

“These individuals want to be doing something about their mental health but don’t yet have access, so this suggests that providing them with some sort of digital option when their motivation is already high, and they are ready to do something, could begin to make a difference.”
 

SOURCE:

Dr. Horwitz led the study, which was published online in JAMA Network Open.

LIMITATIONS:

There may have been aspects of formal or in-person care that contributed to the improvement in symptoms across groups and diluted the ability to identify differences between applications in effects on symptom reduction.

DISCLOSURES:

This study was funded by a grant from Precision Health, the Eisenberg Family Depression Center, and the National Institute of Mental Health. Disclosures are noted in the original article.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication.A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Bidirectional Link for Mental Health and Diabetic Complications

Article Type
Changed
Fri, 07/26/2024 - 10:20

 

TOPLINE:

Mental health disorders increase the likelihood of developing chronic diabetic complications and vice versa across all age groups in patients with type 1 diabetes (T1D) or type 2 diabetes (T2D).

METHODOLOGY:

  • Understanding the relative timing and association between chronic diabetic complications and mental health disorders may aid in improving diabetes screening and care.
  • Researchers used a US national healthcare claims database (data obtained from 2001 to 2018) to analyze individuals with and without T1D and T2D, who had no prior mental health disorder or chronic diabetic complication.
  • The onset and presence of chronic diabetic complications and mental health disorders were identified to determine their possible association.
  • Individuals were stratified by age: 0-19, 20-39, 40-59, and ≥ 60 years.

TAKEAWAY:

  • Researchers analyzed 44,735 patients with T1D (47.5% women) and 152,187 with T2D (46.0% women), who were matched with 356,630 individuals without diabetes (51.8% women).
  • The presence of chronic diabetic complications increased the risk for a mental health disorder across all age groups, with the highest risk seen in patients aged ≥ 60 years (hazard ratio [HR], 2.9).
  • Similarly, diagnosis of a mental health disorder increased the risk for chronic diabetic complications across all age groups, with the highest risk seen in patients aged 0-19 years (HR, 2.5).
  • Patients with T2D had a significantly higher risk for a mental health disorder and a lower risk for chronic diabetic complications than those with T1D across all age groups, except those aged ≥ 60 years.
  • The bidirectional association between mental health disorders and chronic diabetic complications was not affected by the diabetes type (P > .05 for all interactions).

IN PRACTICE:

“Clinicians and healthcare systems likely need to increase their focus on MHDs [mental health disorders], and innovative models of care are required to optimize care for both individuals with type 1 diabetes and those with type 2 diabetes,” the authors wrote.

SOURCE:

The study, led by Maya Watanabe, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, was published online in Diabetes Care.

LIMITATIONS:

The study relied on International Classification of Diseases 9th and 10th revision codes, which might have led to misclassification of mental health conditions, chronic diabetes complications, and diabetes type. The data did not capture the symptom onset and severity. The findings may not be generalizable to populations outside the United States.

DISCLOSURES:

The study was supported by the Juvenile Diabetes Research Foundation (now Breakthrough T1D). Some authors reported receiving speaker or expert testimony honoraria and research support, and some declared serving on medical or digital advisory boards or as consultants for various pharmaceutical and medical device companies.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Mental health disorders increase the likelihood of developing chronic diabetic complications and vice versa across all age groups in patients with type 1 diabetes (T1D) or type 2 diabetes (T2D).

METHODOLOGY:

  • Understanding the relative timing and association between chronic diabetic complications and mental health disorders may aid in improving diabetes screening and care.
  • Researchers used a US national healthcare claims database (data obtained from 2001 to 2018) to analyze individuals with and without T1D and T2D, who had no prior mental health disorder or chronic diabetic complication.
  • The onset and presence of chronic diabetic complications and mental health disorders were identified to determine their possible association.
  • Individuals were stratified by age: 0-19, 20-39, 40-59, and ≥ 60 years.

TAKEAWAY:

  • Researchers analyzed 44,735 patients with T1D (47.5% women) and 152,187 with T2D (46.0% women), who were matched with 356,630 individuals without diabetes (51.8% women).
  • The presence of chronic diabetic complications increased the risk for a mental health disorder across all age groups, with the highest risk seen in patients aged ≥ 60 years (hazard ratio [HR], 2.9).
  • Similarly, diagnosis of a mental health disorder increased the risk for chronic diabetic complications across all age groups, with the highest risk seen in patients aged 0-19 years (HR, 2.5).
  • Patients with T2D had a significantly higher risk for a mental health disorder and a lower risk for chronic diabetic complications than those with T1D across all age groups, except those aged ≥ 60 years.
  • The bidirectional association between mental health disorders and chronic diabetic complications was not affected by the diabetes type (P > .05 for all interactions).

IN PRACTICE:

“Clinicians and healthcare systems likely need to increase their focus on MHDs [mental health disorders], and innovative models of care are required to optimize care for both individuals with type 1 diabetes and those with type 2 diabetes,” the authors wrote.

SOURCE:

The study, led by Maya Watanabe, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, was published online in Diabetes Care.

LIMITATIONS:

The study relied on International Classification of Diseases 9th and 10th revision codes, which might have led to misclassification of mental health conditions, chronic diabetes complications, and diabetes type. The data did not capture the symptom onset and severity. The findings may not be generalizable to populations outside the United States.

DISCLOSURES:

The study was supported by the Juvenile Diabetes Research Foundation (now Breakthrough T1D). Some authors reported receiving speaker or expert testimony honoraria and research support, and some declared serving on medical or digital advisory boards or as consultants for various pharmaceutical and medical device companies.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Mental health disorders increase the likelihood of developing chronic diabetic complications and vice versa across all age groups in patients with type 1 diabetes (T1D) or type 2 diabetes (T2D).

METHODOLOGY:

  • Understanding the relative timing and association between chronic diabetic complications and mental health disorders may aid in improving diabetes screening and care.
  • Researchers used a US national healthcare claims database (data obtained from 2001 to 2018) to analyze individuals with and without T1D and T2D, who had no prior mental health disorder or chronic diabetic complication.
  • The onset and presence of chronic diabetic complications and mental health disorders were identified to determine their possible association.
  • Individuals were stratified by age: 0-19, 20-39, 40-59, and ≥ 60 years.

TAKEAWAY:

  • Researchers analyzed 44,735 patients with T1D (47.5% women) and 152,187 with T2D (46.0% women), who were matched with 356,630 individuals without diabetes (51.8% women).
  • The presence of chronic diabetic complications increased the risk for a mental health disorder across all age groups, with the highest risk seen in patients aged ≥ 60 years (hazard ratio [HR], 2.9).
  • Similarly, diagnosis of a mental health disorder increased the risk for chronic diabetic complications across all age groups, with the highest risk seen in patients aged 0-19 years (HR, 2.5).
  • Patients with T2D had a significantly higher risk for a mental health disorder and a lower risk for chronic diabetic complications than those with T1D across all age groups, except those aged ≥ 60 years.
  • The bidirectional association between mental health disorders and chronic diabetic complications was not affected by the diabetes type (P > .05 for all interactions).

IN PRACTICE:

“Clinicians and healthcare systems likely need to increase their focus on MHDs [mental health disorders], and innovative models of care are required to optimize care for both individuals with type 1 diabetes and those with type 2 diabetes,” the authors wrote.

SOURCE:

The study, led by Maya Watanabe, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, was published online in Diabetes Care.

LIMITATIONS:

The study relied on International Classification of Diseases 9th and 10th revision codes, which might have led to misclassification of mental health conditions, chronic diabetes complications, and diabetes type. The data did not capture the symptom onset and severity. The findings may not be generalizable to populations outside the United States.

DISCLOSURES:

The study was supported by the Juvenile Diabetes Research Foundation (now Breakthrough T1D). Some authors reported receiving speaker or expert testimony honoraria and research support, and some declared serving on medical or digital advisory boards or as consultants for various pharmaceutical and medical device companies.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Anxiety a Prodromal Feature of Parkinson’s Disease?

Article Type
Changed
Tue, 07/02/2024 - 12:34

Individuals with anxiety have at least a twofold higher risk of developing Parkinson’s disease than those without anxiety, new research suggested.

Investigators drew on 10-year data from primary care registry to compare almost 110,000 patients who developed anxiety after the age of 50 years with close to 900,000 matched controls without anxiety.

After adjusting for a variety of sociodemographic, lifestyle, psychiatric, and neurological factors, they found that the risk of developing Parkinson’s disease was double in those with anxiety, compared with controls.

“Anxiety is known to be a feature of the early stages of Parkinson’s disease, but prior to our study, the prospective risk of Parkinson’s in those over the age of 50 with new-onset anxiety was unknown,” colead author Juan Bazo Alvarez, a senior research fellow in the Division of Epidemiology and Health at University College London, London, England, said in a news release.

The study was published online in the British Journal of General Practice.

The presence of anxiety is increased in prodromal Parkinson’s disease, but the prospective risk for Parkinson’s disease in those aged 50 years or older with new-onset anxiety was largely unknown.

Investigators analyzed data from a large UK primary care dataset that includes all people aged between 50 and 99 years who were registered with a participating practice from Jan. 1, 2008, to Dec. 31, 2018.

They identified 109,435 people (35% men) with more than one anxiety record in the database but no previous record of anxiety for 1 year or more and 878,256 people (37% men) with no history of anxiety (control group).

Features of Parkinson’s disease such as sleep problems, depression, tremor, and impaired balance were then tracked from the point of the anxiety diagnosis until 1 year before the Parkinson’s disease diagnosis.

Among those with anxiety, 331 developed Parkinson’s disease during the follow-up period, with a median time to diagnosis of 4.9 years after the first recorded episode of anxiety.

The incidence of Parkinson’s disease was 1.2 per 1000 person-years (95% CI, 0.92-1.13) in those with anxiety versus 0.49 (95% CI, 0.47-0.52) in those without anxiety.

After adjustment for age, sex, social deprivation, lifestyle factors, severe mental illness, head trauma, and dementia, the risk for Parkinson’s disease was double in those with anxiety, compared with the non-anxiety group (hazard ratio, 2.1; 95% CI, 1.9-2.4).

Individuals without anxiety also developed Parkinson’s disease later than those with anxiety.

The researchers identified specific symptoms that were associated with later development of Parkinson’s disease in those with anxiety, including depression, sleep disturbance, fatigue, and cognitive impairment, among other symptoms.

“The results suggest that there is a strong association between anxiety and diagnosis of Parkinson’s disease in patients aged over 50 years who present with a new diagnosis of anxiety,” the authors wrote. “This provides evidence for anxiety as a prodromal presentation of Parkinson’s disease.”

Future research “should explore anxiety in relation to other prodromal symptoms and how this symptom complex is associated with the incidence of Parkinson’s disease,” the researchers wrote. Doing so “may lead to earlier diagnosis and better management of Parkinson’s disease.”

This study was funded by the European Union. Specific authors received funding from the National Institute for Health and Care Research and the Alzheimer’s Society Clinical Training Fellowship program. The authors declared no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Individuals with anxiety have at least a twofold higher risk of developing Parkinson’s disease than those without anxiety, new research suggested.

Investigators drew on 10-year data from primary care registry to compare almost 110,000 patients who developed anxiety after the age of 50 years with close to 900,000 matched controls without anxiety.

After adjusting for a variety of sociodemographic, lifestyle, psychiatric, and neurological factors, they found that the risk of developing Parkinson’s disease was double in those with anxiety, compared with controls.

“Anxiety is known to be a feature of the early stages of Parkinson’s disease, but prior to our study, the prospective risk of Parkinson’s in those over the age of 50 with new-onset anxiety was unknown,” colead author Juan Bazo Alvarez, a senior research fellow in the Division of Epidemiology and Health at University College London, London, England, said in a news release.

The study was published online in the British Journal of General Practice.

The presence of anxiety is increased in prodromal Parkinson’s disease, but the prospective risk for Parkinson’s disease in those aged 50 years or older with new-onset anxiety was largely unknown.

Investigators analyzed data from a large UK primary care dataset that includes all people aged between 50 and 99 years who were registered with a participating practice from Jan. 1, 2008, to Dec. 31, 2018.

They identified 109,435 people (35% men) with more than one anxiety record in the database but no previous record of anxiety for 1 year or more and 878,256 people (37% men) with no history of anxiety (control group).

Features of Parkinson’s disease such as sleep problems, depression, tremor, and impaired balance were then tracked from the point of the anxiety diagnosis until 1 year before the Parkinson’s disease diagnosis.

Among those with anxiety, 331 developed Parkinson’s disease during the follow-up period, with a median time to diagnosis of 4.9 years after the first recorded episode of anxiety.

The incidence of Parkinson’s disease was 1.2 per 1000 person-years (95% CI, 0.92-1.13) in those with anxiety versus 0.49 (95% CI, 0.47-0.52) in those without anxiety.

After adjustment for age, sex, social deprivation, lifestyle factors, severe mental illness, head trauma, and dementia, the risk for Parkinson’s disease was double in those with anxiety, compared with the non-anxiety group (hazard ratio, 2.1; 95% CI, 1.9-2.4).

Individuals without anxiety also developed Parkinson’s disease later than those with anxiety.

The researchers identified specific symptoms that were associated with later development of Parkinson’s disease in those with anxiety, including depression, sleep disturbance, fatigue, and cognitive impairment, among other symptoms.

“The results suggest that there is a strong association between anxiety and diagnosis of Parkinson’s disease in patients aged over 50 years who present with a new diagnosis of anxiety,” the authors wrote. “This provides evidence for anxiety as a prodromal presentation of Parkinson’s disease.”

Future research “should explore anxiety in relation to other prodromal symptoms and how this symptom complex is associated with the incidence of Parkinson’s disease,” the researchers wrote. Doing so “may lead to earlier diagnosis and better management of Parkinson’s disease.”

This study was funded by the European Union. Specific authors received funding from the National Institute for Health and Care Research and the Alzheimer’s Society Clinical Training Fellowship program. The authors declared no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Individuals with anxiety have at least a twofold higher risk of developing Parkinson’s disease than those without anxiety, new research suggested.

Investigators drew on 10-year data from primary care registry to compare almost 110,000 patients who developed anxiety after the age of 50 years with close to 900,000 matched controls without anxiety.

After adjusting for a variety of sociodemographic, lifestyle, psychiatric, and neurological factors, they found that the risk of developing Parkinson’s disease was double in those with anxiety, compared with controls.

“Anxiety is known to be a feature of the early stages of Parkinson’s disease, but prior to our study, the prospective risk of Parkinson’s in those over the age of 50 with new-onset anxiety was unknown,” colead author Juan Bazo Alvarez, a senior research fellow in the Division of Epidemiology and Health at University College London, London, England, said in a news release.

The study was published online in the British Journal of General Practice.

The presence of anxiety is increased in prodromal Parkinson’s disease, but the prospective risk for Parkinson’s disease in those aged 50 years or older with new-onset anxiety was largely unknown.

Investigators analyzed data from a large UK primary care dataset that includes all people aged between 50 and 99 years who were registered with a participating practice from Jan. 1, 2008, to Dec. 31, 2018.

They identified 109,435 people (35% men) with more than one anxiety record in the database but no previous record of anxiety for 1 year or more and 878,256 people (37% men) with no history of anxiety (control group).

Features of Parkinson’s disease such as sleep problems, depression, tremor, and impaired balance were then tracked from the point of the anxiety diagnosis until 1 year before the Parkinson’s disease diagnosis.

Among those with anxiety, 331 developed Parkinson’s disease during the follow-up period, with a median time to diagnosis of 4.9 years after the first recorded episode of anxiety.

The incidence of Parkinson’s disease was 1.2 per 1000 person-years (95% CI, 0.92-1.13) in those with anxiety versus 0.49 (95% CI, 0.47-0.52) in those without anxiety.

After adjustment for age, sex, social deprivation, lifestyle factors, severe mental illness, head trauma, and dementia, the risk for Parkinson’s disease was double in those with anxiety, compared with the non-anxiety group (hazard ratio, 2.1; 95% CI, 1.9-2.4).

Individuals without anxiety also developed Parkinson’s disease later than those with anxiety.

The researchers identified specific symptoms that were associated with later development of Parkinson’s disease in those with anxiety, including depression, sleep disturbance, fatigue, and cognitive impairment, among other symptoms.

“The results suggest that there is a strong association between anxiety and diagnosis of Parkinson’s disease in patients aged over 50 years who present with a new diagnosis of anxiety,” the authors wrote. “This provides evidence for anxiety as a prodromal presentation of Parkinson’s disease.”

Future research “should explore anxiety in relation to other prodromal symptoms and how this symptom complex is associated with the incidence of Parkinson’s disease,” the researchers wrote. Doing so “may lead to earlier diagnosis and better management of Parkinson’s disease.”

This study was funded by the European Union. Specific authors received funding from the National Institute for Health and Care Research and the Alzheimer’s Society Clinical Training Fellowship program. The authors declared no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE BRITISH JOURNAL OF GENERAL PRACTICE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Six Distinct Subtypes of Depression, Anxiety Identified via Brain Imaging

Article Type
Changed
Mon, 06/24/2024 - 12:41

Brain imaging combined with artificial intelligence has identified six distinct “biotypes” of depression and anxiety that may lead to more personalized and effective treatment.

This research has “immediate clinical implications,” study investigator Leanne Williams, PhD, director of the Stanford Medicine Center for Precision Mental Health and Wellness, told this news organization.

“At Stanford, we have started translating the imaging technology into use in a new precision mental health clinic. The technology is being actively developed for wider use in clinical settings, and we hope to make it accessible to more clinicians and patients,” Dr. Williams said.

The study was published online in Nature Medicine.

 

No More Trial and Error?

Depression is a highly heterogeneous disease, with individual patients having different symptoms and treatment responses. About 30% of patients with major depression are resistant to treatment, and about half of patients with generalized anxiety disorder do not respond to first-line treatment.

“The dominant ‘one-size-fits-all’ diagnostic approach in psychiatry leads to cycling through treatment options by trial and error, which is lengthy, expensive, and frustrating, with 30%-40% of patients not achieving remission after trying one treatment,” the authors noted.

“The goal of our work is figuring out how we can get it right the first time,” Dr. Williams said in a news release, and that requires a better understanding of the neurobiology of depression.

To that end, 801 adults diagnosed with depression and anxiety underwent functional MRI to measure brain activity at rest and when engaged in tasks designed to test cognitive and emotional functioning.

Researchers probed six brain circuits previously associated with depression: the default mode circuit, salience circuit, attention circuit, negative affect circuit, positive affect circuit, and the cognitive control circuit.

Using a machine learning technique known as cluster analysis to group the patients’ brain images, they identified six clinically distinct biotypes of depression and anxiety defined by specific profiles of dysfunction within both task-free and task-evoked brain circuits.

“Importantly for clinical translation, these biotypes predict response to different pharmacological and behavioral interventions,” investigators wrote.

For example, patients with a biotype characterized by overactivity in cognitive regions of the brain experienced the best response to the antidepressant venlafaxine, compared with patients with other biotypes.

Patients with a different biotype, characterized by higher at-rest levels of activity in three regions associated with depression and problem-solving, responded better to behavioral therapy.

In addition, those with a third biotype, who had lower levels of activity at rest in the brain circuit that controls attention, were less apt to see improvement of their symptoms with behavioral therapy than those with other biotypes. The various biotypes also correlated with differences in symptoms and task performance.

For example, individuals with overactive cognitive regions of the brain had higher levels of anhedonia than those with other biotypes, and they also performed worse on tasks measuring executive function. Those with the biotype that responded best to behavioral therapy also made errors on executive function tasks but performed well on cognitive tasks.
 

A Work in Progress

The findings provide a deeper understanding of the neurobiological underpinnings of depression and anxiety and could lead to improved diagnostic accuracy and more tailored treatment approaches, the researchers noted.

Naming the biotypes is a work in progress, Dr. Williams said.

“We have thought a lot about the naming. In the Nature Medicine paper, we use a technical convention to name the biotypes based on which brain circuit problems define each of them,” she explained.

“For example, the first biotype is called DC+SC+AC+ because it is defined by connectivity increases [C+] on three resting circuits — default mode [D], salience [S], and frontoparietal attention [A]. We are working with collaborators to generate biotype names that could be convergent across findings and labs. In the near future, we anticipate generating more descriptive medical names that clinicians could refer to alongside the technical names,” Dr. Williams said.

Commenting on the research for this news organization, James Murrough, MD, PhD, director of the Depression and Anxiety Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, called it “super exciting.”

“The work from this research group is an excellent example of where precision psychiatry research is right now, particularly with regard to the use of brain imaging to personalize treatment, and this paper gives us a glimpse of where we could be in the not-too-distant future,” Dr. Murrough said.

However, he cautioned that at this point, “we’re far from realizing the dream of precision psychiatry. We just don’t have robust evidence that brain imaging markers can really guide clinical decision-making currently.”

Funding for the study was provided by the National Institutes of Health and by Brain Resource Ltd. Dr. Williams declared US patent applications numbered 10/034,645 and 15/820,338: “Systems and methods for detecting complex networks in MRI data.” Dr. Murrough had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Brain imaging combined with artificial intelligence has identified six distinct “biotypes” of depression and anxiety that may lead to more personalized and effective treatment.

This research has “immediate clinical implications,” study investigator Leanne Williams, PhD, director of the Stanford Medicine Center for Precision Mental Health and Wellness, told this news organization.

“At Stanford, we have started translating the imaging technology into use in a new precision mental health clinic. The technology is being actively developed for wider use in clinical settings, and we hope to make it accessible to more clinicians and patients,” Dr. Williams said.

The study was published online in Nature Medicine.

 

No More Trial and Error?

Depression is a highly heterogeneous disease, with individual patients having different symptoms and treatment responses. About 30% of patients with major depression are resistant to treatment, and about half of patients with generalized anxiety disorder do not respond to first-line treatment.

“The dominant ‘one-size-fits-all’ diagnostic approach in psychiatry leads to cycling through treatment options by trial and error, which is lengthy, expensive, and frustrating, with 30%-40% of patients not achieving remission after trying one treatment,” the authors noted.

“The goal of our work is figuring out how we can get it right the first time,” Dr. Williams said in a news release, and that requires a better understanding of the neurobiology of depression.

To that end, 801 adults diagnosed with depression and anxiety underwent functional MRI to measure brain activity at rest and when engaged in tasks designed to test cognitive and emotional functioning.

Researchers probed six brain circuits previously associated with depression: the default mode circuit, salience circuit, attention circuit, negative affect circuit, positive affect circuit, and the cognitive control circuit.

Using a machine learning technique known as cluster analysis to group the patients’ brain images, they identified six clinically distinct biotypes of depression and anxiety defined by specific profiles of dysfunction within both task-free and task-evoked brain circuits.

“Importantly for clinical translation, these biotypes predict response to different pharmacological and behavioral interventions,” investigators wrote.

For example, patients with a biotype characterized by overactivity in cognitive regions of the brain experienced the best response to the antidepressant venlafaxine, compared with patients with other biotypes.

Patients with a different biotype, characterized by higher at-rest levels of activity in three regions associated with depression and problem-solving, responded better to behavioral therapy.

In addition, those with a third biotype, who had lower levels of activity at rest in the brain circuit that controls attention, were less apt to see improvement of their symptoms with behavioral therapy than those with other biotypes. The various biotypes also correlated with differences in symptoms and task performance.

For example, individuals with overactive cognitive regions of the brain had higher levels of anhedonia than those with other biotypes, and they also performed worse on tasks measuring executive function. Those with the biotype that responded best to behavioral therapy also made errors on executive function tasks but performed well on cognitive tasks.
 

A Work in Progress

The findings provide a deeper understanding of the neurobiological underpinnings of depression and anxiety and could lead to improved diagnostic accuracy and more tailored treatment approaches, the researchers noted.

Naming the biotypes is a work in progress, Dr. Williams said.

“We have thought a lot about the naming. In the Nature Medicine paper, we use a technical convention to name the biotypes based on which brain circuit problems define each of them,” she explained.

“For example, the first biotype is called DC+SC+AC+ because it is defined by connectivity increases [C+] on three resting circuits — default mode [D], salience [S], and frontoparietal attention [A]. We are working with collaborators to generate biotype names that could be convergent across findings and labs. In the near future, we anticipate generating more descriptive medical names that clinicians could refer to alongside the technical names,” Dr. Williams said.

Commenting on the research for this news organization, James Murrough, MD, PhD, director of the Depression and Anxiety Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, called it “super exciting.”

“The work from this research group is an excellent example of where precision psychiatry research is right now, particularly with regard to the use of brain imaging to personalize treatment, and this paper gives us a glimpse of where we could be in the not-too-distant future,” Dr. Murrough said.

However, he cautioned that at this point, “we’re far from realizing the dream of precision psychiatry. We just don’t have robust evidence that brain imaging markers can really guide clinical decision-making currently.”

Funding for the study was provided by the National Institutes of Health and by Brain Resource Ltd. Dr. Williams declared US patent applications numbered 10/034,645 and 15/820,338: “Systems and methods for detecting complex networks in MRI data.” Dr. Murrough had no relevant disclosures.

A version of this article appeared on Medscape.com.

Brain imaging combined with artificial intelligence has identified six distinct “biotypes” of depression and anxiety that may lead to more personalized and effective treatment.

This research has “immediate clinical implications,” study investigator Leanne Williams, PhD, director of the Stanford Medicine Center for Precision Mental Health and Wellness, told this news organization.

“At Stanford, we have started translating the imaging technology into use in a new precision mental health clinic. The technology is being actively developed for wider use in clinical settings, and we hope to make it accessible to more clinicians and patients,” Dr. Williams said.

The study was published online in Nature Medicine.

 

No More Trial and Error?

Depression is a highly heterogeneous disease, with individual patients having different symptoms and treatment responses. About 30% of patients with major depression are resistant to treatment, and about half of patients with generalized anxiety disorder do not respond to first-line treatment.

“The dominant ‘one-size-fits-all’ diagnostic approach in psychiatry leads to cycling through treatment options by trial and error, which is lengthy, expensive, and frustrating, with 30%-40% of patients not achieving remission after trying one treatment,” the authors noted.

“The goal of our work is figuring out how we can get it right the first time,” Dr. Williams said in a news release, and that requires a better understanding of the neurobiology of depression.

To that end, 801 adults diagnosed with depression and anxiety underwent functional MRI to measure brain activity at rest and when engaged in tasks designed to test cognitive and emotional functioning.

Researchers probed six brain circuits previously associated with depression: the default mode circuit, salience circuit, attention circuit, negative affect circuit, positive affect circuit, and the cognitive control circuit.

Using a machine learning technique known as cluster analysis to group the patients’ brain images, they identified six clinically distinct biotypes of depression and anxiety defined by specific profiles of dysfunction within both task-free and task-evoked brain circuits.

“Importantly for clinical translation, these biotypes predict response to different pharmacological and behavioral interventions,” investigators wrote.

For example, patients with a biotype characterized by overactivity in cognitive regions of the brain experienced the best response to the antidepressant venlafaxine, compared with patients with other biotypes.

Patients with a different biotype, characterized by higher at-rest levels of activity in three regions associated with depression and problem-solving, responded better to behavioral therapy.

In addition, those with a third biotype, who had lower levels of activity at rest in the brain circuit that controls attention, were less apt to see improvement of their symptoms with behavioral therapy than those with other biotypes. The various biotypes also correlated with differences in symptoms and task performance.

For example, individuals with overactive cognitive regions of the brain had higher levels of anhedonia than those with other biotypes, and they also performed worse on tasks measuring executive function. Those with the biotype that responded best to behavioral therapy also made errors on executive function tasks but performed well on cognitive tasks.
 

A Work in Progress

The findings provide a deeper understanding of the neurobiological underpinnings of depression and anxiety and could lead to improved diagnostic accuracy and more tailored treatment approaches, the researchers noted.

Naming the biotypes is a work in progress, Dr. Williams said.

“We have thought a lot about the naming. In the Nature Medicine paper, we use a technical convention to name the biotypes based on which brain circuit problems define each of them,” she explained.

“For example, the first biotype is called DC+SC+AC+ because it is defined by connectivity increases [C+] on three resting circuits — default mode [D], salience [S], and frontoparietal attention [A]. We are working with collaborators to generate biotype names that could be convergent across findings and labs. In the near future, we anticipate generating more descriptive medical names that clinicians could refer to alongside the technical names,” Dr. Williams said.

Commenting on the research for this news organization, James Murrough, MD, PhD, director of the Depression and Anxiety Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, called it “super exciting.”

“The work from this research group is an excellent example of where precision psychiatry research is right now, particularly with regard to the use of brain imaging to personalize treatment, and this paper gives us a glimpse of where we could be in the not-too-distant future,” Dr. Murrough said.

However, he cautioned that at this point, “we’re far from realizing the dream of precision psychiatry. We just don’t have robust evidence that brain imaging markers can really guide clinical decision-making currently.”

Funding for the study was provided by the National Institutes of Health and by Brain Resource Ltd. Dr. Williams declared US patent applications numbered 10/034,645 and 15/820,338: “Systems and methods for detecting complex networks in MRI data.” Dr. Murrough had no relevant disclosures.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Early-Life Exposure to Pollution Linked to Psychosis, Anxiety, Depression

Article Type
Changed
Mon, 06/10/2024 - 12:04

Early-life exposure to air and noise pollution is associated with a higher risk for psychosis, depression, and anxiety in adolescence and early adulthood, results from a longitudinal birth cohort study showed.

While air pollution was associated primarily with psychotic experiences and depression, noise pollution was more likely to be associated with anxiety in adolescence and early adulthood.

“Early-life exposure could be detrimental to mental health given the extensive brain development and epigenetic processes that occur in utero and during infancy,” the researchers, led by Joanne Newbury, PhD, of Bristol Medical School, University of Bristol, England, wrote, adding that “the results of this cohort study provide novel evidence that early-life exposure to particulate matter is prospectively associated with the development of psychotic experiences and depression in youth.”

The findings were published online on May 28 in JAMA Network Open.
 

Large, Longitudinal Study

To learn more about how air and noise pollution may affect the brain from an early age, the investigators used data from the Avon Longitudinal Study of Parents and Children, an ongoing longitudinal birth cohort capturing data on new births in Southwest England from 1991 to 1992.

Investigators captured levels of air pollutants, which included nitrogen dioxide and fine particulate matter with a diameter smaller than 2.5 µm (PM2.5), in the areas where expectant mothers lived and where their children lived until age 12.

They also collected decibel levels of noise pollution in neighborhoods where expectant mothers and their children lived.

Participants were assessed for psychotic experiences, depression, and anxiety when they were 13, 18, and 24 years old.

Among the 9065 participants who had mental health data, 20% reported psychotic experiences, 11% reported depression, and 10% reported anxiety. About 60% of the participants had a family history of mental illness.

When they were age 13, 13.6% of participants reported psychotic experiences; 9.2% reported them at age 18, and 12.6% at age 24.

A lower number of participants reported feeling depressed and anxious at 13 years (5.6% for depression and 3.6% for anxiety) and 18 years (7.9% for depression and 5.7% for anxiety).

After adjusting for individual and family-level variables, including family psychiatric history, maternal social class, and neighborhood deprivation, elevated PM2.5 levels during pregnancy (P = .002) and childhood (P = .04) were associated with a significantly increased risk for psychotic experiences later in life. Pregnancy PM2.5 exposure was also associated with depression (P = .01).

Participants exposed to higher noise pollution in childhood and adolescence had an increased risk for anxiety (P = .03) as teenagers.
 

Vulnerability of the Developing Brain

The investigators noted that more information is needed to understand the underlying mechanisms behind these associations but noted that early-life exposure could be detrimental to mental health given “extensive brain development and epigenetic processes that occur in utero.”

They also noted that air pollution could lead to restricted fetal growth and premature birth, both of which are risk factors for psychopathology.

Martin Clift, PhD, of Swansea University in Swansea, Wales, who was not involved in the study, said that the paper highlights the need for more consideration of health consequences related to these exposures.

“As noted by the authors, this is an area that has received a lot of recent attention, yet there remains a large void of knowledge,” Dr. Clift said in a UK Science Media Centre release. “It highlights that some of the most dominant air pollutants can impact different mental health diagnoses, but that time-of-life is particularly important as to how each individual air pollutant may impact this diagnosis.”

Study limitations included limitations to generalizability of the data — the families in the study were more affluent and less diverse than the UK population overall.

The study was funded by the UK Medical Research Council, Wellcome Trust, and University of Bristol. Disclosures were noted in the original article.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Early-life exposure to air and noise pollution is associated with a higher risk for psychosis, depression, and anxiety in adolescence and early adulthood, results from a longitudinal birth cohort study showed.

While air pollution was associated primarily with psychotic experiences and depression, noise pollution was more likely to be associated with anxiety in adolescence and early adulthood.

“Early-life exposure could be detrimental to mental health given the extensive brain development and epigenetic processes that occur in utero and during infancy,” the researchers, led by Joanne Newbury, PhD, of Bristol Medical School, University of Bristol, England, wrote, adding that “the results of this cohort study provide novel evidence that early-life exposure to particulate matter is prospectively associated with the development of psychotic experiences and depression in youth.”

The findings were published online on May 28 in JAMA Network Open.
 

Large, Longitudinal Study

To learn more about how air and noise pollution may affect the brain from an early age, the investigators used data from the Avon Longitudinal Study of Parents and Children, an ongoing longitudinal birth cohort capturing data on new births in Southwest England from 1991 to 1992.

Investigators captured levels of air pollutants, which included nitrogen dioxide and fine particulate matter with a diameter smaller than 2.5 µm (PM2.5), in the areas where expectant mothers lived and where their children lived until age 12.

They also collected decibel levels of noise pollution in neighborhoods where expectant mothers and their children lived.

Participants were assessed for psychotic experiences, depression, and anxiety when they were 13, 18, and 24 years old.

Among the 9065 participants who had mental health data, 20% reported psychotic experiences, 11% reported depression, and 10% reported anxiety. About 60% of the participants had a family history of mental illness.

When they were age 13, 13.6% of participants reported psychotic experiences; 9.2% reported them at age 18, and 12.6% at age 24.

A lower number of participants reported feeling depressed and anxious at 13 years (5.6% for depression and 3.6% for anxiety) and 18 years (7.9% for depression and 5.7% for anxiety).

After adjusting for individual and family-level variables, including family psychiatric history, maternal social class, and neighborhood deprivation, elevated PM2.5 levels during pregnancy (P = .002) and childhood (P = .04) were associated with a significantly increased risk for psychotic experiences later in life. Pregnancy PM2.5 exposure was also associated with depression (P = .01).

Participants exposed to higher noise pollution in childhood and adolescence had an increased risk for anxiety (P = .03) as teenagers.
 

Vulnerability of the Developing Brain

The investigators noted that more information is needed to understand the underlying mechanisms behind these associations but noted that early-life exposure could be detrimental to mental health given “extensive brain development and epigenetic processes that occur in utero.”

They also noted that air pollution could lead to restricted fetal growth and premature birth, both of which are risk factors for psychopathology.

Martin Clift, PhD, of Swansea University in Swansea, Wales, who was not involved in the study, said that the paper highlights the need for more consideration of health consequences related to these exposures.

“As noted by the authors, this is an area that has received a lot of recent attention, yet there remains a large void of knowledge,” Dr. Clift said in a UK Science Media Centre release. “It highlights that some of the most dominant air pollutants can impact different mental health diagnoses, but that time-of-life is particularly important as to how each individual air pollutant may impact this diagnosis.”

Study limitations included limitations to generalizability of the data — the families in the study were more affluent and less diverse than the UK population overall.

The study was funded by the UK Medical Research Council, Wellcome Trust, and University of Bristol. Disclosures were noted in the original article.

A version of this article appeared on Medscape.com.

Early-life exposure to air and noise pollution is associated with a higher risk for psychosis, depression, and anxiety in adolescence and early adulthood, results from a longitudinal birth cohort study showed.

While air pollution was associated primarily with psychotic experiences and depression, noise pollution was more likely to be associated with anxiety in adolescence and early adulthood.

“Early-life exposure could be detrimental to mental health given the extensive brain development and epigenetic processes that occur in utero and during infancy,” the researchers, led by Joanne Newbury, PhD, of Bristol Medical School, University of Bristol, England, wrote, adding that “the results of this cohort study provide novel evidence that early-life exposure to particulate matter is prospectively associated with the development of psychotic experiences and depression in youth.”

The findings were published online on May 28 in JAMA Network Open.
 

Large, Longitudinal Study

To learn more about how air and noise pollution may affect the brain from an early age, the investigators used data from the Avon Longitudinal Study of Parents and Children, an ongoing longitudinal birth cohort capturing data on new births in Southwest England from 1991 to 1992.

Investigators captured levels of air pollutants, which included nitrogen dioxide and fine particulate matter with a diameter smaller than 2.5 µm (PM2.5), in the areas where expectant mothers lived and where their children lived until age 12.

They also collected decibel levels of noise pollution in neighborhoods where expectant mothers and their children lived.

Participants were assessed for psychotic experiences, depression, and anxiety when they were 13, 18, and 24 years old.

Among the 9065 participants who had mental health data, 20% reported psychotic experiences, 11% reported depression, and 10% reported anxiety. About 60% of the participants had a family history of mental illness.

When they were age 13, 13.6% of participants reported psychotic experiences; 9.2% reported them at age 18, and 12.6% at age 24.

A lower number of participants reported feeling depressed and anxious at 13 years (5.6% for depression and 3.6% for anxiety) and 18 years (7.9% for depression and 5.7% for anxiety).

After adjusting for individual and family-level variables, including family psychiatric history, maternal social class, and neighborhood deprivation, elevated PM2.5 levels during pregnancy (P = .002) and childhood (P = .04) were associated with a significantly increased risk for psychotic experiences later in life. Pregnancy PM2.5 exposure was also associated with depression (P = .01).

Participants exposed to higher noise pollution in childhood and adolescence had an increased risk for anxiety (P = .03) as teenagers.
 

Vulnerability of the Developing Brain

The investigators noted that more information is needed to understand the underlying mechanisms behind these associations but noted that early-life exposure could be detrimental to mental health given “extensive brain development and epigenetic processes that occur in utero.”

They also noted that air pollution could lead to restricted fetal growth and premature birth, both of which are risk factors for psychopathology.

Martin Clift, PhD, of Swansea University in Swansea, Wales, who was not involved in the study, said that the paper highlights the need for more consideration of health consequences related to these exposures.

“As noted by the authors, this is an area that has received a lot of recent attention, yet there remains a large void of knowledge,” Dr. Clift said in a UK Science Media Centre release. “It highlights that some of the most dominant air pollutants can impact different mental health diagnoses, but that time-of-life is particularly important as to how each individual air pollutant may impact this diagnosis.”

Study limitations included limitations to generalizability of the data — the families in the study were more affluent and less diverse than the UK population overall.

The study was funded by the UK Medical Research Council, Wellcome Trust, and University of Bristol. Disclosures were noted in the original article.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Mental Illness ‘Transmissible’?

Article Type
Changed
Wed, 05/29/2024 - 10:12

Teens with classmates who have a mental illness have a significantly greater risk for a psychiatric diagnosis later in life, even after controlling for parents’ mental health history and other factors, a new study suggested.

The research provides new evidence that adolescents within a specific peer network may possibly “transmit” mental disorders such as depression and anxiety to each other, the investigators noted.

Having a classmate with a mental illness was associated with a 3% higher risk for subsequent psychiatric diagnosis, researchers found. The risk was highest — 13% — in the first year of follow-up and was strongest for mood, anxiety, and eating disorders.

The study is said to the be the largest to date on the topic, including data on more than 700,000 ninth graders in Finland who were followed for up to 18 years.

At least one expert noted that the numbers are higher than he would have expected, but the investigators were quick to caution the study doesn’t prove having a classmate with a mental illness leads to later psychiatric diagnosis among peers.

“The associations observed in the study are not necessarily causal,” lead investigator Jussi Alho, PhD, a postdoctoral researcher at the University of Helsinki, Finland, told this news organization. “The study did not investigate the mechanisms that explain the observed associations.”

The results were published online on May 22 in JAMA Psychiatry.
 

Few Data

Previous studies have reported a clustering of mood symptoms, eating disorders, and other psychiatric illnesses among adolescent and adult social networks. But most involve self-selected peer groups.

“Investigating the transmission of mental disorders is especially important in childhood and adolescence,” the authors noted. “Yet, despite a few survey studies reporting that adolescents may experience increased mental health symptoms when exposed to friends or peers with mental health problems, large-scale studies on the potential peer influences of mental disorders in youth are lacking,” the authors wrote.

Researchers used a database of 713,809 students in the ninth grade, about half boys and half girls. All were born between January 1, 1985, and December 31, 1997. About 47,000 were excluded as they had a mental disorder diagnosis before the study began.

Some 666,000 students in 860 schools were followed from ninth grade until the first diagnosed mental disorder, death, emigration, or the end of the study in 2019. Median follow-up was 11.4 years.

Diagnoses were gathered from Finnish registries for inpatient, outpatient, and primary care and included ICD-9 and ICD-10 diagnoses for substance misuse disorders, schizophrenia spectrum disorders, mood disorders, anxiety disorders, eating disorders, emotional and social-functioning disorders, and hyperkinetic and conduct disorders.

The authors adjusted for sex, birth year, school and ninth-grade class size, area-level urbanicity, area-level morbidity, area-level education, area-level employment rate, parental educational level, and parental mental health, with a random intercept per school.
 

Dose-Response Relationship

Overall, a quarter (167,227) of the students were diagnosed with a mental disorder.

The risk of being diagnosed with any mental disorder was 3% higher during the entire follow-up period (hazard ratio [HR], 1.03; 95% CI, 1.02-1.04). Risk was highest in the first year of follow-up (HR, 1.13; 95% CI, 1.08-1.18) and then rose again in years 4 and 5, when the risk was 5% higher with one diagnosed classmate and 10% higher with more than one diagnosed classmate.

The risk was significantly increased for mood, anxiety, and eating disorders in each follow-up time window. Investigators also noted a dose-response relationship: The more classmates with a psychiatric illness, the greater the risk for later mental illness.

“These findings suggest that mental disorders may be transmitted within adolescent peer networks,” the authors wrote.

The researchers chose to describe the spread of mental disorders among peer classmates as “transmission” in part because it has been previously used in the literature, Dr. Alho said.

Alho said the researchers also believe that transmission is an accurate term to describe the potential mechanisms by which mental disorders may spread.

The authors hypothesized that more students might be diagnosed when disorders are normalized, through increased awareness and receptivity to diagnosis and treatment.

Conversely, the rate of disorders might also have increased — especially in the first year of follow-up — if there were no students in the peer network who had been diagnosed, the authors added. Without an example, it might discourage a student to seek help.

The authors also noted that it’s “conceivable that long-term exposure to a depressive individual could lead to gradual development of depressive symptoms through the well-established neural mechanisms of emotional contagion.”
 

 

 

New Direction for Treatment?

Commenting on the findings, Madhukar H. Trivedi, MD, the Betty Jo Hay Distinguished Chair in Mental Health at UT Southwestern Medical School, Dallas, said that the theory that having classmates with psychiatric illness could normalize these conditions has merit.

Once someone is diagnosed or receives treatment, “their peers kind of get implicit permission to be able to then express their own symptoms or express their own problems, which they may have been hiding or not recognized,” he said.

However, Dr. Trivedi disagreed with the authors’ suggestion that the rate of disorders might also have increased if no classmates had received a psychiatric diagnosis, noting that it was unlikely that a student would not have been exposed to depression, anxiety, or another mood disorder — through a peer or family member — given how common those illnesses are.

“The numbers are slightly higher than I would have expected,” Dr. Trivedi said, adding that peer influence having that type of impact “is something that has not been shown before.”

The study is notable for its use of comprehensive registries, which helped solidify the data integrity, Trivedi said, and the results offer some potential new directions for treatment, such as adding peer support. That has been found useful in adult treatment but has been less utilized with adolescents, he said.

The study was funded by the European Union and the Academy of Finland. The authors reported no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Teens with classmates who have a mental illness have a significantly greater risk for a psychiatric diagnosis later in life, even after controlling for parents’ mental health history and other factors, a new study suggested.

The research provides new evidence that adolescents within a specific peer network may possibly “transmit” mental disorders such as depression and anxiety to each other, the investigators noted.

Having a classmate with a mental illness was associated with a 3% higher risk for subsequent psychiatric diagnosis, researchers found. The risk was highest — 13% — in the first year of follow-up and was strongest for mood, anxiety, and eating disorders.

The study is said to the be the largest to date on the topic, including data on more than 700,000 ninth graders in Finland who were followed for up to 18 years.

At least one expert noted that the numbers are higher than he would have expected, but the investigators were quick to caution the study doesn’t prove having a classmate with a mental illness leads to later psychiatric diagnosis among peers.

“The associations observed in the study are not necessarily causal,” lead investigator Jussi Alho, PhD, a postdoctoral researcher at the University of Helsinki, Finland, told this news organization. “The study did not investigate the mechanisms that explain the observed associations.”

The results were published online on May 22 in JAMA Psychiatry.
 

Few Data

Previous studies have reported a clustering of mood symptoms, eating disorders, and other psychiatric illnesses among adolescent and adult social networks. But most involve self-selected peer groups.

“Investigating the transmission of mental disorders is especially important in childhood and adolescence,” the authors noted. “Yet, despite a few survey studies reporting that adolescents may experience increased mental health symptoms when exposed to friends or peers with mental health problems, large-scale studies on the potential peer influences of mental disorders in youth are lacking,” the authors wrote.

Researchers used a database of 713,809 students in the ninth grade, about half boys and half girls. All were born between January 1, 1985, and December 31, 1997. About 47,000 were excluded as they had a mental disorder diagnosis before the study began.

Some 666,000 students in 860 schools were followed from ninth grade until the first diagnosed mental disorder, death, emigration, or the end of the study in 2019. Median follow-up was 11.4 years.

Diagnoses were gathered from Finnish registries for inpatient, outpatient, and primary care and included ICD-9 and ICD-10 diagnoses for substance misuse disorders, schizophrenia spectrum disorders, mood disorders, anxiety disorders, eating disorders, emotional and social-functioning disorders, and hyperkinetic and conduct disorders.

The authors adjusted for sex, birth year, school and ninth-grade class size, area-level urbanicity, area-level morbidity, area-level education, area-level employment rate, parental educational level, and parental mental health, with a random intercept per school.
 

Dose-Response Relationship

Overall, a quarter (167,227) of the students were diagnosed with a mental disorder.

The risk of being diagnosed with any mental disorder was 3% higher during the entire follow-up period (hazard ratio [HR], 1.03; 95% CI, 1.02-1.04). Risk was highest in the first year of follow-up (HR, 1.13; 95% CI, 1.08-1.18) and then rose again in years 4 and 5, when the risk was 5% higher with one diagnosed classmate and 10% higher with more than one diagnosed classmate.

The risk was significantly increased for mood, anxiety, and eating disorders in each follow-up time window. Investigators also noted a dose-response relationship: The more classmates with a psychiatric illness, the greater the risk for later mental illness.

“These findings suggest that mental disorders may be transmitted within adolescent peer networks,” the authors wrote.

The researchers chose to describe the spread of mental disorders among peer classmates as “transmission” in part because it has been previously used in the literature, Dr. Alho said.

Alho said the researchers also believe that transmission is an accurate term to describe the potential mechanisms by which mental disorders may spread.

The authors hypothesized that more students might be diagnosed when disorders are normalized, through increased awareness and receptivity to diagnosis and treatment.

Conversely, the rate of disorders might also have increased — especially in the first year of follow-up — if there were no students in the peer network who had been diagnosed, the authors added. Without an example, it might discourage a student to seek help.

The authors also noted that it’s “conceivable that long-term exposure to a depressive individual could lead to gradual development of depressive symptoms through the well-established neural mechanisms of emotional contagion.”
 

 

 

New Direction for Treatment?

Commenting on the findings, Madhukar H. Trivedi, MD, the Betty Jo Hay Distinguished Chair in Mental Health at UT Southwestern Medical School, Dallas, said that the theory that having classmates with psychiatric illness could normalize these conditions has merit.

Once someone is diagnosed or receives treatment, “their peers kind of get implicit permission to be able to then express their own symptoms or express their own problems, which they may have been hiding or not recognized,” he said.

However, Dr. Trivedi disagreed with the authors’ suggestion that the rate of disorders might also have increased if no classmates had received a psychiatric diagnosis, noting that it was unlikely that a student would not have been exposed to depression, anxiety, or another mood disorder — through a peer or family member — given how common those illnesses are.

“The numbers are slightly higher than I would have expected,” Dr. Trivedi said, adding that peer influence having that type of impact “is something that has not been shown before.”

The study is notable for its use of comprehensive registries, which helped solidify the data integrity, Trivedi said, and the results offer some potential new directions for treatment, such as adding peer support. That has been found useful in adult treatment but has been less utilized with adolescents, he said.

The study was funded by the European Union and the Academy of Finland. The authors reported no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Teens with classmates who have a mental illness have a significantly greater risk for a psychiatric diagnosis later in life, even after controlling for parents’ mental health history and other factors, a new study suggested.

The research provides new evidence that adolescents within a specific peer network may possibly “transmit” mental disorders such as depression and anxiety to each other, the investigators noted.

Having a classmate with a mental illness was associated with a 3% higher risk for subsequent psychiatric diagnosis, researchers found. The risk was highest — 13% — in the first year of follow-up and was strongest for mood, anxiety, and eating disorders.

The study is said to the be the largest to date on the topic, including data on more than 700,000 ninth graders in Finland who were followed for up to 18 years.

At least one expert noted that the numbers are higher than he would have expected, but the investigators were quick to caution the study doesn’t prove having a classmate with a mental illness leads to later psychiatric diagnosis among peers.

“The associations observed in the study are not necessarily causal,” lead investigator Jussi Alho, PhD, a postdoctoral researcher at the University of Helsinki, Finland, told this news organization. “The study did not investigate the mechanisms that explain the observed associations.”

The results were published online on May 22 in JAMA Psychiatry.
 

Few Data

Previous studies have reported a clustering of mood symptoms, eating disorders, and other psychiatric illnesses among adolescent and adult social networks. But most involve self-selected peer groups.

“Investigating the transmission of mental disorders is especially important in childhood and adolescence,” the authors noted. “Yet, despite a few survey studies reporting that adolescents may experience increased mental health symptoms when exposed to friends or peers with mental health problems, large-scale studies on the potential peer influences of mental disorders in youth are lacking,” the authors wrote.

Researchers used a database of 713,809 students in the ninth grade, about half boys and half girls. All were born between January 1, 1985, and December 31, 1997. About 47,000 were excluded as they had a mental disorder diagnosis before the study began.

Some 666,000 students in 860 schools were followed from ninth grade until the first diagnosed mental disorder, death, emigration, or the end of the study in 2019. Median follow-up was 11.4 years.

Diagnoses were gathered from Finnish registries for inpatient, outpatient, and primary care and included ICD-9 and ICD-10 diagnoses for substance misuse disorders, schizophrenia spectrum disorders, mood disorders, anxiety disorders, eating disorders, emotional and social-functioning disorders, and hyperkinetic and conduct disorders.

The authors adjusted for sex, birth year, school and ninth-grade class size, area-level urbanicity, area-level morbidity, area-level education, area-level employment rate, parental educational level, and parental mental health, with a random intercept per school.
 

Dose-Response Relationship

Overall, a quarter (167,227) of the students were diagnosed with a mental disorder.

The risk of being diagnosed with any mental disorder was 3% higher during the entire follow-up period (hazard ratio [HR], 1.03; 95% CI, 1.02-1.04). Risk was highest in the first year of follow-up (HR, 1.13; 95% CI, 1.08-1.18) and then rose again in years 4 and 5, when the risk was 5% higher with one diagnosed classmate and 10% higher with more than one diagnosed classmate.

The risk was significantly increased for mood, anxiety, and eating disorders in each follow-up time window. Investigators also noted a dose-response relationship: The more classmates with a psychiatric illness, the greater the risk for later mental illness.

“These findings suggest that mental disorders may be transmitted within adolescent peer networks,” the authors wrote.

The researchers chose to describe the spread of mental disorders among peer classmates as “transmission” in part because it has been previously used in the literature, Dr. Alho said.

Alho said the researchers also believe that transmission is an accurate term to describe the potential mechanisms by which mental disorders may spread.

The authors hypothesized that more students might be diagnosed when disorders are normalized, through increased awareness and receptivity to diagnosis and treatment.

Conversely, the rate of disorders might also have increased — especially in the first year of follow-up — if there were no students in the peer network who had been diagnosed, the authors added. Without an example, it might discourage a student to seek help.

The authors also noted that it’s “conceivable that long-term exposure to a depressive individual could lead to gradual development of depressive symptoms through the well-established neural mechanisms of emotional contagion.”
 

 

 

New Direction for Treatment?

Commenting on the findings, Madhukar H. Trivedi, MD, the Betty Jo Hay Distinguished Chair in Mental Health at UT Southwestern Medical School, Dallas, said that the theory that having classmates with psychiatric illness could normalize these conditions has merit.

Once someone is diagnosed or receives treatment, “their peers kind of get implicit permission to be able to then express their own symptoms or express their own problems, which they may have been hiding or not recognized,” he said.

However, Dr. Trivedi disagreed with the authors’ suggestion that the rate of disorders might also have increased if no classmates had received a psychiatric diagnosis, noting that it was unlikely that a student would not have been exposed to depression, anxiety, or another mood disorder — through a peer or family member — given how common those illnesses are.

“The numbers are slightly higher than I would have expected,” Dr. Trivedi said, adding that peer influence having that type of impact “is something that has not been shown before.”

The study is notable for its use of comprehensive registries, which helped solidify the data integrity, Trivedi said, and the results offer some potential new directions for treatment, such as adding peer support. That has been found useful in adult treatment but has been less utilized with adolescents, he said.

The study was funded by the European Union and the Academy of Finland. The authors reported no relevant financial relationships.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Greater Awareness Urged for Important, Overlooked Neuropsychiatric Symptoms of Lupus

Article Type
Changed
Tue, 05/28/2024 - 13:37

Neuropsychiatric symptoms, including nightmares and hallucinatory “daymares,” may be a more important aspect of systemic lupus erythematosus (SLE) than formerly recognized, according to a qualitative mixed methods study published in The Lancet Discovery Science’s eClinicalMedicine. The findings suggested these neuropsychiatric symptoms can sometimes present as prodromal and other times act as an early warning system for a forthcoming flare.

“For clinicians, the key point is to be aware that neurological and psychiatric symptoms are much more common in patients with lupus and other autoimmune systemic rheumatic diseases than previously thought,” lead author Melanie Sloan, PhD, of the Department of Public Health and Primary Care at the University of Cambridge in England, told this news organization.

“If clinicians — and some do already — could all ask about and document these symptoms for each patient, the usual progression of symptoms in a flare can then be monitored, and patients could be supported and treated at an earlier stage,” Dr. Sloan said. “Another key point is to consider systemic autoimmune diseases at an early stage if a patient presents with multiple seemingly unconnected symptoms, which often include both physical and mental health symptoms.”

Alfred Kim, MD, PhD, associate professor of medicine in rheumatology at Washington University School of Medicine in St. Louis, Missouri, noted the difficulty of determining what neuropsychiatric symptoms may be linked to lupus vs those occurring independently or as part of a different condition.

Dr. Alfred Kim, director of the Washington University Lupus Clinic
Dr. Kim
Dr. Alfred Kim


“There is some controversy about whether the neuropsychiatric manifestations that we have long attributed to lupus actually are due to lupus,” Dr. Kim told this news organization. Dr. Kim was part of a group that published a review on potential mechanisms underlying neuropsychiatric symptoms described by a committee of the American College of Rheumatology.

Since that committee’s findings, “we have long assumed that if we saw these symptoms, the best explanation was lupus,” Dr. Kim said. “The problem is that, in the real world, we can see many of these manifestations in patients with lupus that do not get better with lupus meds. This opens up the very real possibility that another etiology is at play.”

Dr. Kim noted that mood disorders such as depression and anxiety may be part of the neuropsychiatric SLE criteria, but they failed to correlate with overall lupus disease activity in a cohort he evaluated. That makes it hard to distinguish whether those neuropsychiatric symptoms can actually be attributed to lupus. “Probably the more accurate interpretation is that there may be certain symptoms, such as nightmares, that indicated a prodrome of lupus,” he said. “Whether these are actually lupus symptoms is debatable to me.”

There remains value in initiating discussions about these symptoms with patients, however, because the stigma associated with neuropsychiatric symptoms may prevent patients from bringing them up themselves.

“It is important to remember that many of these patients, in common with other chronic diseases, will often have had long and traumatic journeys to diagnosis,” including having been misdiagnosed with a psychiatric condition, Dr. Sloan said. “Many of the patients then lose trust in doctors and are reluctant to report symptoms that may lead to another misdiagnosis.”

Clinicians may also be reluctant to bring up these symptoms, but for different reasons. Their reluctance may stem from insufficient time to discuss the symptoms or not having the support available to help the patients with these particular problems, Dr. Sloan said. The invisible nature of these symptoms, which lack biomarkers, makes them harder to identify and makes listening to patients more important, she added.
 

 

 

Study Details

In planning for the study, the researchers first searched the existing literature for studies involving neuropsychiatric symptoms in patients with systemic autoimmune rheumatic diseases (SARDs). “The literature indicated frequent underreporting and misattributions of neuropsychiatric symptoms in SLE and other SARD patients, and clinician-patient discordance in neuropsychiatric symptom attribution,” the authors reported.

During 2022-2023, the researchers conducted two surveys, one with 676 adult patients with SLE and one with 400 clinicians, recruited through social media, online patient support groups, and professional networks. All patients self-reported an SLE diagnosis that the researchers did not independently confirm. The patients were predominantly White (80%) and female (94%), ranging in age from 18 to over 70, with most falling between ages 40 and 69. Most patients lived in the United Kingdom (76%) or Europe (15%).

The clinicians included 51% rheumatologists, 24% psychiatrists, 13% neurologists, 5% rheumatology nurses, 3% primary care physicians, and 7% other clinicians. Nearly half of the clinicians (45%) were from the United Kingdom, with others from the United States or Canada (16%), Europe (17%), Asia (9%), Latin America (8%), Australia or New Zealand (3%), or elsewhere (3%).

The patient surveys asked whether they had experienced any of the 29 neuropsychiatric symptoms. For the symptoms that patients had experienced at least three times in their lives, the survey asked when they first experienced the symptom in relation to their SLE onset or other SLE symptoms: Over a year before, within a year of (on either side), 1-4 years after, or more than 5 years after onset/other symptoms. “Other quantitative data included timings of disrupted dreaming sleep in relation to hallucinations for those patients reporting experiencing these,” the authors wrote.

The researchers also conducted video conference interviews with 50 clinicians, including 20 rheumatologists, and 69 interviews with patients who had a systemic autoimmune rheumatic disease, including 27 patients with SLE. Other conditions among those interviewed included inflammatory arthritis, vasculitis, Sjögren disease, systemic sclerosis, myositis, undifferentiated and mixed connective tissue diseases, and polymyalgia rheumatica. During interviews, the term “daymare” was used to discuss possible hallucinations.
 

Linking Neuropsychiatric Symptoms and Disease

Four themes emerged from the analysis of the surveys and interviews. First, despite many rheumatologists stating that it was an “established theory” that most neuropsychiatric symptoms related to SLE would initially present around the time of diagnosis or disease onset, the findings from patients and interviews with psychiatrists did not align with this theory. The first presentation of each neuropsychiatric symptom only occurred around the onset of other SLE symptoms, about one fifth to one third of the time. In fact, more than half of the patients with SLE who had experienced hallucinations or delusions/paranoia said they occurred more than a year after they first experienced their other SLE symptoms.

Patient experiences differed in terms of whether they believed their neuropsychiatric symptoms were directly related to their SLE or other rheumatic disease. Some did attribute the symptoms, such as hypomania, to their rheumatic illness, while others, such as a patient with major depression, did not see the two as linked.

A second theme focused on pattern recognition of neuropsychiatric symptoms and the onset of a disease flare. “For example, several patients described how they felt that some types of depressive symptoms were directly attributable to active inflammation due to its time of onset and differences in type and intensity compared to their more ‘reactive’ low mood that could be more attributable to a consequence of psychological distress,” the authors wrote. Another common report from patients was experiencing a sudden, intense fatigue that coincided with a flare and differed from other types of fatigue.

Some patients could recognize that a flare was coming because of familiar neuropsychiatric symptoms that acted like an “early warning system.” Often, however, these symptoms “were absent from current diagnostic guidelines and only rarely identified by clinician interviewees as related to SLE/NPSLE,” the authors found. “These neuropsychiatric prodromal symptoms were reported as sometimes preceding the more widely recognized SLE and other SARD symptoms such as joint pain, rashes, and other organ involvement.” These symptoms included sudden changes in mood (usually a lowering but sometimes mania), increased nightmares, a “feeling of unreality,” or increased sensory symptoms.

Other patients, on the other hand, had not considered a link between neuropsychiatric symptoms and their rheumatic disease until the interview, and many of the clinicians, aside from psychiatrists and nurses, said they had little time in clinic to gather information about symptom progression.
 

 

 

Nightmares and Daymares

A third theme centered on disrupted dreaming sleep, nightmares, and “daymares” as a prodromal symptom in particular. Some patients had already drawn a connection between an oncoming flare of their disease and these dreaming-related symptoms, while others had not considered a link until the interviews.

“Several SLE patients recounted flares consistently involving the segueing of increasingly vivid and distressing nightmares into distorted reality and daytime hallucinations,” the authors reported. Flare-related nightmares in particular “often involved being attacked, trapped, crushed, or falling.” Patients tended to be more forthcoming about hallucinatory experiences when the term “daymare” was used to describe them, and they often related to the idea of feeling “in-between asleep and awake.”

Only one of the rheumatologists interviewed had considered nightmares as potentially related to SLE flares, and several appeared skeptical about a link but planned to ask their patients about it. Most of the specialists interviewed, meanwhile, said they often discussed sleep disruption with patients.

“There was agreement that recognizing and eliciting these early flare symptoms may improve care and even reduce clinic times by averting flares at any earlier stage, although some rheumatologists were clear that limited appointment times meant that these symptoms would not be prioritized for discussion,” the authors wrote.

Though Dr. Kim acknowledged the possibility of nightmares as prodromal, he noted other ways in which nightmares may be indirectly linked to lupus. “Trauma is a major risk factor for lupus,” Dr. Kim said, with multiple studies showing childhood traumatic experiences and even posttraumatic stress disorder to be risk factors for lupus. “Whether nightmares represent a traumatic event or prior traumatic events is not clear to me, but one could hypothesize that this may be a manifestation of trauma,” Dr. Kim said.

In addition, nightmares represent a sleep disorder that can substantially reduce sleep quality, Dr. Kim said, and poor sleep is also associated with lupus. “One has to wonder whether disruptive dreaming sleep is one of several specific manifestations of poor sleep quality, which then increases the risk of lupus in those patients,” Dr. Kim said.
 

Misattribution of Neuropsychiatric Symptoms

The final theme to emerge from the findings was patients had been misdiagnosed with psychiatric or psychosomatic conditions shortly before getting their rheumatic disease diagnosis. One patient, for example, reported being diagnosed with borderline personality disorder just 6 months before the lupus diagnosis at age 19 and noticed that the symptoms of one “got under control” when the symptoms of the other did.

“Early misattributions of SARD symptoms to primary psychiatric or psychosomatic conditions were frequently reported to have delayed SARD diagnosis and led to future misattributions,” the authors reported. “Whilst some of these misdiagnoses likely reflect the widespread lack of knowledge and limited definitive tests for SLE, it is plausible that some early SLE neurological and/or psychiatric symptoms may represent a neuropsychiatric prodrome for SLE itself.”

Dr. Kim agreed that misattribution of symptoms to other diagnoses is common with lupus and a common reason for delays in diagnosis, even with symptoms that are not neuropsychiatric. The findings in this study broaden “the type of symptoms we need to put on our radar pre-diagnosis,” Dr. Kim said. “We just also have to be aware that these prodromal symptoms are not diagnostic for lupus, though.”

Dr. Sloan cited earlier work in recommending an “ABC” approach to improving clinician-patient relationships: “Availability is being accessible when patients need them, Belief is demonstrating belief and validating patient self-reports of symptoms, and Continuity is when the same clinician sees the same patient each clinic visit to build up a trusting relationship.” She noted the importance of asking about and normalizing the existence of these symptoms with rheumatic diseases.

The research was funded by The Lupus Trust. Three authors reported consultancy, speaker, or advisory fees from Alumis, Amgen, AstraZeneca, Eli Lilly, GlaxoSmithKline, Janssen, MGP, Novartis, Pfizer, Sanofi, UCB, Vifor, and/or Werfen Group. The other authors, including Dr. Sloan, had no industry-related disclosures. Dr. Kim reported research support from AstraZeneca, GlaxoSmithKline, and Novartis; speaking fees from Exagen Diagnostics and GlaxoSmithKline; and consulting fees from AbbVie, Amgen, ANI Pharmaceuticals, AstraZeneca, Atara Bio, Aurinia Pharmaceuticals, Cargo Therapeutics, Exagen Diagnostics, Hinge Bio, GlaxoSmithKline, Kypha, Miltenyi Biotec, Synthekine, and Tectonic Therapeutic.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Neuropsychiatric symptoms, including nightmares and hallucinatory “daymares,” may be a more important aspect of systemic lupus erythematosus (SLE) than formerly recognized, according to a qualitative mixed methods study published in The Lancet Discovery Science’s eClinicalMedicine. The findings suggested these neuropsychiatric symptoms can sometimes present as prodromal and other times act as an early warning system for a forthcoming flare.

“For clinicians, the key point is to be aware that neurological and psychiatric symptoms are much more common in patients with lupus and other autoimmune systemic rheumatic diseases than previously thought,” lead author Melanie Sloan, PhD, of the Department of Public Health and Primary Care at the University of Cambridge in England, told this news organization.

“If clinicians — and some do already — could all ask about and document these symptoms for each patient, the usual progression of symptoms in a flare can then be monitored, and patients could be supported and treated at an earlier stage,” Dr. Sloan said. “Another key point is to consider systemic autoimmune diseases at an early stage if a patient presents with multiple seemingly unconnected symptoms, which often include both physical and mental health symptoms.”

Alfred Kim, MD, PhD, associate professor of medicine in rheumatology at Washington University School of Medicine in St. Louis, Missouri, noted the difficulty of determining what neuropsychiatric symptoms may be linked to lupus vs those occurring independently or as part of a different condition.

Dr. Alfred Kim, director of the Washington University Lupus Clinic
Dr. Kim
Dr. Alfred Kim


“There is some controversy about whether the neuropsychiatric manifestations that we have long attributed to lupus actually are due to lupus,” Dr. Kim told this news organization. Dr. Kim was part of a group that published a review on potential mechanisms underlying neuropsychiatric symptoms described by a committee of the American College of Rheumatology.

Since that committee’s findings, “we have long assumed that if we saw these symptoms, the best explanation was lupus,” Dr. Kim said. “The problem is that, in the real world, we can see many of these manifestations in patients with lupus that do not get better with lupus meds. This opens up the very real possibility that another etiology is at play.”

Dr. Kim noted that mood disorders such as depression and anxiety may be part of the neuropsychiatric SLE criteria, but they failed to correlate with overall lupus disease activity in a cohort he evaluated. That makes it hard to distinguish whether those neuropsychiatric symptoms can actually be attributed to lupus. “Probably the more accurate interpretation is that there may be certain symptoms, such as nightmares, that indicated a prodrome of lupus,” he said. “Whether these are actually lupus symptoms is debatable to me.”

There remains value in initiating discussions about these symptoms with patients, however, because the stigma associated with neuropsychiatric symptoms may prevent patients from bringing them up themselves.

“It is important to remember that many of these patients, in common with other chronic diseases, will often have had long and traumatic journeys to diagnosis,” including having been misdiagnosed with a psychiatric condition, Dr. Sloan said. “Many of the patients then lose trust in doctors and are reluctant to report symptoms that may lead to another misdiagnosis.”

Clinicians may also be reluctant to bring up these symptoms, but for different reasons. Their reluctance may stem from insufficient time to discuss the symptoms or not having the support available to help the patients with these particular problems, Dr. Sloan said. The invisible nature of these symptoms, which lack biomarkers, makes them harder to identify and makes listening to patients more important, she added.
 

 

 

Study Details

In planning for the study, the researchers first searched the existing literature for studies involving neuropsychiatric symptoms in patients with systemic autoimmune rheumatic diseases (SARDs). “The literature indicated frequent underreporting and misattributions of neuropsychiatric symptoms in SLE and other SARD patients, and clinician-patient discordance in neuropsychiatric symptom attribution,” the authors reported.

During 2022-2023, the researchers conducted two surveys, one with 676 adult patients with SLE and one with 400 clinicians, recruited through social media, online patient support groups, and professional networks. All patients self-reported an SLE diagnosis that the researchers did not independently confirm. The patients were predominantly White (80%) and female (94%), ranging in age from 18 to over 70, with most falling between ages 40 and 69. Most patients lived in the United Kingdom (76%) or Europe (15%).

The clinicians included 51% rheumatologists, 24% psychiatrists, 13% neurologists, 5% rheumatology nurses, 3% primary care physicians, and 7% other clinicians. Nearly half of the clinicians (45%) were from the United Kingdom, with others from the United States or Canada (16%), Europe (17%), Asia (9%), Latin America (8%), Australia or New Zealand (3%), or elsewhere (3%).

The patient surveys asked whether they had experienced any of the 29 neuropsychiatric symptoms. For the symptoms that patients had experienced at least three times in their lives, the survey asked when they first experienced the symptom in relation to their SLE onset or other SLE symptoms: Over a year before, within a year of (on either side), 1-4 years after, or more than 5 years after onset/other symptoms. “Other quantitative data included timings of disrupted dreaming sleep in relation to hallucinations for those patients reporting experiencing these,” the authors wrote.

The researchers also conducted video conference interviews with 50 clinicians, including 20 rheumatologists, and 69 interviews with patients who had a systemic autoimmune rheumatic disease, including 27 patients with SLE. Other conditions among those interviewed included inflammatory arthritis, vasculitis, Sjögren disease, systemic sclerosis, myositis, undifferentiated and mixed connective tissue diseases, and polymyalgia rheumatica. During interviews, the term “daymare” was used to discuss possible hallucinations.
 

Linking Neuropsychiatric Symptoms and Disease

Four themes emerged from the analysis of the surveys and interviews. First, despite many rheumatologists stating that it was an “established theory” that most neuropsychiatric symptoms related to SLE would initially present around the time of diagnosis or disease onset, the findings from patients and interviews with psychiatrists did not align with this theory. The first presentation of each neuropsychiatric symptom only occurred around the onset of other SLE symptoms, about one fifth to one third of the time. In fact, more than half of the patients with SLE who had experienced hallucinations or delusions/paranoia said they occurred more than a year after they first experienced their other SLE symptoms.

Patient experiences differed in terms of whether they believed their neuropsychiatric symptoms were directly related to their SLE or other rheumatic disease. Some did attribute the symptoms, such as hypomania, to their rheumatic illness, while others, such as a patient with major depression, did not see the two as linked.

A second theme focused on pattern recognition of neuropsychiatric symptoms and the onset of a disease flare. “For example, several patients described how they felt that some types of depressive symptoms were directly attributable to active inflammation due to its time of onset and differences in type and intensity compared to their more ‘reactive’ low mood that could be more attributable to a consequence of psychological distress,” the authors wrote. Another common report from patients was experiencing a sudden, intense fatigue that coincided with a flare and differed from other types of fatigue.

Some patients could recognize that a flare was coming because of familiar neuropsychiatric symptoms that acted like an “early warning system.” Often, however, these symptoms “were absent from current diagnostic guidelines and only rarely identified by clinician interviewees as related to SLE/NPSLE,” the authors found. “These neuropsychiatric prodromal symptoms were reported as sometimes preceding the more widely recognized SLE and other SARD symptoms such as joint pain, rashes, and other organ involvement.” These symptoms included sudden changes in mood (usually a lowering but sometimes mania), increased nightmares, a “feeling of unreality,” or increased sensory symptoms.

Other patients, on the other hand, had not considered a link between neuropsychiatric symptoms and their rheumatic disease until the interview, and many of the clinicians, aside from psychiatrists and nurses, said they had little time in clinic to gather information about symptom progression.
 

 

 

Nightmares and Daymares

A third theme centered on disrupted dreaming sleep, nightmares, and “daymares” as a prodromal symptom in particular. Some patients had already drawn a connection between an oncoming flare of their disease and these dreaming-related symptoms, while others had not considered a link until the interviews.

“Several SLE patients recounted flares consistently involving the segueing of increasingly vivid and distressing nightmares into distorted reality and daytime hallucinations,” the authors reported. Flare-related nightmares in particular “often involved being attacked, trapped, crushed, or falling.” Patients tended to be more forthcoming about hallucinatory experiences when the term “daymare” was used to describe them, and they often related to the idea of feeling “in-between asleep and awake.”

Only one of the rheumatologists interviewed had considered nightmares as potentially related to SLE flares, and several appeared skeptical about a link but planned to ask their patients about it. Most of the specialists interviewed, meanwhile, said they often discussed sleep disruption with patients.

“There was agreement that recognizing and eliciting these early flare symptoms may improve care and even reduce clinic times by averting flares at any earlier stage, although some rheumatologists were clear that limited appointment times meant that these symptoms would not be prioritized for discussion,” the authors wrote.

Though Dr. Kim acknowledged the possibility of nightmares as prodromal, he noted other ways in which nightmares may be indirectly linked to lupus. “Trauma is a major risk factor for lupus,” Dr. Kim said, with multiple studies showing childhood traumatic experiences and even posttraumatic stress disorder to be risk factors for lupus. “Whether nightmares represent a traumatic event or prior traumatic events is not clear to me, but one could hypothesize that this may be a manifestation of trauma,” Dr. Kim said.

In addition, nightmares represent a sleep disorder that can substantially reduce sleep quality, Dr. Kim said, and poor sleep is also associated with lupus. “One has to wonder whether disruptive dreaming sleep is one of several specific manifestations of poor sleep quality, which then increases the risk of lupus in those patients,” Dr. Kim said.
 

Misattribution of Neuropsychiatric Symptoms

The final theme to emerge from the findings was patients had been misdiagnosed with psychiatric or psychosomatic conditions shortly before getting their rheumatic disease diagnosis. One patient, for example, reported being diagnosed with borderline personality disorder just 6 months before the lupus diagnosis at age 19 and noticed that the symptoms of one “got under control” when the symptoms of the other did.

“Early misattributions of SARD symptoms to primary psychiatric or psychosomatic conditions were frequently reported to have delayed SARD diagnosis and led to future misattributions,” the authors reported. “Whilst some of these misdiagnoses likely reflect the widespread lack of knowledge and limited definitive tests for SLE, it is plausible that some early SLE neurological and/or psychiatric symptoms may represent a neuropsychiatric prodrome for SLE itself.”

Dr. Kim agreed that misattribution of symptoms to other diagnoses is common with lupus and a common reason for delays in diagnosis, even with symptoms that are not neuropsychiatric. The findings in this study broaden “the type of symptoms we need to put on our radar pre-diagnosis,” Dr. Kim said. “We just also have to be aware that these prodromal symptoms are not diagnostic for lupus, though.”

Dr. Sloan cited earlier work in recommending an “ABC” approach to improving clinician-patient relationships: “Availability is being accessible when patients need them, Belief is demonstrating belief and validating patient self-reports of symptoms, and Continuity is when the same clinician sees the same patient each clinic visit to build up a trusting relationship.” She noted the importance of asking about and normalizing the existence of these symptoms with rheumatic diseases.

The research was funded by The Lupus Trust. Three authors reported consultancy, speaker, or advisory fees from Alumis, Amgen, AstraZeneca, Eli Lilly, GlaxoSmithKline, Janssen, MGP, Novartis, Pfizer, Sanofi, UCB, Vifor, and/or Werfen Group. The other authors, including Dr. Sloan, had no industry-related disclosures. Dr. Kim reported research support from AstraZeneca, GlaxoSmithKline, and Novartis; speaking fees from Exagen Diagnostics and GlaxoSmithKline; and consulting fees from AbbVie, Amgen, ANI Pharmaceuticals, AstraZeneca, Atara Bio, Aurinia Pharmaceuticals, Cargo Therapeutics, Exagen Diagnostics, Hinge Bio, GlaxoSmithKline, Kypha, Miltenyi Biotec, Synthekine, and Tectonic Therapeutic.
 

A version of this article appeared on Medscape.com.

Neuropsychiatric symptoms, including nightmares and hallucinatory “daymares,” may be a more important aspect of systemic lupus erythematosus (SLE) than formerly recognized, according to a qualitative mixed methods study published in The Lancet Discovery Science’s eClinicalMedicine. The findings suggested these neuropsychiatric symptoms can sometimes present as prodromal and other times act as an early warning system for a forthcoming flare.

“For clinicians, the key point is to be aware that neurological and psychiatric symptoms are much more common in patients with lupus and other autoimmune systemic rheumatic diseases than previously thought,” lead author Melanie Sloan, PhD, of the Department of Public Health and Primary Care at the University of Cambridge in England, told this news organization.

“If clinicians — and some do already — could all ask about and document these symptoms for each patient, the usual progression of symptoms in a flare can then be monitored, and patients could be supported and treated at an earlier stage,” Dr. Sloan said. “Another key point is to consider systemic autoimmune diseases at an early stage if a patient presents with multiple seemingly unconnected symptoms, which often include both physical and mental health symptoms.”

Alfred Kim, MD, PhD, associate professor of medicine in rheumatology at Washington University School of Medicine in St. Louis, Missouri, noted the difficulty of determining what neuropsychiatric symptoms may be linked to lupus vs those occurring independently or as part of a different condition.

Dr. Alfred Kim, director of the Washington University Lupus Clinic
Dr. Kim
Dr. Alfred Kim


“There is some controversy about whether the neuropsychiatric manifestations that we have long attributed to lupus actually are due to lupus,” Dr. Kim told this news organization. Dr. Kim was part of a group that published a review on potential mechanisms underlying neuropsychiatric symptoms described by a committee of the American College of Rheumatology.

Since that committee’s findings, “we have long assumed that if we saw these symptoms, the best explanation was lupus,” Dr. Kim said. “The problem is that, in the real world, we can see many of these manifestations in patients with lupus that do not get better with lupus meds. This opens up the very real possibility that another etiology is at play.”

Dr. Kim noted that mood disorders such as depression and anxiety may be part of the neuropsychiatric SLE criteria, but they failed to correlate with overall lupus disease activity in a cohort he evaluated. That makes it hard to distinguish whether those neuropsychiatric symptoms can actually be attributed to lupus. “Probably the more accurate interpretation is that there may be certain symptoms, such as nightmares, that indicated a prodrome of lupus,” he said. “Whether these are actually lupus symptoms is debatable to me.”

There remains value in initiating discussions about these symptoms with patients, however, because the stigma associated with neuropsychiatric symptoms may prevent patients from bringing them up themselves.

“It is important to remember that many of these patients, in common with other chronic diseases, will often have had long and traumatic journeys to diagnosis,” including having been misdiagnosed with a psychiatric condition, Dr. Sloan said. “Many of the patients then lose trust in doctors and are reluctant to report symptoms that may lead to another misdiagnosis.”

Clinicians may also be reluctant to bring up these symptoms, but for different reasons. Their reluctance may stem from insufficient time to discuss the symptoms or not having the support available to help the patients with these particular problems, Dr. Sloan said. The invisible nature of these symptoms, which lack biomarkers, makes them harder to identify and makes listening to patients more important, she added.
 

 

 

Study Details

In planning for the study, the researchers first searched the existing literature for studies involving neuropsychiatric symptoms in patients with systemic autoimmune rheumatic diseases (SARDs). “The literature indicated frequent underreporting and misattributions of neuropsychiatric symptoms in SLE and other SARD patients, and clinician-patient discordance in neuropsychiatric symptom attribution,” the authors reported.

During 2022-2023, the researchers conducted two surveys, one with 676 adult patients with SLE and one with 400 clinicians, recruited through social media, online patient support groups, and professional networks. All patients self-reported an SLE diagnosis that the researchers did not independently confirm. The patients were predominantly White (80%) and female (94%), ranging in age from 18 to over 70, with most falling between ages 40 and 69. Most patients lived in the United Kingdom (76%) or Europe (15%).

The clinicians included 51% rheumatologists, 24% psychiatrists, 13% neurologists, 5% rheumatology nurses, 3% primary care physicians, and 7% other clinicians. Nearly half of the clinicians (45%) were from the United Kingdom, with others from the United States or Canada (16%), Europe (17%), Asia (9%), Latin America (8%), Australia or New Zealand (3%), or elsewhere (3%).

The patient surveys asked whether they had experienced any of the 29 neuropsychiatric symptoms. For the symptoms that patients had experienced at least three times in their lives, the survey asked when they first experienced the symptom in relation to their SLE onset or other SLE symptoms: Over a year before, within a year of (on either side), 1-4 years after, or more than 5 years after onset/other symptoms. “Other quantitative data included timings of disrupted dreaming sleep in relation to hallucinations for those patients reporting experiencing these,” the authors wrote.

The researchers also conducted video conference interviews with 50 clinicians, including 20 rheumatologists, and 69 interviews with patients who had a systemic autoimmune rheumatic disease, including 27 patients with SLE. Other conditions among those interviewed included inflammatory arthritis, vasculitis, Sjögren disease, systemic sclerosis, myositis, undifferentiated and mixed connective tissue diseases, and polymyalgia rheumatica. During interviews, the term “daymare” was used to discuss possible hallucinations.
 

Linking Neuropsychiatric Symptoms and Disease

Four themes emerged from the analysis of the surveys and interviews. First, despite many rheumatologists stating that it was an “established theory” that most neuropsychiatric symptoms related to SLE would initially present around the time of diagnosis or disease onset, the findings from patients and interviews with psychiatrists did not align with this theory. The first presentation of each neuropsychiatric symptom only occurred around the onset of other SLE symptoms, about one fifth to one third of the time. In fact, more than half of the patients with SLE who had experienced hallucinations or delusions/paranoia said they occurred more than a year after they first experienced their other SLE symptoms.

Patient experiences differed in terms of whether they believed their neuropsychiatric symptoms were directly related to their SLE or other rheumatic disease. Some did attribute the symptoms, such as hypomania, to their rheumatic illness, while others, such as a patient with major depression, did not see the two as linked.

A second theme focused on pattern recognition of neuropsychiatric symptoms and the onset of a disease flare. “For example, several patients described how they felt that some types of depressive symptoms were directly attributable to active inflammation due to its time of onset and differences in type and intensity compared to their more ‘reactive’ low mood that could be more attributable to a consequence of psychological distress,” the authors wrote. Another common report from patients was experiencing a sudden, intense fatigue that coincided with a flare and differed from other types of fatigue.

Some patients could recognize that a flare was coming because of familiar neuropsychiatric symptoms that acted like an “early warning system.” Often, however, these symptoms “were absent from current diagnostic guidelines and only rarely identified by clinician interviewees as related to SLE/NPSLE,” the authors found. “These neuropsychiatric prodromal symptoms were reported as sometimes preceding the more widely recognized SLE and other SARD symptoms such as joint pain, rashes, and other organ involvement.” These symptoms included sudden changes in mood (usually a lowering but sometimes mania), increased nightmares, a “feeling of unreality,” or increased sensory symptoms.

Other patients, on the other hand, had not considered a link between neuropsychiatric symptoms and their rheumatic disease until the interview, and many of the clinicians, aside from psychiatrists and nurses, said they had little time in clinic to gather information about symptom progression.
 

 

 

Nightmares and Daymares

A third theme centered on disrupted dreaming sleep, nightmares, and “daymares” as a prodromal symptom in particular. Some patients had already drawn a connection between an oncoming flare of their disease and these dreaming-related symptoms, while others had not considered a link until the interviews.

“Several SLE patients recounted flares consistently involving the segueing of increasingly vivid and distressing nightmares into distorted reality and daytime hallucinations,” the authors reported. Flare-related nightmares in particular “often involved being attacked, trapped, crushed, or falling.” Patients tended to be more forthcoming about hallucinatory experiences when the term “daymare” was used to describe them, and they often related to the idea of feeling “in-between asleep and awake.”

Only one of the rheumatologists interviewed had considered nightmares as potentially related to SLE flares, and several appeared skeptical about a link but planned to ask their patients about it. Most of the specialists interviewed, meanwhile, said they often discussed sleep disruption with patients.

“There was agreement that recognizing and eliciting these early flare symptoms may improve care and even reduce clinic times by averting flares at any earlier stage, although some rheumatologists were clear that limited appointment times meant that these symptoms would not be prioritized for discussion,” the authors wrote.

Though Dr. Kim acknowledged the possibility of nightmares as prodromal, he noted other ways in which nightmares may be indirectly linked to lupus. “Trauma is a major risk factor for lupus,” Dr. Kim said, with multiple studies showing childhood traumatic experiences and even posttraumatic stress disorder to be risk factors for lupus. “Whether nightmares represent a traumatic event or prior traumatic events is not clear to me, but one could hypothesize that this may be a manifestation of trauma,” Dr. Kim said.

In addition, nightmares represent a sleep disorder that can substantially reduce sleep quality, Dr. Kim said, and poor sleep is also associated with lupus. “One has to wonder whether disruptive dreaming sleep is one of several specific manifestations of poor sleep quality, which then increases the risk of lupus in those patients,” Dr. Kim said.
 

Misattribution of Neuropsychiatric Symptoms

The final theme to emerge from the findings was patients had been misdiagnosed with psychiatric or psychosomatic conditions shortly before getting their rheumatic disease diagnosis. One patient, for example, reported being diagnosed with borderline personality disorder just 6 months before the lupus diagnosis at age 19 and noticed that the symptoms of one “got under control” when the symptoms of the other did.

“Early misattributions of SARD symptoms to primary psychiatric or psychosomatic conditions were frequently reported to have delayed SARD diagnosis and led to future misattributions,” the authors reported. “Whilst some of these misdiagnoses likely reflect the widespread lack of knowledge and limited definitive tests for SLE, it is plausible that some early SLE neurological and/or psychiatric symptoms may represent a neuropsychiatric prodrome for SLE itself.”

Dr. Kim agreed that misattribution of symptoms to other diagnoses is common with lupus and a common reason for delays in diagnosis, even with symptoms that are not neuropsychiatric. The findings in this study broaden “the type of symptoms we need to put on our radar pre-diagnosis,” Dr. Kim said. “We just also have to be aware that these prodromal symptoms are not diagnostic for lupus, though.”

Dr. Sloan cited earlier work in recommending an “ABC” approach to improving clinician-patient relationships: “Availability is being accessible when patients need them, Belief is demonstrating belief and validating patient self-reports of symptoms, and Continuity is when the same clinician sees the same patient each clinic visit to build up a trusting relationship.” She noted the importance of asking about and normalizing the existence of these symptoms with rheumatic diseases.

The research was funded by The Lupus Trust. Three authors reported consultancy, speaker, or advisory fees from Alumis, Amgen, AstraZeneca, Eli Lilly, GlaxoSmithKline, Janssen, MGP, Novartis, Pfizer, Sanofi, UCB, Vifor, and/or Werfen Group. The other authors, including Dr. Sloan, had no industry-related disclosures. Dr. Kim reported research support from AstraZeneca, GlaxoSmithKline, and Novartis; speaking fees from Exagen Diagnostics and GlaxoSmithKline; and consulting fees from AbbVie, Amgen, ANI Pharmaceuticals, AstraZeneca, Atara Bio, Aurinia Pharmaceuticals, Cargo Therapeutics, Exagen Diagnostics, Hinge Bio, GlaxoSmithKline, Kypha, Miltenyi Biotec, Synthekine, and Tectonic Therapeutic.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ECLINICALMEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article