User login
ALL: When Should MRD Trigger Stem Cell Transplants?
Allogeneic hematopoietic stem cell transplants (HSCT) are still part of the hematology armamentarium for relapsed/refractory (R/R) patients with Ph-negative ALL who are MRD positive. However, when asked about the best treatment strategy for patients who are MRD-negative, hematologist Mark R. Litzow, MD, of the Mayo Clinic in Rochester, Minnesota, said in an interview, “There is no firm consensus about that.”
Discussing how medicine has evolved over the past 20 to 30 years, Dr. Litzow recalled that HSCT used to be standard treatment for adult patients with ALL. “We felt that in most instances, chemotherapy alone was not going to be effective in curing them. A vast majority would relapse,” he said. Nowadays, however, specialists differ on the use of HSCT in patients with Ph-negative, MRD-negative ALL.
A pair of commentaries in the January issue of The Lancet Hematology tackle this topic from different perspectives. On one hand, hematologist Patrice Chevallier, MD, of the University of Nantes in France, argues that for such patients, HSCT “remains a valid option,”and MRD status shouldn’t be the sole factor used for a decision.
However, hematologist Nicolas Boissel, MD, PhD, of Paris Cité University, contends that detectable early MRD is the “only robust predictor” of HSCT benefit in patients under 60 with Ph-negative ALL, and it has “unproven” benefit in older patients.
As Dr. Chevallier notes, “allogeneic HSCT is indicated in patients defined as having a high risk of relapse. Currently, a high level of residual leukemic cells after treatment is recognized as the strongest, and sometimes sole, criterion defining high-risk patients.”
As first- and second-line therapy in pediatric patients and as first-line therapy in adults, the “rule” is to offer HSCT to MRD-positive patients but not MRD-negative ones, he writes. “In older patients and those who are relapsed or refractory, the recent demonstration of efficient immunotherapies and cell therapies has launched the debate on the role of MRD status and the question of whether or not to transplant patients who are MRD-negative in both settings.”
Dr. Chevallier notes that “there is no standard definition of an MRD-negative status,” and the best timing for evaluation is unknown. Further, he adds, a “variable proportion of MRD-negative patients still relapse after treatment — up to 25% of patients who respond early and more than 50% of patients who respond late.”
He also points out that there’s an 80% chance that patients will convert from MRD negative to MRD positive after blinatumomab therapy, and he highlights the low long-term survival rate (20%) after brexucabtagene autoleucel (Tecartus), a CAR T-cell therapy.
As for older patients, Dr. Chevallier observes that improved chemo-immunotherapy and conditioning regimens could spark a rethinking of the feasibility of HSCT. However, for now, in those patients, “MRD is not decisional, and allogeneic HSCT is not a routine practice,” he writes.
In his commentary, Dr. Boissel points out that there have been no controlled studies of HSCT in the first-remission setting, although he writes that some data suggests that HSCT may be helpful for patients in high-risk genetic subgroups, regardless of MRD status. On the other hand, “converging observations suggest no benefit of HSCT in MRD-positive patients treated with blinatumomab in the front-line setting.”
If MRD monitoring is unavailable, Dr. Boissel adds, “it seems reasonable to use early blast clearance or other baseline high-risk features to indicate HSCT.”
How can hematologists make the best decision about HSCT?
In an interview, City of Hope Medical Center (Duarte, California) hematologist-oncologist Ibrahim T. Aldoss, MD, said that chemotherapy — with or without immunotherapy — can often be enough to treat younger patients without high-risk genetic factors. “Potentially, these patients can be spared from transplants,” he said, although patients with resistant MRD “clearly need transplants.”
The risks of transplants are significant, he noted. While they can reduce the risk of relapse, the risk of dying during remission is higher vs chemotherapy. “So you have to balance the risks that you’re willing to take,” he said, keeping in mind that some patients can be cured with chemotherapy.
In addition, Dr. Aldoss said, acute graft-versus-host disease in the first few months after transplant can become chronic. “Many years later, patients can be struggling to where it actually impacts their daily activity. And unfortunately, patients can die from it.”
In the big picture, “you cannot have a generalized statement about whether you shouldn’t do transplants in every MRD-negative patient,” he said. However, “if you do achieve MRD negativity, most patients likely don’t need transplants.”
The Mayo Clinic’s Dr. Litzow urged colleagues to consider several factors when making decisions. Do patients have a high level of comorbidities that would raise the risk of death from HSCT? He noted that there’s nearly a 20% risk of death from HSCT, and comorbidities can boost the risk to 40%-50%.
Also, does the patient have a suitable donor? While advances have boosted the number of eligible donors, he said, “not everybody has an ideal donor.”
If a patient is MRD-negative but not a good candidate for a transplant, Dr. Litzow said consolidation therapy followed by maintenance therapy may be indicated. “Continue to check their bone marrow and their blood periodically as they’re going through treatment and reassess their MRD status to make sure they’re staying negative. If they turn MRD-positive during the course of their therapy, then we have to step back and rethink the role of transplant.”
As for cost, Dr. Litzow points out that HSCT is very expensive, although ALL is an accepted indication for HSCT. However, “if someone doesn’t have medical insurance, then it can be difficult to consider them having a transplant.”
What’s next? In his commentary, Dr. Boissel writes that his team aims to study whether HSCT is helpful in patients with high-risk B-cell ALL “who reach MRD negativity after a consolidation phase including blinatumomab.”
Dr. Aldoss discloses relationships with Amgen, Kite, Pfizer, Jazz, AbbVie, Sobi, Agios, Autolus, and MacroGenics. Dr. Litzow reports ties with Amgen. Dr. Boissel declares relationships with Amgen, Pfizer, Novartis, and Servier. Dr. Chevallier has no disclosures.
Allogeneic hematopoietic stem cell transplants (HSCT) are still part of the hematology armamentarium for relapsed/refractory (R/R) patients with Ph-negative ALL who are MRD positive. However, when asked about the best treatment strategy for patients who are MRD-negative, hematologist Mark R. Litzow, MD, of the Mayo Clinic in Rochester, Minnesota, said in an interview, “There is no firm consensus about that.”
Discussing how medicine has evolved over the past 20 to 30 years, Dr. Litzow recalled that HSCT used to be standard treatment for adult patients with ALL. “We felt that in most instances, chemotherapy alone was not going to be effective in curing them. A vast majority would relapse,” he said. Nowadays, however, specialists differ on the use of HSCT in patients with Ph-negative, MRD-negative ALL.
A pair of commentaries in the January issue of The Lancet Hematology tackle this topic from different perspectives. On one hand, hematologist Patrice Chevallier, MD, of the University of Nantes in France, argues that for such patients, HSCT “remains a valid option,”and MRD status shouldn’t be the sole factor used for a decision.
However, hematologist Nicolas Boissel, MD, PhD, of Paris Cité University, contends that detectable early MRD is the “only robust predictor” of HSCT benefit in patients under 60 with Ph-negative ALL, and it has “unproven” benefit in older patients.
As Dr. Chevallier notes, “allogeneic HSCT is indicated in patients defined as having a high risk of relapse. Currently, a high level of residual leukemic cells after treatment is recognized as the strongest, and sometimes sole, criterion defining high-risk patients.”
As first- and second-line therapy in pediatric patients and as first-line therapy in adults, the “rule” is to offer HSCT to MRD-positive patients but not MRD-negative ones, he writes. “In older patients and those who are relapsed or refractory, the recent demonstration of efficient immunotherapies and cell therapies has launched the debate on the role of MRD status and the question of whether or not to transplant patients who are MRD-negative in both settings.”
Dr. Chevallier notes that “there is no standard definition of an MRD-negative status,” and the best timing for evaluation is unknown. Further, he adds, a “variable proportion of MRD-negative patients still relapse after treatment — up to 25% of patients who respond early and more than 50% of patients who respond late.”
He also points out that there’s an 80% chance that patients will convert from MRD negative to MRD positive after blinatumomab therapy, and he highlights the low long-term survival rate (20%) after brexucabtagene autoleucel (Tecartus), a CAR T-cell therapy.
As for older patients, Dr. Chevallier observes that improved chemo-immunotherapy and conditioning regimens could spark a rethinking of the feasibility of HSCT. However, for now, in those patients, “MRD is not decisional, and allogeneic HSCT is not a routine practice,” he writes.
In his commentary, Dr. Boissel points out that there have been no controlled studies of HSCT in the first-remission setting, although he writes that some data suggests that HSCT may be helpful for patients in high-risk genetic subgroups, regardless of MRD status. On the other hand, “converging observations suggest no benefit of HSCT in MRD-positive patients treated with blinatumomab in the front-line setting.”
If MRD monitoring is unavailable, Dr. Boissel adds, “it seems reasonable to use early blast clearance or other baseline high-risk features to indicate HSCT.”
How can hematologists make the best decision about HSCT?
In an interview, City of Hope Medical Center (Duarte, California) hematologist-oncologist Ibrahim T. Aldoss, MD, said that chemotherapy — with or without immunotherapy — can often be enough to treat younger patients without high-risk genetic factors. “Potentially, these patients can be spared from transplants,” he said, although patients with resistant MRD “clearly need transplants.”
The risks of transplants are significant, he noted. While they can reduce the risk of relapse, the risk of dying during remission is higher vs chemotherapy. “So you have to balance the risks that you’re willing to take,” he said, keeping in mind that some patients can be cured with chemotherapy.
In addition, Dr. Aldoss said, acute graft-versus-host disease in the first few months after transplant can become chronic. “Many years later, patients can be struggling to where it actually impacts their daily activity. And unfortunately, patients can die from it.”
In the big picture, “you cannot have a generalized statement about whether you shouldn’t do transplants in every MRD-negative patient,” he said. However, “if you do achieve MRD negativity, most patients likely don’t need transplants.”
The Mayo Clinic’s Dr. Litzow urged colleagues to consider several factors when making decisions. Do patients have a high level of comorbidities that would raise the risk of death from HSCT? He noted that there’s nearly a 20% risk of death from HSCT, and comorbidities can boost the risk to 40%-50%.
Also, does the patient have a suitable donor? While advances have boosted the number of eligible donors, he said, “not everybody has an ideal donor.”
If a patient is MRD-negative but not a good candidate for a transplant, Dr. Litzow said consolidation therapy followed by maintenance therapy may be indicated. “Continue to check their bone marrow and their blood periodically as they’re going through treatment and reassess their MRD status to make sure they’re staying negative. If they turn MRD-positive during the course of their therapy, then we have to step back and rethink the role of transplant.”
As for cost, Dr. Litzow points out that HSCT is very expensive, although ALL is an accepted indication for HSCT. However, “if someone doesn’t have medical insurance, then it can be difficult to consider them having a transplant.”
What’s next? In his commentary, Dr. Boissel writes that his team aims to study whether HSCT is helpful in patients with high-risk B-cell ALL “who reach MRD negativity after a consolidation phase including blinatumomab.”
Dr. Aldoss discloses relationships with Amgen, Kite, Pfizer, Jazz, AbbVie, Sobi, Agios, Autolus, and MacroGenics. Dr. Litzow reports ties with Amgen. Dr. Boissel declares relationships with Amgen, Pfizer, Novartis, and Servier. Dr. Chevallier has no disclosures.
Allogeneic hematopoietic stem cell transplants (HSCT) are still part of the hematology armamentarium for relapsed/refractory (R/R) patients with Ph-negative ALL who are MRD positive. However, when asked about the best treatment strategy for patients who are MRD-negative, hematologist Mark R. Litzow, MD, of the Mayo Clinic in Rochester, Minnesota, said in an interview, “There is no firm consensus about that.”
Discussing how medicine has evolved over the past 20 to 30 years, Dr. Litzow recalled that HSCT used to be standard treatment for adult patients with ALL. “We felt that in most instances, chemotherapy alone was not going to be effective in curing them. A vast majority would relapse,” he said. Nowadays, however, specialists differ on the use of HSCT in patients with Ph-negative, MRD-negative ALL.
A pair of commentaries in the January issue of The Lancet Hematology tackle this topic from different perspectives. On one hand, hematologist Patrice Chevallier, MD, of the University of Nantes in France, argues that for such patients, HSCT “remains a valid option,”and MRD status shouldn’t be the sole factor used for a decision.
However, hematologist Nicolas Boissel, MD, PhD, of Paris Cité University, contends that detectable early MRD is the “only robust predictor” of HSCT benefit in patients under 60 with Ph-negative ALL, and it has “unproven” benefit in older patients.
As Dr. Chevallier notes, “allogeneic HSCT is indicated in patients defined as having a high risk of relapse. Currently, a high level of residual leukemic cells after treatment is recognized as the strongest, and sometimes sole, criterion defining high-risk patients.”
As first- and second-line therapy in pediatric patients and as first-line therapy in adults, the “rule” is to offer HSCT to MRD-positive patients but not MRD-negative ones, he writes. “In older patients and those who are relapsed or refractory, the recent demonstration of efficient immunotherapies and cell therapies has launched the debate on the role of MRD status and the question of whether or not to transplant patients who are MRD-negative in both settings.”
Dr. Chevallier notes that “there is no standard definition of an MRD-negative status,” and the best timing for evaluation is unknown. Further, he adds, a “variable proportion of MRD-negative patients still relapse after treatment — up to 25% of patients who respond early and more than 50% of patients who respond late.”
He also points out that there’s an 80% chance that patients will convert from MRD negative to MRD positive after blinatumomab therapy, and he highlights the low long-term survival rate (20%) after brexucabtagene autoleucel (Tecartus), a CAR T-cell therapy.
As for older patients, Dr. Chevallier observes that improved chemo-immunotherapy and conditioning regimens could spark a rethinking of the feasibility of HSCT. However, for now, in those patients, “MRD is not decisional, and allogeneic HSCT is not a routine practice,” he writes.
In his commentary, Dr. Boissel points out that there have been no controlled studies of HSCT in the first-remission setting, although he writes that some data suggests that HSCT may be helpful for patients in high-risk genetic subgroups, regardless of MRD status. On the other hand, “converging observations suggest no benefit of HSCT in MRD-positive patients treated with blinatumomab in the front-line setting.”
If MRD monitoring is unavailable, Dr. Boissel adds, “it seems reasonable to use early blast clearance or other baseline high-risk features to indicate HSCT.”
How can hematologists make the best decision about HSCT?
In an interview, City of Hope Medical Center (Duarte, California) hematologist-oncologist Ibrahim T. Aldoss, MD, said that chemotherapy — with or without immunotherapy — can often be enough to treat younger patients without high-risk genetic factors. “Potentially, these patients can be spared from transplants,” he said, although patients with resistant MRD “clearly need transplants.”
The risks of transplants are significant, he noted. While they can reduce the risk of relapse, the risk of dying during remission is higher vs chemotherapy. “So you have to balance the risks that you’re willing to take,” he said, keeping in mind that some patients can be cured with chemotherapy.
In addition, Dr. Aldoss said, acute graft-versus-host disease in the first few months after transplant can become chronic. “Many years later, patients can be struggling to where it actually impacts their daily activity. And unfortunately, patients can die from it.”
In the big picture, “you cannot have a generalized statement about whether you shouldn’t do transplants in every MRD-negative patient,” he said. However, “if you do achieve MRD negativity, most patients likely don’t need transplants.”
The Mayo Clinic’s Dr. Litzow urged colleagues to consider several factors when making decisions. Do patients have a high level of comorbidities that would raise the risk of death from HSCT? He noted that there’s nearly a 20% risk of death from HSCT, and comorbidities can boost the risk to 40%-50%.
Also, does the patient have a suitable donor? While advances have boosted the number of eligible donors, he said, “not everybody has an ideal donor.”
If a patient is MRD-negative but not a good candidate for a transplant, Dr. Litzow said consolidation therapy followed by maintenance therapy may be indicated. “Continue to check their bone marrow and their blood periodically as they’re going through treatment and reassess their MRD status to make sure they’re staying negative. If they turn MRD-positive during the course of their therapy, then we have to step back and rethink the role of transplant.”
As for cost, Dr. Litzow points out that HSCT is very expensive, although ALL is an accepted indication for HSCT. However, “if someone doesn’t have medical insurance, then it can be difficult to consider them having a transplant.”
What’s next? In his commentary, Dr. Boissel writes that his team aims to study whether HSCT is helpful in patients with high-risk B-cell ALL “who reach MRD negativity after a consolidation phase including blinatumomab.”
Dr. Aldoss discloses relationships with Amgen, Kite, Pfizer, Jazz, AbbVie, Sobi, Agios, Autolus, and MacroGenics. Dr. Litzow reports ties with Amgen. Dr. Boissel declares relationships with Amgen, Pfizer, Novartis, and Servier. Dr. Chevallier has no disclosures.
In Transplant-Ineligible Myeloma, This Frontline Tx Is Better
The study found that frontline triple therapy with daratumumab plus lenalidomide and dexamethasone led to significantly longer time to next treatment or time to death compared with the triple combination that includes bortezomib instead of daratumumab.
In the absence of head-to-head randomized controlled clinical trials, this study may help clinicians make more informed decisions when choosing therapies for patients with newly diagnosed, transplant-ineligible multiple myeloma, said investigator Doris K. Hansen, MD, from the Moffitt Cancer Center & Research Institute in Tampa, Florida, who presented finding from the analysis at the annual meeting of the American Society of Hematology.
Despite the lack of head-to-head randomized trials in this setting, several indirect comparisons have suggested that the daratumumab regimen carries an efficacy edge.
For instance, an indirect comparison of patients who received the daratumumab regimen in the MAIA trial with those who received the bortezomib regimen in the SWOG S0777 trial revealed a 40% lower risk for disease progression or death among patients treated with daratumumab. Researchers also observed a benefit for the daratumumab regimen — a 32% lower risk for disease progression or death — when comparing patient outcomes in the MAIA and PEGASUS studies.
To more directly compare the efficacy of the two regimens, Dr. Hansen and colleagues combed data from Acentrus, a de-identified academic electronic medical records database, to find patients who started a frontline treatment regimen for multiple myeloma between January 2018 and May 2023. The team used several methods to balance baseline characteristics between cohorts.
After making these adjustments, the study included data on 302 patients who received frontline therapy with the daratumumab regimen and 341 who received the bortezomib regimen. Patients who underwent hematopoietic stem cell transplant before or during therapy were excluded, as were those who had prior primary solid tumors, hematologic malignancies, or amyloidosis.
During a 20.2-month median follow-up for patients on daratumumab, 98 (32%) switched to a new therapy or died. During a 21.5-month median follow-up for those on bortezomib, 175 (51%) switched treatments or died.
The median time to death was 37.8 months in the daratumumab group vs 18.7 months in the bortezomib group. Overall, patients who received the daratumumab regimen had a 42% lower risk for death or time-to-next treatment (adjusted hazard ratio [HR], 0.58; P < .001).
Dr. Hansen acknowledged several limitations of the study, including that the data used came from provider-based records and may be missing patients who saw an out-of-network clinician. The database also does not include information on ECOG performance status, patient frailty, or cytogenetic risk profiles, which may have influenced outcomes.
The outcome measure combined time-to-next treatment and time to death; however, Dr. Hansen noted, time-to-next treatment is not a direct surrogate for progression-free survival.
Overall, findings from this real-world study support the use of daratumumab plus lenalidomide and dexamethasone over bortezomib plus lenalidomide and dexamethasone in this population of transplant-ineligible patients with newly diagnosed multiple myeloma, Dr. Hansen concluded.
The study was supported by Janssen. Dr. Hansen reported consulting for Janssen and others, receiving honoraria from OncLive and Survivorship, and other disclosures.
A version of this article appeared on Medscape.com.
The study found that frontline triple therapy with daratumumab plus lenalidomide and dexamethasone led to significantly longer time to next treatment or time to death compared with the triple combination that includes bortezomib instead of daratumumab.
In the absence of head-to-head randomized controlled clinical trials, this study may help clinicians make more informed decisions when choosing therapies for patients with newly diagnosed, transplant-ineligible multiple myeloma, said investigator Doris K. Hansen, MD, from the Moffitt Cancer Center & Research Institute in Tampa, Florida, who presented finding from the analysis at the annual meeting of the American Society of Hematology.
Despite the lack of head-to-head randomized trials in this setting, several indirect comparisons have suggested that the daratumumab regimen carries an efficacy edge.
For instance, an indirect comparison of patients who received the daratumumab regimen in the MAIA trial with those who received the bortezomib regimen in the SWOG S0777 trial revealed a 40% lower risk for disease progression or death among patients treated with daratumumab. Researchers also observed a benefit for the daratumumab regimen — a 32% lower risk for disease progression or death — when comparing patient outcomes in the MAIA and PEGASUS studies.
To more directly compare the efficacy of the two regimens, Dr. Hansen and colleagues combed data from Acentrus, a de-identified academic electronic medical records database, to find patients who started a frontline treatment regimen for multiple myeloma between January 2018 and May 2023. The team used several methods to balance baseline characteristics between cohorts.
After making these adjustments, the study included data on 302 patients who received frontline therapy with the daratumumab regimen and 341 who received the bortezomib regimen. Patients who underwent hematopoietic stem cell transplant before or during therapy were excluded, as were those who had prior primary solid tumors, hematologic malignancies, or amyloidosis.
During a 20.2-month median follow-up for patients on daratumumab, 98 (32%) switched to a new therapy or died. During a 21.5-month median follow-up for those on bortezomib, 175 (51%) switched treatments or died.
The median time to death was 37.8 months in the daratumumab group vs 18.7 months in the bortezomib group. Overall, patients who received the daratumumab regimen had a 42% lower risk for death or time-to-next treatment (adjusted hazard ratio [HR], 0.58; P < .001).
Dr. Hansen acknowledged several limitations of the study, including that the data used came from provider-based records and may be missing patients who saw an out-of-network clinician. The database also does not include information on ECOG performance status, patient frailty, or cytogenetic risk profiles, which may have influenced outcomes.
The outcome measure combined time-to-next treatment and time to death; however, Dr. Hansen noted, time-to-next treatment is not a direct surrogate for progression-free survival.
Overall, findings from this real-world study support the use of daratumumab plus lenalidomide and dexamethasone over bortezomib plus lenalidomide and dexamethasone in this population of transplant-ineligible patients with newly diagnosed multiple myeloma, Dr. Hansen concluded.
The study was supported by Janssen. Dr. Hansen reported consulting for Janssen and others, receiving honoraria from OncLive and Survivorship, and other disclosures.
A version of this article appeared on Medscape.com.
The study found that frontline triple therapy with daratumumab plus lenalidomide and dexamethasone led to significantly longer time to next treatment or time to death compared with the triple combination that includes bortezomib instead of daratumumab.
In the absence of head-to-head randomized controlled clinical trials, this study may help clinicians make more informed decisions when choosing therapies for patients with newly diagnosed, transplant-ineligible multiple myeloma, said investigator Doris K. Hansen, MD, from the Moffitt Cancer Center & Research Institute in Tampa, Florida, who presented finding from the analysis at the annual meeting of the American Society of Hematology.
Despite the lack of head-to-head randomized trials in this setting, several indirect comparisons have suggested that the daratumumab regimen carries an efficacy edge.
For instance, an indirect comparison of patients who received the daratumumab regimen in the MAIA trial with those who received the bortezomib regimen in the SWOG S0777 trial revealed a 40% lower risk for disease progression or death among patients treated with daratumumab. Researchers also observed a benefit for the daratumumab regimen — a 32% lower risk for disease progression or death — when comparing patient outcomes in the MAIA and PEGASUS studies.
To more directly compare the efficacy of the two regimens, Dr. Hansen and colleagues combed data from Acentrus, a de-identified academic electronic medical records database, to find patients who started a frontline treatment regimen for multiple myeloma between January 2018 and May 2023. The team used several methods to balance baseline characteristics between cohorts.
After making these adjustments, the study included data on 302 patients who received frontline therapy with the daratumumab regimen and 341 who received the bortezomib regimen. Patients who underwent hematopoietic stem cell transplant before or during therapy were excluded, as were those who had prior primary solid tumors, hematologic malignancies, or amyloidosis.
During a 20.2-month median follow-up for patients on daratumumab, 98 (32%) switched to a new therapy or died. During a 21.5-month median follow-up for those on bortezomib, 175 (51%) switched treatments or died.
The median time to death was 37.8 months in the daratumumab group vs 18.7 months in the bortezomib group. Overall, patients who received the daratumumab regimen had a 42% lower risk for death or time-to-next treatment (adjusted hazard ratio [HR], 0.58; P < .001).
Dr. Hansen acknowledged several limitations of the study, including that the data used came from provider-based records and may be missing patients who saw an out-of-network clinician. The database also does not include information on ECOG performance status, patient frailty, or cytogenetic risk profiles, which may have influenced outcomes.
The outcome measure combined time-to-next treatment and time to death; however, Dr. Hansen noted, time-to-next treatment is not a direct surrogate for progression-free survival.
Overall, findings from this real-world study support the use of daratumumab plus lenalidomide and dexamethasone over bortezomib plus lenalidomide and dexamethasone in this population of transplant-ineligible patients with newly diagnosed multiple myeloma, Dr. Hansen concluded.
The study was supported by Janssen. Dr. Hansen reported consulting for Janssen and others, receiving honoraria from OncLive and Survivorship, and other disclosures.
A version of this article appeared on Medscape.com.
FROM ASH 2023
GVHD raises vitiligo risk in transplant recipients
In the cohort study, the greatest risk occurred with hematopoietic stem cell transplants (HSCTs) and in cases involving GVHD. Kidney and liver transplants carried slight increases in risk.
“The findings suggest that early detection and management of vitiligo lesions can be improved by estimating the likelihood of its development in transplant recipients and implementing a multidisciplinary approach for monitoring,” wrote the authors, from the departments of dermatology and biostatistics, at the Catholic University of Korea, Seoul.
Using claims data from South Korea’s National Health Insurance Service database, the investigators compared vitiligo incidence among 23,829 patients who had undergone solid organ transplantation (SOT) or HSCT between 2010 and 2017 versus that of 119,145 age- and sex-matched controls. At a mean observation time of 4.79 years in the transplant group (and 5.12 years for controls), the adjusted hazard ratio (AHR) for vitiligo among patients who had undergone any transplant was 1.73. AHRs for HSCT, liver transplants, and kidney transplants were 12.69, 1.63, and 1.50, respectively.
Patients who had undergone allogeneic HSCT (AHR, 14.43) or autologous transplants (AHR, 5.71), as well as those with and without GVHD (24.09 and 8.21, respectively) had significantly higher vitiligo risk than the control group.
Among those with GVHD, HSCT recipients (AHR, 16.42) and those with allogeneic grafts (AHR, 16.81) had a higher vitiligo risk than that of control patients.
In a subgroup that included 10,355 transplant recipients who underwent posttransplant health checkups, investigators found the highest vitiligo risk — AHR, 25.09 versus controls — among HSCT recipients with comorbid GVHD. However, patients who underwent SOT, autologous HSCT, or HSCT without GVHD showed no increased vitiligo risk in this analysis. “The results of health checkup data analysis may differ from the initial analysis due to additional adjustments for lifestyle factors and inclusion of only patients who underwent a health checkup,” the authors wrote.
Asked to comment on the results, George Han, MD, PhD, who was not involved with the study, told this news organization, “this is an interesting paper where the primary difference from previous studies is the new association between GVHD in hematopoietic stem cell transplant recipients and vitiligo.” Prior research had shown higher rates of vitiligo in HSCT recipients without making the GVHD distinction. Dr. Han is associate professor of dermatology in the Hofstra/Northwell Department of Dermatology, Hyde Park, New York.
Although GVHD may not be top-of-mind for dermatologists in daily practice, he said, the study enhances their understanding of vitiligo risk in HSCT recipients. “In some ways,” Dr. Han added, “the association makes sense, as the activated T cells from the graft attacking the skin in the HSCT recipient follow many of the mechanisms of vitiligo, including upregulating interferon gamma and the CXCR3/CXCL10 axis.”
Presently, he said, dermatologists worry more about solid organ recipients than about HSCT recipients because the long-term immunosuppression required by SOT increases the risk of squamous cell carcinoma (SCC). “However, the risk of skin cancers also seems to be elevated in HSCT recipients, and in this case the basal cell carcinoma (BCC):SCC ratio is not necessarily reversed as we see in solid organ transplant recipients. So the mechanisms are a bit less clear. Interestingly, acute and chronic GVHD have both been associated with increased risks of BCC and SCC/BCC, respectively.”
Overall, Dr. Han said, any transplant recipient should undergo yearly skin checks not only for skin cancers, but also for other skin conditions such as vitiligo. “It would be nice to see this codified into official guidelines, which can vary considerably but are overall more consistent in solid organ transplant recipients than in HSCT recipients. No such guidelines seem to be available for HSCTs.”
The study was funded by the Basic Research in Science & Engineering program through the National Research Foundation of Korea, which is funded by the country’s Ministry of Education. The study authors had no disclosures. Dr. Han reports no relevant financial interests.
In the cohort study, the greatest risk occurred with hematopoietic stem cell transplants (HSCTs) and in cases involving GVHD. Kidney and liver transplants carried slight increases in risk.
“The findings suggest that early detection and management of vitiligo lesions can be improved by estimating the likelihood of its development in transplant recipients and implementing a multidisciplinary approach for monitoring,” wrote the authors, from the departments of dermatology and biostatistics, at the Catholic University of Korea, Seoul.
Using claims data from South Korea’s National Health Insurance Service database, the investigators compared vitiligo incidence among 23,829 patients who had undergone solid organ transplantation (SOT) or HSCT between 2010 and 2017 versus that of 119,145 age- and sex-matched controls. At a mean observation time of 4.79 years in the transplant group (and 5.12 years for controls), the adjusted hazard ratio (AHR) for vitiligo among patients who had undergone any transplant was 1.73. AHRs for HSCT, liver transplants, and kidney transplants were 12.69, 1.63, and 1.50, respectively.
Patients who had undergone allogeneic HSCT (AHR, 14.43) or autologous transplants (AHR, 5.71), as well as those with and without GVHD (24.09 and 8.21, respectively) had significantly higher vitiligo risk than the control group.
Among those with GVHD, HSCT recipients (AHR, 16.42) and those with allogeneic grafts (AHR, 16.81) had a higher vitiligo risk than that of control patients.
In a subgroup that included 10,355 transplant recipients who underwent posttransplant health checkups, investigators found the highest vitiligo risk — AHR, 25.09 versus controls — among HSCT recipients with comorbid GVHD. However, patients who underwent SOT, autologous HSCT, or HSCT without GVHD showed no increased vitiligo risk in this analysis. “The results of health checkup data analysis may differ from the initial analysis due to additional adjustments for lifestyle factors and inclusion of only patients who underwent a health checkup,” the authors wrote.
Asked to comment on the results, George Han, MD, PhD, who was not involved with the study, told this news organization, “this is an interesting paper where the primary difference from previous studies is the new association between GVHD in hematopoietic stem cell transplant recipients and vitiligo.” Prior research had shown higher rates of vitiligo in HSCT recipients without making the GVHD distinction. Dr. Han is associate professor of dermatology in the Hofstra/Northwell Department of Dermatology, Hyde Park, New York.
Although GVHD may not be top-of-mind for dermatologists in daily practice, he said, the study enhances their understanding of vitiligo risk in HSCT recipients. “In some ways,” Dr. Han added, “the association makes sense, as the activated T cells from the graft attacking the skin in the HSCT recipient follow many of the mechanisms of vitiligo, including upregulating interferon gamma and the CXCR3/CXCL10 axis.”
Presently, he said, dermatologists worry more about solid organ recipients than about HSCT recipients because the long-term immunosuppression required by SOT increases the risk of squamous cell carcinoma (SCC). “However, the risk of skin cancers also seems to be elevated in HSCT recipients, and in this case the basal cell carcinoma (BCC):SCC ratio is not necessarily reversed as we see in solid organ transplant recipients. So the mechanisms are a bit less clear. Interestingly, acute and chronic GVHD have both been associated with increased risks of BCC and SCC/BCC, respectively.”
Overall, Dr. Han said, any transplant recipient should undergo yearly skin checks not only for skin cancers, but also for other skin conditions such as vitiligo. “It would be nice to see this codified into official guidelines, which can vary considerably but are overall more consistent in solid organ transplant recipients than in HSCT recipients. No such guidelines seem to be available for HSCTs.”
The study was funded by the Basic Research in Science & Engineering program through the National Research Foundation of Korea, which is funded by the country’s Ministry of Education. The study authors had no disclosures. Dr. Han reports no relevant financial interests.
In the cohort study, the greatest risk occurred with hematopoietic stem cell transplants (HSCTs) and in cases involving GVHD. Kidney and liver transplants carried slight increases in risk.
“The findings suggest that early detection and management of vitiligo lesions can be improved by estimating the likelihood of its development in transplant recipients and implementing a multidisciplinary approach for monitoring,” wrote the authors, from the departments of dermatology and biostatistics, at the Catholic University of Korea, Seoul.
Using claims data from South Korea’s National Health Insurance Service database, the investigators compared vitiligo incidence among 23,829 patients who had undergone solid organ transplantation (SOT) or HSCT between 2010 and 2017 versus that of 119,145 age- and sex-matched controls. At a mean observation time of 4.79 years in the transplant group (and 5.12 years for controls), the adjusted hazard ratio (AHR) for vitiligo among patients who had undergone any transplant was 1.73. AHRs for HSCT, liver transplants, and kidney transplants were 12.69, 1.63, and 1.50, respectively.
Patients who had undergone allogeneic HSCT (AHR, 14.43) or autologous transplants (AHR, 5.71), as well as those with and without GVHD (24.09 and 8.21, respectively) had significantly higher vitiligo risk than the control group.
Among those with GVHD, HSCT recipients (AHR, 16.42) and those with allogeneic grafts (AHR, 16.81) had a higher vitiligo risk than that of control patients.
In a subgroup that included 10,355 transplant recipients who underwent posttransplant health checkups, investigators found the highest vitiligo risk — AHR, 25.09 versus controls — among HSCT recipients with comorbid GVHD. However, patients who underwent SOT, autologous HSCT, or HSCT without GVHD showed no increased vitiligo risk in this analysis. “The results of health checkup data analysis may differ from the initial analysis due to additional adjustments for lifestyle factors and inclusion of only patients who underwent a health checkup,” the authors wrote.
Asked to comment on the results, George Han, MD, PhD, who was not involved with the study, told this news organization, “this is an interesting paper where the primary difference from previous studies is the new association between GVHD in hematopoietic stem cell transplant recipients and vitiligo.” Prior research had shown higher rates of vitiligo in HSCT recipients without making the GVHD distinction. Dr. Han is associate professor of dermatology in the Hofstra/Northwell Department of Dermatology, Hyde Park, New York.
Although GVHD may not be top-of-mind for dermatologists in daily practice, he said, the study enhances their understanding of vitiligo risk in HSCT recipients. “In some ways,” Dr. Han added, “the association makes sense, as the activated T cells from the graft attacking the skin in the HSCT recipient follow many of the mechanisms of vitiligo, including upregulating interferon gamma and the CXCR3/CXCL10 axis.”
Presently, he said, dermatologists worry more about solid organ recipients than about HSCT recipients because the long-term immunosuppression required by SOT increases the risk of squamous cell carcinoma (SCC). “However, the risk of skin cancers also seems to be elevated in HSCT recipients, and in this case the basal cell carcinoma (BCC):SCC ratio is not necessarily reversed as we see in solid organ transplant recipients. So the mechanisms are a bit less clear. Interestingly, acute and chronic GVHD have both been associated with increased risks of BCC and SCC/BCC, respectively.”
Overall, Dr. Han said, any transplant recipient should undergo yearly skin checks not only for skin cancers, but also for other skin conditions such as vitiligo. “It would be nice to see this codified into official guidelines, which can vary considerably but are overall more consistent in solid organ transplant recipients than in HSCT recipients. No such guidelines seem to be available for HSCTs.”
The study was funded by the Basic Research in Science & Engineering program through the National Research Foundation of Korea, which is funded by the country’s Ministry of Education. The study authors had no disclosures. Dr. Han reports no relevant financial interests.
FROM JAMA DERMATOLOGY
No Benefit to Salvage Transplant in R/R Multiple Myeloma
Patients receiving a second, salvage-autologous stem cell transplant alongside lenalidomide-dexamethasone maintenance therapy did not demonstrate improved progression-free survival (PFS) or overall survival compared with patients who continued the two-drug regimen without salvage transplant, according to research presented at the American Society of Hematology annual meeting.
The primary phase 3 analysis, published in 2021, showed no survival benefit following salvage transplant at the time of relapse, though it only followed patients for a median of 37 months.
However, because a significant fraction of patients in the transplant arm — about 29% — did not undergo the planned salvage transplant before dropping out of the study, the researchers performed further analyses that “suggested a survival benefit in patients who actually received the transplant,” first author Marc-Andrea Baertsch, MD, of the German Cancer Research Center and University Hospital Heidelberg, reported at ASH.
Now, the latest analysis, which followed patients for a median of 99 months (8.25 years), confirmed the initial 2021 findings, Dr. Baertsch explained.
“The writing on the wall is clear: Don’t repeat a transplant at the time of relapse for those who have already gotten a transplant,” said Manni Mohyuddin, MD, of the University of Utah in Salt Lake City, who was not involved in the research. Dr. Mohyuddin added, however, that this finding doesn’t apply to those who haven’t yet gotten a transplant. “Data from other trials suggests a role of transplant in this situation, depending on the unique circumstances.”
The current trial included 282 adult patients, aged 75 years or younger, with relapsed or refractory multiple myeloma. Between 2010 and 2016, patients in the intention-to-treat analysis (n = 277) were randomized to lenalidomide-dexamethasone reinduction and maintenance, along with salvage high-dose chemotherapy with melphalan and autologous stem cell transplantation (n = 139) or just continuous lenalidomide-dexamethasone until progression (n = 138).
Patients in both arms received three cycles of lenalidomide-dexamethasone up front: 25 mg of lenalidomide on days 1 through 21, and 40 mg of dexamethasone on days 1, 8, 15, and 22 in 4-week cycles. Those in the salvage transplant arm then received high-dose chemotherapy with 200 mg/m2 of melphalan followed by transplant and 10 mg of lenalidomide maintenance therapy daily, while those in the control arm continued with receiving lenalidomide-dexamethasone.
All patients had received one to three prior lines of therapy, had good performance status, and had a time-to-disease-progression of at least 12 months after frontline autologous stem cell transplant.
In the primary 2021 study, patients in the salvage transplant group did not demonstrate a survival benefit (hazard ratio [HR] for PFS, 0.87; HR for overall survival, 0.81).
In the latest analysis, no survival benefit emerged after following patients for a median of about 8 years. Patients in the salvage transplant arm had a median PFS of 20.5 months vs 19.3 months in the continuous therapy arms (HR, 0.98; 95% CI, 0.76-1.27; P = .9). Median overall survival was 67.1 months in the salvage transplant arm and 62.7 months in the continuous treatment arm (HR, 0.89; 95% CI, 0.66 - 1.20; P = .44).
Time to first progression after frontline transplant was associated with a PFS benefit but did not predict an overall survival benefit, Dr. Baertsch noted.
When evaluating outcomes from the time of salvage transplant to account for the high number of dropouts, the PFS and overall survival findings held. Patients who received salvage transplant did not experience significantly improved PFS (HR, 0.91) or overall survival (76.3 months in the salvage group vs 65.9 months in the continuous treatment arm; HR, 0.80).
The lack of PFS and overall survival benefit occurred across all myeloma subgroups, Dr. Baertsch said.
Overall, the results indicate that “ a repeat transplant at the time of relapse for patients who had already gotten a transplant previously was no better than continuing a two-drug regimen,” Dr. Mohyuddin said.
However, he noted, “a lot has changed for myeloma care” since this trial was initially conducted. “We now have better regimens available that do not involve a transplant. If a repeat transplant couldn’t beat a two-drug regimen, it surely cannot beat a three drug or four drug regimen.”
Dr. Baertsch reported no disclosures.
A version of this article first appeared on Medscape.com.
Patients receiving a second, salvage-autologous stem cell transplant alongside lenalidomide-dexamethasone maintenance therapy did not demonstrate improved progression-free survival (PFS) or overall survival compared with patients who continued the two-drug regimen without salvage transplant, according to research presented at the American Society of Hematology annual meeting.
The primary phase 3 analysis, published in 2021, showed no survival benefit following salvage transplant at the time of relapse, though it only followed patients for a median of 37 months.
However, because a significant fraction of patients in the transplant arm — about 29% — did not undergo the planned salvage transplant before dropping out of the study, the researchers performed further analyses that “suggested a survival benefit in patients who actually received the transplant,” first author Marc-Andrea Baertsch, MD, of the German Cancer Research Center and University Hospital Heidelberg, reported at ASH.
Now, the latest analysis, which followed patients for a median of 99 months (8.25 years), confirmed the initial 2021 findings, Dr. Baertsch explained.
“The writing on the wall is clear: Don’t repeat a transplant at the time of relapse for those who have already gotten a transplant,” said Manni Mohyuddin, MD, of the University of Utah in Salt Lake City, who was not involved in the research. Dr. Mohyuddin added, however, that this finding doesn’t apply to those who haven’t yet gotten a transplant. “Data from other trials suggests a role of transplant in this situation, depending on the unique circumstances.”
The current trial included 282 adult patients, aged 75 years or younger, with relapsed or refractory multiple myeloma. Between 2010 and 2016, patients in the intention-to-treat analysis (n = 277) were randomized to lenalidomide-dexamethasone reinduction and maintenance, along with salvage high-dose chemotherapy with melphalan and autologous stem cell transplantation (n = 139) or just continuous lenalidomide-dexamethasone until progression (n = 138).
Patients in both arms received three cycles of lenalidomide-dexamethasone up front: 25 mg of lenalidomide on days 1 through 21, and 40 mg of dexamethasone on days 1, 8, 15, and 22 in 4-week cycles. Those in the salvage transplant arm then received high-dose chemotherapy with 200 mg/m2 of melphalan followed by transplant and 10 mg of lenalidomide maintenance therapy daily, while those in the control arm continued with receiving lenalidomide-dexamethasone.
All patients had received one to three prior lines of therapy, had good performance status, and had a time-to-disease-progression of at least 12 months after frontline autologous stem cell transplant.
In the primary 2021 study, patients in the salvage transplant group did not demonstrate a survival benefit (hazard ratio [HR] for PFS, 0.87; HR for overall survival, 0.81).
In the latest analysis, no survival benefit emerged after following patients for a median of about 8 years. Patients in the salvage transplant arm had a median PFS of 20.5 months vs 19.3 months in the continuous therapy arms (HR, 0.98; 95% CI, 0.76-1.27; P = .9). Median overall survival was 67.1 months in the salvage transplant arm and 62.7 months in the continuous treatment arm (HR, 0.89; 95% CI, 0.66 - 1.20; P = .44).
Time to first progression after frontline transplant was associated with a PFS benefit but did not predict an overall survival benefit, Dr. Baertsch noted.
When evaluating outcomes from the time of salvage transplant to account for the high number of dropouts, the PFS and overall survival findings held. Patients who received salvage transplant did not experience significantly improved PFS (HR, 0.91) or overall survival (76.3 months in the salvage group vs 65.9 months in the continuous treatment arm; HR, 0.80).
The lack of PFS and overall survival benefit occurred across all myeloma subgroups, Dr. Baertsch said.
Overall, the results indicate that “ a repeat transplant at the time of relapse for patients who had already gotten a transplant previously was no better than continuing a two-drug regimen,” Dr. Mohyuddin said.
However, he noted, “a lot has changed for myeloma care” since this trial was initially conducted. “We now have better regimens available that do not involve a transplant. If a repeat transplant couldn’t beat a two-drug regimen, it surely cannot beat a three drug or four drug regimen.”
Dr. Baertsch reported no disclosures.
A version of this article first appeared on Medscape.com.
Patients receiving a second, salvage-autologous stem cell transplant alongside lenalidomide-dexamethasone maintenance therapy did not demonstrate improved progression-free survival (PFS) or overall survival compared with patients who continued the two-drug regimen without salvage transplant, according to research presented at the American Society of Hematology annual meeting.
The primary phase 3 analysis, published in 2021, showed no survival benefit following salvage transplant at the time of relapse, though it only followed patients for a median of 37 months.
However, because a significant fraction of patients in the transplant arm — about 29% — did not undergo the planned salvage transplant before dropping out of the study, the researchers performed further analyses that “suggested a survival benefit in patients who actually received the transplant,” first author Marc-Andrea Baertsch, MD, of the German Cancer Research Center and University Hospital Heidelberg, reported at ASH.
Now, the latest analysis, which followed patients for a median of 99 months (8.25 years), confirmed the initial 2021 findings, Dr. Baertsch explained.
“The writing on the wall is clear: Don’t repeat a transplant at the time of relapse for those who have already gotten a transplant,” said Manni Mohyuddin, MD, of the University of Utah in Salt Lake City, who was not involved in the research. Dr. Mohyuddin added, however, that this finding doesn’t apply to those who haven’t yet gotten a transplant. “Data from other trials suggests a role of transplant in this situation, depending on the unique circumstances.”
The current trial included 282 adult patients, aged 75 years or younger, with relapsed or refractory multiple myeloma. Between 2010 and 2016, patients in the intention-to-treat analysis (n = 277) were randomized to lenalidomide-dexamethasone reinduction and maintenance, along with salvage high-dose chemotherapy with melphalan and autologous stem cell transplantation (n = 139) or just continuous lenalidomide-dexamethasone until progression (n = 138).
Patients in both arms received three cycles of lenalidomide-dexamethasone up front: 25 mg of lenalidomide on days 1 through 21, and 40 mg of dexamethasone on days 1, 8, 15, and 22 in 4-week cycles. Those in the salvage transplant arm then received high-dose chemotherapy with 200 mg/m2 of melphalan followed by transplant and 10 mg of lenalidomide maintenance therapy daily, while those in the control arm continued with receiving lenalidomide-dexamethasone.
All patients had received one to three prior lines of therapy, had good performance status, and had a time-to-disease-progression of at least 12 months after frontline autologous stem cell transplant.
In the primary 2021 study, patients in the salvage transplant group did not demonstrate a survival benefit (hazard ratio [HR] for PFS, 0.87; HR for overall survival, 0.81).
In the latest analysis, no survival benefit emerged after following patients for a median of about 8 years. Patients in the salvage transplant arm had a median PFS of 20.5 months vs 19.3 months in the continuous therapy arms (HR, 0.98; 95% CI, 0.76-1.27; P = .9). Median overall survival was 67.1 months in the salvage transplant arm and 62.7 months in the continuous treatment arm (HR, 0.89; 95% CI, 0.66 - 1.20; P = .44).
Time to first progression after frontline transplant was associated with a PFS benefit but did not predict an overall survival benefit, Dr. Baertsch noted.
When evaluating outcomes from the time of salvage transplant to account for the high number of dropouts, the PFS and overall survival findings held. Patients who received salvage transplant did not experience significantly improved PFS (HR, 0.91) or overall survival (76.3 months in the salvage group vs 65.9 months in the continuous treatment arm; HR, 0.80).
The lack of PFS and overall survival benefit occurred across all myeloma subgroups, Dr. Baertsch said.
Overall, the results indicate that “ a repeat transplant at the time of relapse for patients who had already gotten a transplant previously was no better than continuing a two-drug regimen,” Dr. Mohyuddin said.
However, he noted, “a lot has changed for myeloma care” since this trial was initially conducted. “We now have better regimens available that do not involve a transplant. If a repeat transplant couldn’t beat a two-drug regimen, it surely cannot beat a three drug or four drug regimen.”
Dr. Baertsch reported no disclosures.
A version of this article first appeared on Medscape.com.
FROM ASH 2023
MRD status predicts transplant benefit in NPM1-mutated AML
.
This survival benefit did not extend to patients who were MRD-negative after their second induction therapy, Jad Othman, MBBS, reported at the American Society of Hematology annual meeting.
The findings confirm the value of assessing MRD after induction chemotherapy to help identify patients with NPM1-mutated AML in first complete remission who are more likely to benefit from allogeneic transplant, said Dr. Othman, of King’s College London and Guy’s and St Thomas’ NHS Foundation Trust, London, and the University of Sydney, Australia.
Recently, updated European LeukemiaNet recommendations, which stratify patients with AML by favorable, intermediate, and adverse prognoses, now include a revised genetic-risk classification. This classification generally considers NPM1-mutated AML favorable risk. However, having a co-mutation with FLT3-ITD raises the risk to intermediate.
Despite this increased granularity in risk stratification, “it’s still not really clear who should have transplant in first remission with NPM1-mutated AML,” Dr. Othman said. “And there is still significant variation in practice, not just worldwide but even center to center.”
Although accumulating evidence suggests that MRD-negative patients with intermediate-risk AML are unlikely to benefit from allogeneic transplant in first complete remission, the presence of a FLT3-ITD mutation is often considered an indication for transplant, Othman explained. However, most studies supporting this view occurred before the development of sensitive molecular MRD measurement techniques.
The latest findings, from two sequential prospective randomized trials of intensive chemotherapy in adults aged 18-60 years with newly diagnosed AML may help clarify who will probably benefit from transplant and who won’t based on MRD status and relevant molecular features.
The first study (AML17), conducted from 2009 to 2014, selected patients for transplant in first complete remission using a validated risk score that incorporated features including age, sex, and response after therapy. The other (AML19), conducted from 2015 to 2020, selected patients with NPM1-mutated AML for transplant only if they tested positive for MRD in peripheral blood after their second course of treatment, regardless of FLT3-ITD status or other baseline risk factors.
Overall, the current analysis included the 737 patients with NPM1-mutated AML, 348 from AML17 and 389 from AML19, who were in complete remission after two courses of treatment and had an MRD sample at that point.
In AML17, 27% of MRD-positive patients (16 of 60) and 18% of MRD-negative patients (52 of 288) underwent transplant in first complete remission compared with 60% (50 of 83) and 16% (49 of 306), respectively, in AML19.
Among all 737 patients, Dr. Othman and colleagues did not observe an overall survival benefit among those who underwent transplant vs those who did not (hazard ratio [HR], 1.01) or among patients who were MRD-negative (HR, 0.82).
However, patients who were MRD-positive did have a significant survival advantage after transplant (HR, 0.39). In these patients, 3-year overall survival was 61% among those who underwent transplant vs 24% among those who did not.
In MRD-negative patients, transplant in first complete remission did not improve overall survival despite improved relapse-free survival (HR, 0.50). This outcome, Othman explained, probably occurred because most patients who did not undergo transplant and who relapsed were salvaged, with about two thirds undergoing a transplant during their second complete response.
Results in patients with NPM1 FLT3-ITD co-mutation mirrored those in the overall population: MRD-positive patients in first complete remission who underwent transplant demonstrated improved overall survival compared with those without transplant (HR, 0.52), but the overall survival benefit did not extend to MRD-negative patients (HR, 0.80).
The findings show that molecular MRD after induction chemotherapy can identify patients with NPM1-mutated AML who are more likely to benefit from transplant in first remission, Dr. Othman concluded. However, he noted, because only 16% of patients overall were older than 60 years, the results may not be generalizable to older patients.
A version of this article appeared on Medscape.com.
.
This survival benefit did not extend to patients who were MRD-negative after their second induction therapy, Jad Othman, MBBS, reported at the American Society of Hematology annual meeting.
The findings confirm the value of assessing MRD after induction chemotherapy to help identify patients with NPM1-mutated AML in first complete remission who are more likely to benefit from allogeneic transplant, said Dr. Othman, of King’s College London and Guy’s and St Thomas’ NHS Foundation Trust, London, and the University of Sydney, Australia.
Recently, updated European LeukemiaNet recommendations, which stratify patients with AML by favorable, intermediate, and adverse prognoses, now include a revised genetic-risk classification. This classification generally considers NPM1-mutated AML favorable risk. However, having a co-mutation with FLT3-ITD raises the risk to intermediate.
Despite this increased granularity in risk stratification, “it’s still not really clear who should have transplant in first remission with NPM1-mutated AML,” Dr. Othman said. “And there is still significant variation in practice, not just worldwide but even center to center.”
Although accumulating evidence suggests that MRD-negative patients with intermediate-risk AML are unlikely to benefit from allogeneic transplant in first complete remission, the presence of a FLT3-ITD mutation is often considered an indication for transplant, Othman explained. However, most studies supporting this view occurred before the development of sensitive molecular MRD measurement techniques.
The latest findings, from two sequential prospective randomized trials of intensive chemotherapy in adults aged 18-60 years with newly diagnosed AML may help clarify who will probably benefit from transplant and who won’t based on MRD status and relevant molecular features.
The first study (AML17), conducted from 2009 to 2014, selected patients for transplant in first complete remission using a validated risk score that incorporated features including age, sex, and response after therapy. The other (AML19), conducted from 2015 to 2020, selected patients with NPM1-mutated AML for transplant only if they tested positive for MRD in peripheral blood after their second course of treatment, regardless of FLT3-ITD status or other baseline risk factors.
Overall, the current analysis included the 737 patients with NPM1-mutated AML, 348 from AML17 and 389 from AML19, who were in complete remission after two courses of treatment and had an MRD sample at that point.
In AML17, 27% of MRD-positive patients (16 of 60) and 18% of MRD-negative patients (52 of 288) underwent transplant in first complete remission compared with 60% (50 of 83) and 16% (49 of 306), respectively, in AML19.
Among all 737 patients, Dr. Othman and colleagues did not observe an overall survival benefit among those who underwent transplant vs those who did not (hazard ratio [HR], 1.01) or among patients who were MRD-negative (HR, 0.82).
However, patients who were MRD-positive did have a significant survival advantage after transplant (HR, 0.39). In these patients, 3-year overall survival was 61% among those who underwent transplant vs 24% among those who did not.
In MRD-negative patients, transplant in first complete remission did not improve overall survival despite improved relapse-free survival (HR, 0.50). This outcome, Othman explained, probably occurred because most patients who did not undergo transplant and who relapsed were salvaged, with about two thirds undergoing a transplant during their second complete response.
Results in patients with NPM1 FLT3-ITD co-mutation mirrored those in the overall population: MRD-positive patients in first complete remission who underwent transplant demonstrated improved overall survival compared with those without transplant (HR, 0.52), but the overall survival benefit did not extend to MRD-negative patients (HR, 0.80).
The findings show that molecular MRD after induction chemotherapy can identify patients with NPM1-mutated AML who are more likely to benefit from transplant in first remission, Dr. Othman concluded. However, he noted, because only 16% of patients overall were older than 60 years, the results may not be generalizable to older patients.
A version of this article appeared on Medscape.com.
.
This survival benefit did not extend to patients who were MRD-negative after their second induction therapy, Jad Othman, MBBS, reported at the American Society of Hematology annual meeting.
The findings confirm the value of assessing MRD after induction chemotherapy to help identify patients with NPM1-mutated AML in first complete remission who are more likely to benefit from allogeneic transplant, said Dr. Othman, of King’s College London and Guy’s and St Thomas’ NHS Foundation Trust, London, and the University of Sydney, Australia.
Recently, updated European LeukemiaNet recommendations, which stratify patients with AML by favorable, intermediate, and adverse prognoses, now include a revised genetic-risk classification. This classification generally considers NPM1-mutated AML favorable risk. However, having a co-mutation with FLT3-ITD raises the risk to intermediate.
Despite this increased granularity in risk stratification, “it’s still not really clear who should have transplant in first remission with NPM1-mutated AML,” Dr. Othman said. “And there is still significant variation in practice, not just worldwide but even center to center.”
Although accumulating evidence suggests that MRD-negative patients with intermediate-risk AML are unlikely to benefit from allogeneic transplant in first complete remission, the presence of a FLT3-ITD mutation is often considered an indication for transplant, Othman explained. However, most studies supporting this view occurred before the development of sensitive molecular MRD measurement techniques.
The latest findings, from two sequential prospective randomized trials of intensive chemotherapy in adults aged 18-60 years with newly diagnosed AML may help clarify who will probably benefit from transplant and who won’t based on MRD status and relevant molecular features.
The first study (AML17), conducted from 2009 to 2014, selected patients for transplant in first complete remission using a validated risk score that incorporated features including age, sex, and response after therapy. The other (AML19), conducted from 2015 to 2020, selected patients with NPM1-mutated AML for transplant only if they tested positive for MRD in peripheral blood after their second course of treatment, regardless of FLT3-ITD status or other baseline risk factors.
Overall, the current analysis included the 737 patients with NPM1-mutated AML, 348 from AML17 and 389 from AML19, who were in complete remission after two courses of treatment and had an MRD sample at that point.
In AML17, 27% of MRD-positive patients (16 of 60) and 18% of MRD-negative patients (52 of 288) underwent transplant in first complete remission compared with 60% (50 of 83) and 16% (49 of 306), respectively, in AML19.
Among all 737 patients, Dr. Othman and colleagues did not observe an overall survival benefit among those who underwent transplant vs those who did not (hazard ratio [HR], 1.01) or among patients who were MRD-negative (HR, 0.82).
However, patients who were MRD-positive did have a significant survival advantage after transplant (HR, 0.39). In these patients, 3-year overall survival was 61% among those who underwent transplant vs 24% among those who did not.
In MRD-negative patients, transplant in first complete remission did not improve overall survival despite improved relapse-free survival (HR, 0.50). This outcome, Othman explained, probably occurred because most patients who did not undergo transplant and who relapsed were salvaged, with about two thirds undergoing a transplant during their second complete response.
Results in patients with NPM1 FLT3-ITD co-mutation mirrored those in the overall population: MRD-positive patients in first complete remission who underwent transplant demonstrated improved overall survival compared with those without transplant (HR, 0.52), but the overall survival benefit did not extend to MRD-negative patients (HR, 0.80).
The findings show that molecular MRD after induction chemotherapy can identify patients with NPM1-mutated AML who are more likely to benefit from transplant in first remission, Dr. Othman concluded. However, he noted, because only 16% of patients overall were older than 60 years, the results may not be generalizable to older patients.
A version of this article appeared on Medscape.com.
FROM ASH 2023
New KDIGO guideline encourages use of HCV-positive kidneys for HCV-negative recipients
The Kidney Disease: Improving Global Outcomes (KDIGO) Work Group has updated its guideline concerning the prevention, diagnosis, evaluation, and treatment of hepatitis C virus (HCV) infection in patients with chronic kidney disease (CKD).
Of note, KDIGO now supports transplant of HCV-positive kidneys to HCV-negative recipients.
The guidance document, authored by Ahmed Arslan Yousuf Awan, MD, of Baylor College of Medicine, Houston, and colleagues, was written in light of new evidence that has emerged since the 2018 guideline was published.
“The focused update was triggered by new data on antiviral treatment in patients with advanced stages of CKD (G4, G5, or G5D), transplant of HCV-infected kidneys into uninfected recipients, and evolution of the viewpoint on the role of kidney biopsy in managing kidney disease caused by HCV,” the guideline panelists wrote in Annals of Internal Medicine. “This update is intended to assist clinicians in the care of patients with HCV infection and CKD, including patients receiving dialysis (CKD G5D) and patients with a kidney transplant (CKD G1T-G5T).”
Anjay Rastogi, MD, PhD, professor and clinical chief of nephrology at the David Geffen School of Medicine at UCLA, said the update is both “timely and relevant,” and “will really have an impact on the organ shortage that we have for kidney transplant”
The updates are outlined below.
Expanded Access to HCV-Positive Kidneys
While the 2018 guideline recommended that HCV-positive kidneys be directed to HCV-positive recipients, the new guideline suggests that these kidneys are appropriate for all patients regardless of HCV status.
In support, the panelists cited a follow-up of THINKER-1 trial, which showed that eGFR and quality of life were not negatively affected when HCV-negative patients received an HCV-positive kidney, compared with an HCV-negative kidney. Data from 525 unmatched recipients in 16 other studies support this conclusion, the panelists noted.
Jose Debes, MD, PhD, associate professor at the University of Minnesota, Minneapolis, suggested that this is the most important update to the KDIGO guidelines.
“That [change] would be the main impact of these recommendations,” Dr. Debes said in an interview. “Several centers were already doing this, since some data [were] out there, but I think the fact that they’re making this into a guideline is quite important.”
Dr. Rastogi agreed that this recommendation is the most impactful update.
“That’s a big move,” Dr. Rastogi said in an interview. He predicted that the change will “definitely increase the donor pool, which is very, very important.”
For this new recommendation to have the greatest positive effect, however, Dr. Rastogi suggested that health care providers and treatment centers need to prepare an effective implementation strategy. He emphasized the importance of early communication with patients concerning the safety of HCV-positive kidneys, which depends on early initiation of direct-acting antiviral (DAA) therapy.
In the guideline, Dr. Awan and colleagues reported three documented cases of fibrosing cholestatic hepatitis occurred in patients who did not begin DAA therapy until 30 days after transplant.
“[Patients] should start [DAA treatment] right away,” Dr. Rastogi said, “and sometimes even before the transplant.”
This will require institutional support, he noted, as centers need to ensure that patients are covered for DAA therapy and medication is readily available.
Sofosbuvir Given the Green Light
Compared with the 2018 guideline, which recommended against sofosbuvir in patients with CKD G4 and G5, including those on dialysis, because of concerns about metabolization via the kidneys, the new guideline suggests that sofosbuvir-based DAA regimens are appropriate in patients with glomerular filtration rate (GFR) less than 30 mL/min per 1.73 m2, including those receiving dialysis.
This recommendation was based on a systematic review of 106 studies including both sofosbuvir-based and non-sofosbuvir-based DAA regimens that showed high safety and efficacy for all DAA regimen types across a broad variety of patient types.
“DAAs are highly effective and well tolerated treatments for hepatitis C in patients across all stages of CKD, including those undergoing dialysis and kidney transplant recipients, with no need for dose adjustment,” Dr. Awan and colleagues wrote.
Loosened Biopsy Requirements
Unlike the 2018 guideline, which advised kidney biopsy in HCV-positive patients with clinical evidence of glomerular disease prior to initiating DAA treatment, the new guideline suggests that HCV-infected patients with a typical presentation of immune-complex proliferative glomerulonephritis do not require confirmatory kidney biopsy.
“Because almost all patients with chronic hepatitis C (with or without glomerulonephritis) should be treated with DAAs, a kidney biopsy is unlikely to change management in most patients with hepatitis C and clinical glomerulonephritis,” the panelists wrote.
If kidney disease does not stabilize or improve with achievement of sustained virologic response, or if there is evidence of rapidly progressive glomerulonephritis, then a kidney biopsy should be considered before beginning immunosuppressive therapy, according to the guideline, which includes a flow chart to guide clinicians through this decision-making process.
Individualizing Immunosuppressive Therapy
Consistent with the old guideline, the new guideline recommends DAA treatment with concurrent immunosuppressive therapy for patients with cryoglobulinemic flare or rapidly progressive kidney failure. But in contrast, the new guideline calls for an individualized approach to immunosuppression in patients with nephrotic syndrome.
Dr. Awan and colleagues suggested that “nephrotic-range proteinuria (greater than 3.5 g/d) alone does not warrant use of immunosuppressive treatment because such patients can achieve remission of proteinuria after treatment with DAAs.” Still, if other associated complications — such as anasarca, thromboembolic disease, or severe hypoalbuminemia — are present, then immunosuppressive therapy may be warranted, with rituximab remaining the preferred first-line agent.
More Work Is Needed
Dr. Awan and colleagues concluded the guideline by highlighting areas of unmet need, and how filling these knowledge gaps could lead to additional guideline updates.
“Future studies of kidney donations from HCV-positive donors to HCV-negative recipients are needed to refine and clarify the timing of initiation and duration of DAA therapy and to assess long-term outcomes associated with this practice,” they wrote. “Also, randomized controlled trials are needed to determine which patients with HCV-associated kidney disease can be treated with DAA therapy alone versus in combination with immunosuppression and plasma exchange. KDIGO will assess the currency of its recommendations and the need to update them in the next 3 years.”
The guideline was funded by KDIGO. The investigators disclosed relationships with GSK, Gilead, Intercept, Novo Nordisk, and others. Dr. Rastogi and Dr. Debes had no conflicts of interest.
The Kidney Disease: Improving Global Outcomes (KDIGO) Work Group has updated its guideline concerning the prevention, diagnosis, evaluation, and treatment of hepatitis C virus (HCV) infection in patients with chronic kidney disease (CKD).
Of note, KDIGO now supports transplant of HCV-positive kidneys to HCV-negative recipients.
The guidance document, authored by Ahmed Arslan Yousuf Awan, MD, of Baylor College of Medicine, Houston, and colleagues, was written in light of new evidence that has emerged since the 2018 guideline was published.
“The focused update was triggered by new data on antiviral treatment in patients with advanced stages of CKD (G4, G5, or G5D), transplant of HCV-infected kidneys into uninfected recipients, and evolution of the viewpoint on the role of kidney biopsy in managing kidney disease caused by HCV,” the guideline panelists wrote in Annals of Internal Medicine. “This update is intended to assist clinicians in the care of patients with HCV infection and CKD, including patients receiving dialysis (CKD G5D) and patients with a kidney transplant (CKD G1T-G5T).”
Anjay Rastogi, MD, PhD, professor and clinical chief of nephrology at the David Geffen School of Medicine at UCLA, said the update is both “timely and relevant,” and “will really have an impact on the organ shortage that we have for kidney transplant”
The updates are outlined below.
Expanded Access to HCV-Positive Kidneys
While the 2018 guideline recommended that HCV-positive kidneys be directed to HCV-positive recipients, the new guideline suggests that these kidneys are appropriate for all patients regardless of HCV status.
In support, the panelists cited a follow-up of THINKER-1 trial, which showed that eGFR and quality of life were not negatively affected when HCV-negative patients received an HCV-positive kidney, compared with an HCV-negative kidney. Data from 525 unmatched recipients in 16 other studies support this conclusion, the panelists noted.
Jose Debes, MD, PhD, associate professor at the University of Minnesota, Minneapolis, suggested that this is the most important update to the KDIGO guidelines.
“That [change] would be the main impact of these recommendations,” Dr. Debes said in an interview. “Several centers were already doing this, since some data [were] out there, but I think the fact that they’re making this into a guideline is quite important.”
Dr. Rastogi agreed that this recommendation is the most impactful update.
“That’s a big move,” Dr. Rastogi said in an interview. He predicted that the change will “definitely increase the donor pool, which is very, very important.”
For this new recommendation to have the greatest positive effect, however, Dr. Rastogi suggested that health care providers and treatment centers need to prepare an effective implementation strategy. He emphasized the importance of early communication with patients concerning the safety of HCV-positive kidneys, which depends on early initiation of direct-acting antiviral (DAA) therapy.
In the guideline, Dr. Awan and colleagues reported three documented cases of fibrosing cholestatic hepatitis occurred in patients who did not begin DAA therapy until 30 days after transplant.
“[Patients] should start [DAA treatment] right away,” Dr. Rastogi said, “and sometimes even before the transplant.”
This will require institutional support, he noted, as centers need to ensure that patients are covered for DAA therapy and medication is readily available.
Sofosbuvir Given the Green Light
Compared with the 2018 guideline, which recommended against sofosbuvir in patients with CKD G4 and G5, including those on dialysis, because of concerns about metabolization via the kidneys, the new guideline suggests that sofosbuvir-based DAA regimens are appropriate in patients with glomerular filtration rate (GFR) less than 30 mL/min per 1.73 m2, including those receiving dialysis.
This recommendation was based on a systematic review of 106 studies including both sofosbuvir-based and non-sofosbuvir-based DAA regimens that showed high safety and efficacy for all DAA regimen types across a broad variety of patient types.
“DAAs are highly effective and well tolerated treatments for hepatitis C in patients across all stages of CKD, including those undergoing dialysis and kidney transplant recipients, with no need for dose adjustment,” Dr. Awan and colleagues wrote.
Loosened Biopsy Requirements
Unlike the 2018 guideline, which advised kidney biopsy in HCV-positive patients with clinical evidence of glomerular disease prior to initiating DAA treatment, the new guideline suggests that HCV-infected patients with a typical presentation of immune-complex proliferative glomerulonephritis do not require confirmatory kidney biopsy.
“Because almost all patients with chronic hepatitis C (with or without glomerulonephritis) should be treated with DAAs, a kidney biopsy is unlikely to change management in most patients with hepatitis C and clinical glomerulonephritis,” the panelists wrote.
If kidney disease does not stabilize or improve with achievement of sustained virologic response, or if there is evidence of rapidly progressive glomerulonephritis, then a kidney biopsy should be considered before beginning immunosuppressive therapy, according to the guideline, which includes a flow chart to guide clinicians through this decision-making process.
Individualizing Immunosuppressive Therapy
Consistent with the old guideline, the new guideline recommends DAA treatment with concurrent immunosuppressive therapy for patients with cryoglobulinemic flare or rapidly progressive kidney failure. But in contrast, the new guideline calls for an individualized approach to immunosuppression in patients with nephrotic syndrome.
Dr. Awan and colleagues suggested that “nephrotic-range proteinuria (greater than 3.5 g/d) alone does not warrant use of immunosuppressive treatment because such patients can achieve remission of proteinuria after treatment with DAAs.” Still, if other associated complications — such as anasarca, thromboembolic disease, or severe hypoalbuminemia — are present, then immunosuppressive therapy may be warranted, with rituximab remaining the preferred first-line agent.
More Work Is Needed
Dr. Awan and colleagues concluded the guideline by highlighting areas of unmet need, and how filling these knowledge gaps could lead to additional guideline updates.
“Future studies of kidney donations from HCV-positive donors to HCV-negative recipients are needed to refine and clarify the timing of initiation and duration of DAA therapy and to assess long-term outcomes associated with this practice,” they wrote. “Also, randomized controlled trials are needed to determine which patients with HCV-associated kidney disease can be treated with DAA therapy alone versus in combination with immunosuppression and plasma exchange. KDIGO will assess the currency of its recommendations and the need to update them in the next 3 years.”
The guideline was funded by KDIGO. The investigators disclosed relationships with GSK, Gilead, Intercept, Novo Nordisk, and others. Dr. Rastogi and Dr. Debes had no conflicts of interest.
The Kidney Disease: Improving Global Outcomes (KDIGO) Work Group has updated its guideline concerning the prevention, diagnosis, evaluation, and treatment of hepatitis C virus (HCV) infection in patients with chronic kidney disease (CKD).
Of note, KDIGO now supports transplant of HCV-positive kidneys to HCV-negative recipients.
The guidance document, authored by Ahmed Arslan Yousuf Awan, MD, of Baylor College of Medicine, Houston, and colleagues, was written in light of new evidence that has emerged since the 2018 guideline was published.
“The focused update was triggered by new data on antiviral treatment in patients with advanced stages of CKD (G4, G5, or G5D), transplant of HCV-infected kidneys into uninfected recipients, and evolution of the viewpoint on the role of kidney biopsy in managing kidney disease caused by HCV,” the guideline panelists wrote in Annals of Internal Medicine. “This update is intended to assist clinicians in the care of patients with HCV infection and CKD, including patients receiving dialysis (CKD G5D) and patients with a kidney transplant (CKD G1T-G5T).”
Anjay Rastogi, MD, PhD, professor and clinical chief of nephrology at the David Geffen School of Medicine at UCLA, said the update is both “timely and relevant,” and “will really have an impact on the organ shortage that we have for kidney transplant”
The updates are outlined below.
Expanded Access to HCV-Positive Kidneys
While the 2018 guideline recommended that HCV-positive kidneys be directed to HCV-positive recipients, the new guideline suggests that these kidneys are appropriate for all patients regardless of HCV status.
In support, the panelists cited a follow-up of THINKER-1 trial, which showed that eGFR and quality of life were not negatively affected when HCV-negative patients received an HCV-positive kidney, compared with an HCV-negative kidney. Data from 525 unmatched recipients in 16 other studies support this conclusion, the panelists noted.
Jose Debes, MD, PhD, associate professor at the University of Minnesota, Minneapolis, suggested that this is the most important update to the KDIGO guidelines.
“That [change] would be the main impact of these recommendations,” Dr. Debes said in an interview. “Several centers were already doing this, since some data [were] out there, but I think the fact that they’re making this into a guideline is quite important.”
Dr. Rastogi agreed that this recommendation is the most impactful update.
“That’s a big move,” Dr. Rastogi said in an interview. He predicted that the change will “definitely increase the donor pool, which is very, very important.”
For this new recommendation to have the greatest positive effect, however, Dr. Rastogi suggested that health care providers and treatment centers need to prepare an effective implementation strategy. He emphasized the importance of early communication with patients concerning the safety of HCV-positive kidneys, which depends on early initiation of direct-acting antiviral (DAA) therapy.
In the guideline, Dr. Awan and colleagues reported three documented cases of fibrosing cholestatic hepatitis occurred in patients who did not begin DAA therapy until 30 days after transplant.
“[Patients] should start [DAA treatment] right away,” Dr. Rastogi said, “and sometimes even before the transplant.”
This will require institutional support, he noted, as centers need to ensure that patients are covered for DAA therapy and medication is readily available.
Sofosbuvir Given the Green Light
Compared with the 2018 guideline, which recommended against sofosbuvir in patients with CKD G4 and G5, including those on dialysis, because of concerns about metabolization via the kidneys, the new guideline suggests that sofosbuvir-based DAA regimens are appropriate in patients with glomerular filtration rate (GFR) less than 30 mL/min per 1.73 m2, including those receiving dialysis.
This recommendation was based on a systematic review of 106 studies including both sofosbuvir-based and non-sofosbuvir-based DAA regimens that showed high safety and efficacy for all DAA regimen types across a broad variety of patient types.
“DAAs are highly effective and well tolerated treatments for hepatitis C in patients across all stages of CKD, including those undergoing dialysis and kidney transplant recipients, with no need for dose adjustment,” Dr. Awan and colleagues wrote.
Loosened Biopsy Requirements
Unlike the 2018 guideline, which advised kidney biopsy in HCV-positive patients with clinical evidence of glomerular disease prior to initiating DAA treatment, the new guideline suggests that HCV-infected patients with a typical presentation of immune-complex proliferative glomerulonephritis do not require confirmatory kidney biopsy.
“Because almost all patients with chronic hepatitis C (with or without glomerulonephritis) should be treated with DAAs, a kidney biopsy is unlikely to change management in most patients with hepatitis C and clinical glomerulonephritis,” the panelists wrote.
If kidney disease does not stabilize or improve with achievement of sustained virologic response, or if there is evidence of rapidly progressive glomerulonephritis, then a kidney biopsy should be considered before beginning immunosuppressive therapy, according to the guideline, which includes a flow chart to guide clinicians through this decision-making process.
Individualizing Immunosuppressive Therapy
Consistent with the old guideline, the new guideline recommends DAA treatment with concurrent immunosuppressive therapy for patients with cryoglobulinemic flare or rapidly progressive kidney failure. But in contrast, the new guideline calls for an individualized approach to immunosuppression in patients with nephrotic syndrome.
Dr. Awan and colleagues suggested that “nephrotic-range proteinuria (greater than 3.5 g/d) alone does not warrant use of immunosuppressive treatment because such patients can achieve remission of proteinuria after treatment with DAAs.” Still, if other associated complications — such as anasarca, thromboembolic disease, or severe hypoalbuminemia — are present, then immunosuppressive therapy may be warranted, with rituximab remaining the preferred first-line agent.
More Work Is Needed
Dr. Awan and colleagues concluded the guideline by highlighting areas of unmet need, and how filling these knowledge gaps could lead to additional guideline updates.
“Future studies of kidney donations from HCV-positive donors to HCV-negative recipients are needed to refine and clarify the timing of initiation and duration of DAA therapy and to assess long-term outcomes associated with this practice,” they wrote. “Also, randomized controlled trials are needed to determine which patients with HCV-associated kidney disease can be treated with DAA therapy alone versus in combination with immunosuppression and plasma exchange. KDIGO will assess the currency of its recommendations and the need to update them in the next 3 years.”
The guideline was funded by KDIGO. The investigators disclosed relationships with GSK, Gilead, Intercept, Novo Nordisk, and others. Dr. Rastogi and Dr. Debes had no conflicts of interest.
FROM ANNALS OF INTERNAL MEDICINE
Sickle Cell: Good Outcomes for Haploidentical Transplants
Of 42 patients aged 15-45 who were fully treated, 95% survived to 2 years post transplant (overall survival, (95% CI, 81.5%-98.7%), and 88% reached the primary endpoint of event-free survival at 2 years (95% CI, 73.5%-94.8%), according to the findings, which were released at the annual meeting of the American Society of Hematology.
At an ASH news briefing, study lead author Adetola A. Kassim, MBBS, MS, of Vanderbilt University Medical Center, in Nashville, Tennessee, said the results support haploidentical stem cell transplants “as a suitable and tolerable curative therapy for adults with sickle cell disease and severe end-organ toxicity such as stroke or pulmonary hypertension, a population typically excluded from participating in gene therapy.”
Dr. Kassim added that the findings are especially promising since there are so many potential donors in stem-cell transplants: “Your siblings can be donors, your parents can be donors, your cousins can be donors. First-, second-, and third-degree relatives can be donors. So there’s really endless donors within the family.”
In an interview, Mayo Clinic SCD specialist Asmaa Ferdjallah, MD, MPH, of Mayo Clinic in Rochester, Minnesota, who was not involved with the study but is familiar with its findings, said stem cell transplant is the only option to cure SCD.
“This is advantageous because SCD is otherwise a chronic disease that is marked by chronic pain, risk of stroke, frequent interruptions of school/work due to sick days, and decreased life span,” she said. “Most patients, assuming they can tolerate the conditioning chemotherapy that is given before transplant, are eligible.”
Matched sibling donors are preferable, but they can be hard to find, she said. It hasn’t been clear whether half-matched donors are feasible options in SCD, she said. “This means that, if you are a patient with sickle cell disease, and you don’t have a suitable matched donor, haploidentical transplant is not a recommendation we can make outside of enrollment in a clinical trial.”
For the study, researchers enlisted 54 patients with SCD and prior stroke, recurrent acute chest syndrome or pain, chronic transfusion regimen, or tricuspid valve regurgitant jet velocity ≥2.7 m/sec. Participants had to have an HLA-haploidentical first-degree relative donor who would donate bone marrow.
“The median age was 22.8 years at enrollment; 47/54 (87%) of enrolled participants had hemoglobin SS disease, 40/54 (74.1%) had a Lansky/Karnofsky score of 90-100 at baseline, and 41/54 (75.9%) had an HLA match score of 4/8,” the researchers reported. “Recurrent vaso-occlusive pain episodes (38.9%), acute chest syndrome (16.8%), and overt stroke (16.7%) were the most common indications for transplant.”
“We knew going into this that we were going to get very high-risk patients,” Dr. Kassim said.
Forty-two patients went through with transplants. As for adverse events, 2 patients died, all within the first year, of organ failure and acute respiratory distress syndrome; 4.8% of participants had primary graft failure, and 2.4% had secondary graft failure before day 100. “The cumulative incidence of grades II-IV acute GVHD [graft-versus-host disease] at day 100 was 26.2% (95% CI, 14.0%-40.2%), and grades III-IV acute GVHD at day 100 was 4.8% (95% CI, 0.9%-14.4%).”
The outcomes are similar to those in transplants with matched sibling donors, Dr. Kassim said.
Dr. Ferdjallah said the new study is “robust” and impressive, although it’s small.
“As a clinician, these are the kind of outcomes I have been hoping for,” Dr. Ferdjallah said. “I have been very reluctant to suggest haploidentical transplant for my sickle cell disease patients. However, reviewing the results of this study with my motivated patients and families can help us both to use shared medical decision-making and come together with what is best for that specific patient.”
As for adverse events, she said they “confirm a fear of using haploidentical transplant, which is graft failure. Fortunately, out of 42 who proceeded to transplant, only 2 had primary graft failure and 1 had secondary graft failure. This is not overtly a large number. Of course, we would hope for more durable engraftment. The other side effects including GVHD and infection are all to be expected.”
As for cost, Dr. Kassim said the transplants run from $200,000 to $400,000 vs over $2 million for gene therapy, and Dr. Ferdjallah said insurance is likely to cover the treatment.
Moving ahead, Dr. Ferdjallah said she looks forward to getting study data about pediatric patients specifically. For now, “we should consider HLA-haploidentical seriously in patients with sickle cell disease and no available HLA-matched donors.”
Grants to the Blood and Marrow Transplant Clinical Trials Network from the National Heart, Lung, and Blood Institute and National Cancer Institute funded the study. Dr. Kassim had no disclosures. Some other authors disclosed various and multiple relationships with industry. Dr. Ferdjallah has no disclosures.
Of 42 patients aged 15-45 who were fully treated, 95% survived to 2 years post transplant (overall survival, (95% CI, 81.5%-98.7%), and 88% reached the primary endpoint of event-free survival at 2 years (95% CI, 73.5%-94.8%), according to the findings, which were released at the annual meeting of the American Society of Hematology.
At an ASH news briefing, study lead author Adetola A. Kassim, MBBS, MS, of Vanderbilt University Medical Center, in Nashville, Tennessee, said the results support haploidentical stem cell transplants “as a suitable and tolerable curative therapy for adults with sickle cell disease and severe end-organ toxicity such as stroke or pulmonary hypertension, a population typically excluded from participating in gene therapy.”
Dr. Kassim added that the findings are especially promising since there are so many potential donors in stem-cell transplants: “Your siblings can be donors, your parents can be donors, your cousins can be donors. First-, second-, and third-degree relatives can be donors. So there’s really endless donors within the family.”
In an interview, Mayo Clinic SCD specialist Asmaa Ferdjallah, MD, MPH, of Mayo Clinic in Rochester, Minnesota, who was not involved with the study but is familiar with its findings, said stem cell transplant is the only option to cure SCD.
“This is advantageous because SCD is otherwise a chronic disease that is marked by chronic pain, risk of stroke, frequent interruptions of school/work due to sick days, and decreased life span,” she said. “Most patients, assuming they can tolerate the conditioning chemotherapy that is given before transplant, are eligible.”
Matched sibling donors are preferable, but they can be hard to find, she said. It hasn’t been clear whether half-matched donors are feasible options in SCD, she said. “This means that, if you are a patient with sickle cell disease, and you don’t have a suitable matched donor, haploidentical transplant is not a recommendation we can make outside of enrollment in a clinical trial.”
For the study, researchers enlisted 54 patients with SCD and prior stroke, recurrent acute chest syndrome or pain, chronic transfusion regimen, or tricuspid valve regurgitant jet velocity ≥2.7 m/sec. Participants had to have an HLA-haploidentical first-degree relative donor who would donate bone marrow.
“The median age was 22.8 years at enrollment; 47/54 (87%) of enrolled participants had hemoglobin SS disease, 40/54 (74.1%) had a Lansky/Karnofsky score of 90-100 at baseline, and 41/54 (75.9%) had an HLA match score of 4/8,” the researchers reported. “Recurrent vaso-occlusive pain episodes (38.9%), acute chest syndrome (16.8%), and overt stroke (16.7%) were the most common indications for transplant.”
“We knew going into this that we were going to get very high-risk patients,” Dr. Kassim said.
Forty-two patients went through with transplants. As for adverse events, 2 patients died, all within the first year, of organ failure and acute respiratory distress syndrome; 4.8% of participants had primary graft failure, and 2.4% had secondary graft failure before day 100. “The cumulative incidence of grades II-IV acute GVHD [graft-versus-host disease] at day 100 was 26.2% (95% CI, 14.0%-40.2%), and grades III-IV acute GVHD at day 100 was 4.8% (95% CI, 0.9%-14.4%).”
The outcomes are similar to those in transplants with matched sibling donors, Dr. Kassim said.
Dr. Ferdjallah said the new study is “robust” and impressive, although it’s small.
“As a clinician, these are the kind of outcomes I have been hoping for,” Dr. Ferdjallah said. “I have been very reluctant to suggest haploidentical transplant for my sickle cell disease patients. However, reviewing the results of this study with my motivated patients and families can help us both to use shared medical decision-making and come together with what is best for that specific patient.”
As for adverse events, she said they “confirm a fear of using haploidentical transplant, which is graft failure. Fortunately, out of 42 who proceeded to transplant, only 2 had primary graft failure and 1 had secondary graft failure. This is not overtly a large number. Of course, we would hope for more durable engraftment. The other side effects including GVHD and infection are all to be expected.”
As for cost, Dr. Kassim said the transplants run from $200,000 to $400,000 vs over $2 million for gene therapy, and Dr. Ferdjallah said insurance is likely to cover the treatment.
Moving ahead, Dr. Ferdjallah said she looks forward to getting study data about pediatric patients specifically. For now, “we should consider HLA-haploidentical seriously in patients with sickle cell disease and no available HLA-matched donors.”
Grants to the Blood and Marrow Transplant Clinical Trials Network from the National Heart, Lung, and Blood Institute and National Cancer Institute funded the study. Dr. Kassim had no disclosures. Some other authors disclosed various and multiple relationships with industry. Dr. Ferdjallah has no disclosures.
Of 42 patients aged 15-45 who were fully treated, 95% survived to 2 years post transplant (overall survival, (95% CI, 81.5%-98.7%), and 88% reached the primary endpoint of event-free survival at 2 years (95% CI, 73.5%-94.8%), according to the findings, which were released at the annual meeting of the American Society of Hematology.
At an ASH news briefing, study lead author Adetola A. Kassim, MBBS, MS, of Vanderbilt University Medical Center, in Nashville, Tennessee, said the results support haploidentical stem cell transplants “as a suitable and tolerable curative therapy for adults with sickle cell disease and severe end-organ toxicity such as stroke or pulmonary hypertension, a population typically excluded from participating in gene therapy.”
Dr. Kassim added that the findings are especially promising since there are so many potential donors in stem-cell transplants: “Your siblings can be donors, your parents can be donors, your cousins can be donors. First-, second-, and third-degree relatives can be donors. So there’s really endless donors within the family.”
In an interview, Mayo Clinic SCD specialist Asmaa Ferdjallah, MD, MPH, of Mayo Clinic in Rochester, Minnesota, who was not involved with the study but is familiar with its findings, said stem cell transplant is the only option to cure SCD.
“This is advantageous because SCD is otherwise a chronic disease that is marked by chronic pain, risk of stroke, frequent interruptions of school/work due to sick days, and decreased life span,” she said. “Most patients, assuming they can tolerate the conditioning chemotherapy that is given before transplant, are eligible.”
Matched sibling donors are preferable, but they can be hard to find, she said. It hasn’t been clear whether half-matched donors are feasible options in SCD, she said. “This means that, if you are a patient with sickle cell disease, and you don’t have a suitable matched donor, haploidentical transplant is not a recommendation we can make outside of enrollment in a clinical trial.”
For the study, researchers enlisted 54 patients with SCD and prior stroke, recurrent acute chest syndrome or pain, chronic transfusion regimen, or tricuspid valve regurgitant jet velocity ≥2.7 m/sec. Participants had to have an HLA-haploidentical first-degree relative donor who would donate bone marrow.
“The median age was 22.8 years at enrollment; 47/54 (87%) of enrolled participants had hemoglobin SS disease, 40/54 (74.1%) had a Lansky/Karnofsky score of 90-100 at baseline, and 41/54 (75.9%) had an HLA match score of 4/8,” the researchers reported. “Recurrent vaso-occlusive pain episodes (38.9%), acute chest syndrome (16.8%), and overt stroke (16.7%) were the most common indications for transplant.”
“We knew going into this that we were going to get very high-risk patients,” Dr. Kassim said.
Forty-two patients went through with transplants. As for adverse events, 2 patients died, all within the first year, of organ failure and acute respiratory distress syndrome; 4.8% of participants had primary graft failure, and 2.4% had secondary graft failure before day 100. “The cumulative incidence of grades II-IV acute GVHD [graft-versus-host disease] at day 100 was 26.2% (95% CI, 14.0%-40.2%), and grades III-IV acute GVHD at day 100 was 4.8% (95% CI, 0.9%-14.4%).”
The outcomes are similar to those in transplants with matched sibling donors, Dr. Kassim said.
Dr. Ferdjallah said the new study is “robust” and impressive, although it’s small.
“As a clinician, these are the kind of outcomes I have been hoping for,” Dr. Ferdjallah said. “I have been very reluctant to suggest haploidentical transplant for my sickle cell disease patients. However, reviewing the results of this study with my motivated patients and families can help us both to use shared medical decision-making and come together with what is best for that specific patient.”
As for adverse events, she said they “confirm a fear of using haploidentical transplant, which is graft failure. Fortunately, out of 42 who proceeded to transplant, only 2 had primary graft failure and 1 had secondary graft failure. This is not overtly a large number. Of course, we would hope for more durable engraftment. The other side effects including GVHD and infection are all to be expected.”
As for cost, Dr. Kassim said the transplants run from $200,000 to $400,000 vs over $2 million for gene therapy, and Dr. Ferdjallah said insurance is likely to cover the treatment.
Moving ahead, Dr. Ferdjallah said she looks forward to getting study data about pediatric patients specifically. For now, “we should consider HLA-haploidentical seriously in patients with sickle cell disease and no available HLA-matched donors.”
Grants to the Blood and Marrow Transplant Clinical Trials Network from the National Heart, Lung, and Blood Institute and National Cancer Institute funded the study. Dr. Kassim had no disclosures. Some other authors disclosed various and multiple relationships with industry. Dr. Ferdjallah has no disclosures.
FROM ASH 2023
Relapsed DLBCL: With Complete Interim Response, SCT Outperforms CAR T
“In patients with relapsed DLBCL in a complete remission, treatment with auto-HCT is associated with a lower rate of relapse/progression, and a longer progression-free survival [versus CAR T therapy],” said first author Mazyar Shadman, MD, MPH, of the Division of Medical Oncology, University of Washington, Seattle.
“The data support utilization of auto-HCT in patients with relapsed LBCL achieving a complete response,” he said.
The findings were presented at the annual meeting of the American Society of Hematology in San Diego.
While approximately 60% of patients with DLBCL are successfully treated after an initial anthracycline-based and rituximab-containing chemotherapy regimen, those who do not improve have poorer outcomes, and CAR T-cell therapy has emerged as the standard of care for those patients, based on results from the ZUMA-7 and TRANSFORM clinical trials.
But with delays in accessing CAR T quite common, patients will often receive interim chemotherapy while awaiting referral to a CAR T center, and occasionally, usually unexpectedly, some will achieve a partial or complete response.
In previous research involving patients who achieved a partial remission in such interim cases, Dr. Shadman and colleagues demonstrated that auto-HCT had favorable outcomes, compared with those who received CAR T therapy.
For the new retrospective, real-world analysis, the authors compared outcomes with the treatment options among 360 patients between the ages of 18 and 75 who were enrolled in the Center for International Blood & Marrow Transplant Research registry and had received auto-HCT or CAR T therapy after achieving a complete remission following salvage chemotherapy.
Of those receiving CAR-T cell therapy, most (53.2%) received tisagenlecleucel (tisa-cel), followed by axicabtagene ciloleucel (axi-cel, 45.6%) and lisocabtagene maraleucel (liso-cel, 1.3%), between 2018 and 2021, while 281 patients were treated with auto-HCT between 2015 and 2021.
With a median follow-up of 49.7 months (range 3.0-94.4) for auto-HCT and 24.7 months (range 3.3-49.4) for CAR-T, a univariate analysis showed the rate of 2-year progression free survival was 66.2% in the auto-HCT group and 47.8% in the CAR T group (P < .001).
The results also favored auto-HCT for 2-year progression/relapse, with a cumulative incidence of 27.8% with auto-HCT versus 48% with CAR T (P < .001), and the 2-year overall survival was higher with auto-HCT (78.9% vs. 65.6%; P = .037).
After adjustment in multivariable analysis adjusting for relevant clinical variables, auto-HCT versus CAR T remained associated with a lower risk of relapse or progression (HR 2.18; P < .0001) and an improved progression-free survival (HR 1.83; P = .0011), with no significant differences in the risk of treatment-related mortality (HR 0.59; P = .36) or overall survival (HR 1.44; P = .12).
Deaths occurred among 85 patients in the auto-HCT group and 25 in the CAR T cohort, with lymphoma being the main cause of death in both groups (60% and 68%, respectively).
While 37 (13.2%) of auto-HCT patients later received subsequent CAR-T therapy, no patients receiving CAR-T had subsequent auto-HCT.
There were no differences between the CAR-T and auto-HST groups in rates of 2-year treatment-related mortality (4.1% vs. 5.9%; P = .673).
A subanalysis of those who had treatment failure at 12 months, (CAR-T = 57 and auto-HCT = 163) showed that those receiving CAR-T therapy had a higher 2-year relapse rate (46.3% vs. 25%; P < .001); an inferior 2-year progression-free survival rate (48.4% vs. 68.2%; P = .001) compared with auto-HCT, while there were no significant differences between the groups in terms of 2-year overall survival or treatment-related mortality.
After a multivariable analysis adjusting for relevant clinical factors, CAR-T therapy remained associated with higher risk of relapse (HR 2.18; P < .0001) and an inferior progression-free survival (HR 1.83; P = .0011) compared with auto-HCT, with no differences in the risk of treatment-related mortality (HR 0.59; P = .36) or overall survival (HR 1.44; P = .12).
“These results are consistent with our previously reported findings, indicating higher efficacy of auto-HCT compared with CAR T in patients with partial remission,” Dr. Shadman said.
In addition to the study’s being a retrospective analysis, limitations include that more than half of patients in the CAR T cohort received tisa-cel, which could have lower efficacy compared with other approved CAR T therapies, Dr. Shadman noted.
“A repeat analysis by including more patients treated with axi-cel or liso-cel may address this issue in the future,” he said.
Discussing the results in a press briefing, Dr. Shadman underscored that “there is no question the choice of therapy for these DLBCL patients with primary refractory disease should be second-line CAR T therapy — we are not suggesting that those patients should be sent for auto-HCT,” he said.
“What we are saying is, in real-world practice ... patients may need chemotherapy treatment in the interim (awaiting CAR T treatment), and we don’t expect these patients to respond to those cycles because they have already shown us that they don’t do well with chemotherapy — however some do respond and can go into complete remission.”
The question then becomes whether patients at that point will fare better with CAR T or auto-HCT, and the results indicate that “auto-HCT gives those patients a pretty solid remission that looks better than [that with] CAR T therapy.”
Dr. Shadman noted that the results serve to inform or confirm key clinical practices, including “in patients with late relapses, after 12 months, auto-HCT should remain the standard of care.
“In patients with primary refractory disease or early relapse, CAR T should be the goal of therapy and improving access to CAR T should remain a priority.
“In the subset of patients who achieve a CR with interim treatment, a discussion about the possibility of utilizing auto-HCT seems reasonable and can provide another curative option for some patients while keeping CAR-T as a backup treatment plan in case of auto-HCT failure.”
Commenting on the study, Jonathan W. Friedberg, MD, the Samuel Durand Professor of Medicine and director of the Wilmot Cancer Institute, University of Rochester, New York, said, “these findings confirm utility of auto-HCT in patients who achieve a CR.”
However, “the problem is that only a small fraction of patients achieve CR in this situation, and we do not know who they are going to be at time of relapse,” he told this news organization.
He agreed that “given robust randomized trials showing overall survival benefit of CAR-T compared to auto-HCT in patients with high risk relapsed DLBCL, CAR-T treatment should remain the current standard.
“However, these current results help to confirm the strategy for management of low- risk (late) relapses and indicate that auto-HCT still has a place for these patients if they achieve CR with salvage therapy.”
Dr. Shadman reported relationships with ADC therapeutics, Bristol Myers Squibb, Genmab, Lilly, Vincerx, Kite (Gilead), Janssen, Fate Therapeutics, MorphoSys/Incyte, AstraZeneca, BeiGene, Pharmacyclics, Mustang Bio, AbbVie, Genentech, MEI Pharma, Regeneron, and TG Therapeutics. Dr. Friedberg had no disclosures to report.
“In patients with relapsed DLBCL in a complete remission, treatment with auto-HCT is associated with a lower rate of relapse/progression, and a longer progression-free survival [versus CAR T therapy],” said first author Mazyar Shadman, MD, MPH, of the Division of Medical Oncology, University of Washington, Seattle.
“The data support utilization of auto-HCT in patients with relapsed LBCL achieving a complete response,” he said.
The findings were presented at the annual meeting of the American Society of Hematology in San Diego.
While approximately 60% of patients with DLBCL are successfully treated after an initial anthracycline-based and rituximab-containing chemotherapy regimen, those who do not improve have poorer outcomes, and CAR T-cell therapy has emerged as the standard of care for those patients, based on results from the ZUMA-7 and TRANSFORM clinical trials.
But with delays in accessing CAR T quite common, patients will often receive interim chemotherapy while awaiting referral to a CAR T center, and occasionally, usually unexpectedly, some will achieve a partial or complete response.
In previous research involving patients who achieved a partial remission in such interim cases, Dr. Shadman and colleagues demonstrated that auto-HCT had favorable outcomes, compared with those who received CAR T therapy.
For the new retrospective, real-world analysis, the authors compared outcomes with the treatment options among 360 patients between the ages of 18 and 75 who were enrolled in the Center for International Blood & Marrow Transplant Research registry and had received auto-HCT or CAR T therapy after achieving a complete remission following salvage chemotherapy.
Of those receiving CAR-T cell therapy, most (53.2%) received tisagenlecleucel (tisa-cel), followed by axicabtagene ciloleucel (axi-cel, 45.6%) and lisocabtagene maraleucel (liso-cel, 1.3%), between 2018 and 2021, while 281 patients were treated with auto-HCT between 2015 and 2021.
With a median follow-up of 49.7 months (range 3.0-94.4) for auto-HCT and 24.7 months (range 3.3-49.4) for CAR-T, a univariate analysis showed the rate of 2-year progression free survival was 66.2% in the auto-HCT group and 47.8% in the CAR T group (P < .001).
The results also favored auto-HCT for 2-year progression/relapse, with a cumulative incidence of 27.8% with auto-HCT versus 48% with CAR T (P < .001), and the 2-year overall survival was higher with auto-HCT (78.9% vs. 65.6%; P = .037).
After adjustment in multivariable analysis adjusting for relevant clinical variables, auto-HCT versus CAR T remained associated with a lower risk of relapse or progression (HR 2.18; P < .0001) and an improved progression-free survival (HR 1.83; P = .0011), with no significant differences in the risk of treatment-related mortality (HR 0.59; P = .36) or overall survival (HR 1.44; P = .12).
Deaths occurred among 85 patients in the auto-HCT group and 25 in the CAR T cohort, with lymphoma being the main cause of death in both groups (60% and 68%, respectively).
While 37 (13.2%) of auto-HCT patients later received subsequent CAR-T therapy, no patients receiving CAR-T had subsequent auto-HCT.
There were no differences between the CAR-T and auto-HST groups in rates of 2-year treatment-related mortality (4.1% vs. 5.9%; P = .673).
A subanalysis of those who had treatment failure at 12 months, (CAR-T = 57 and auto-HCT = 163) showed that those receiving CAR-T therapy had a higher 2-year relapse rate (46.3% vs. 25%; P < .001); an inferior 2-year progression-free survival rate (48.4% vs. 68.2%; P = .001) compared with auto-HCT, while there were no significant differences between the groups in terms of 2-year overall survival or treatment-related mortality.
After a multivariable analysis adjusting for relevant clinical factors, CAR-T therapy remained associated with higher risk of relapse (HR 2.18; P < .0001) and an inferior progression-free survival (HR 1.83; P = .0011) compared with auto-HCT, with no differences in the risk of treatment-related mortality (HR 0.59; P = .36) or overall survival (HR 1.44; P = .12).
“These results are consistent with our previously reported findings, indicating higher efficacy of auto-HCT compared with CAR T in patients with partial remission,” Dr. Shadman said.
In addition to the study’s being a retrospective analysis, limitations include that more than half of patients in the CAR T cohort received tisa-cel, which could have lower efficacy compared with other approved CAR T therapies, Dr. Shadman noted.
“A repeat analysis by including more patients treated with axi-cel or liso-cel may address this issue in the future,” he said.
Discussing the results in a press briefing, Dr. Shadman underscored that “there is no question the choice of therapy for these DLBCL patients with primary refractory disease should be second-line CAR T therapy — we are not suggesting that those patients should be sent for auto-HCT,” he said.
“What we are saying is, in real-world practice ... patients may need chemotherapy treatment in the interim (awaiting CAR T treatment), and we don’t expect these patients to respond to those cycles because they have already shown us that they don’t do well with chemotherapy — however some do respond and can go into complete remission.”
The question then becomes whether patients at that point will fare better with CAR T or auto-HCT, and the results indicate that “auto-HCT gives those patients a pretty solid remission that looks better than [that with] CAR T therapy.”
Dr. Shadman noted that the results serve to inform or confirm key clinical practices, including “in patients with late relapses, after 12 months, auto-HCT should remain the standard of care.
“In patients with primary refractory disease or early relapse, CAR T should be the goal of therapy and improving access to CAR T should remain a priority.
“In the subset of patients who achieve a CR with interim treatment, a discussion about the possibility of utilizing auto-HCT seems reasonable and can provide another curative option for some patients while keeping CAR-T as a backup treatment plan in case of auto-HCT failure.”
Commenting on the study, Jonathan W. Friedberg, MD, the Samuel Durand Professor of Medicine and director of the Wilmot Cancer Institute, University of Rochester, New York, said, “these findings confirm utility of auto-HCT in patients who achieve a CR.”
However, “the problem is that only a small fraction of patients achieve CR in this situation, and we do not know who they are going to be at time of relapse,” he told this news organization.
He agreed that “given robust randomized trials showing overall survival benefit of CAR-T compared to auto-HCT in patients with high risk relapsed DLBCL, CAR-T treatment should remain the current standard.
“However, these current results help to confirm the strategy for management of low- risk (late) relapses and indicate that auto-HCT still has a place for these patients if they achieve CR with salvage therapy.”
Dr. Shadman reported relationships with ADC therapeutics, Bristol Myers Squibb, Genmab, Lilly, Vincerx, Kite (Gilead), Janssen, Fate Therapeutics, MorphoSys/Incyte, AstraZeneca, BeiGene, Pharmacyclics, Mustang Bio, AbbVie, Genentech, MEI Pharma, Regeneron, and TG Therapeutics. Dr. Friedberg had no disclosures to report.
“In patients with relapsed DLBCL in a complete remission, treatment with auto-HCT is associated with a lower rate of relapse/progression, and a longer progression-free survival [versus CAR T therapy],” said first author Mazyar Shadman, MD, MPH, of the Division of Medical Oncology, University of Washington, Seattle.
“The data support utilization of auto-HCT in patients with relapsed LBCL achieving a complete response,” he said.
The findings were presented at the annual meeting of the American Society of Hematology in San Diego.
While approximately 60% of patients with DLBCL are successfully treated after an initial anthracycline-based and rituximab-containing chemotherapy regimen, those who do not improve have poorer outcomes, and CAR T-cell therapy has emerged as the standard of care for those patients, based on results from the ZUMA-7 and TRANSFORM clinical trials.
But with delays in accessing CAR T quite common, patients will often receive interim chemotherapy while awaiting referral to a CAR T center, and occasionally, usually unexpectedly, some will achieve a partial or complete response.
In previous research involving patients who achieved a partial remission in such interim cases, Dr. Shadman and colleagues demonstrated that auto-HCT had favorable outcomes, compared with those who received CAR T therapy.
For the new retrospective, real-world analysis, the authors compared outcomes with the treatment options among 360 patients between the ages of 18 and 75 who were enrolled in the Center for International Blood & Marrow Transplant Research registry and had received auto-HCT or CAR T therapy after achieving a complete remission following salvage chemotherapy.
Of those receiving CAR-T cell therapy, most (53.2%) received tisagenlecleucel (tisa-cel), followed by axicabtagene ciloleucel (axi-cel, 45.6%) and lisocabtagene maraleucel (liso-cel, 1.3%), between 2018 and 2021, while 281 patients were treated with auto-HCT between 2015 and 2021.
With a median follow-up of 49.7 months (range 3.0-94.4) for auto-HCT and 24.7 months (range 3.3-49.4) for CAR-T, a univariate analysis showed the rate of 2-year progression free survival was 66.2% in the auto-HCT group and 47.8% in the CAR T group (P < .001).
The results also favored auto-HCT for 2-year progression/relapse, with a cumulative incidence of 27.8% with auto-HCT versus 48% with CAR T (P < .001), and the 2-year overall survival was higher with auto-HCT (78.9% vs. 65.6%; P = .037).
After adjustment in multivariable analysis adjusting for relevant clinical variables, auto-HCT versus CAR T remained associated with a lower risk of relapse or progression (HR 2.18; P < .0001) and an improved progression-free survival (HR 1.83; P = .0011), with no significant differences in the risk of treatment-related mortality (HR 0.59; P = .36) or overall survival (HR 1.44; P = .12).
Deaths occurred among 85 patients in the auto-HCT group and 25 in the CAR T cohort, with lymphoma being the main cause of death in both groups (60% and 68%, respectively).
While 37 (13.2%) of auto-HCT patients later received subsequent CAR-T therapy, no patients receiving CAR-T had subsequent auto-HCT.
There were no differences between the CAR-T and auto-HST groups in rates of 2-year treatment-related mortality (4.1% vs. 5.9%; P = .673).
A subanalysis of those who had treatment failure at 12 months, (CAR-T = 57 and auto-HCT = 163) showed that those receiving CAR-T therapy had a higher 2-year relapse rate (46.3% vs. 25%; P < .001); an inferior 2-year progression-free survival rate (48.4% vs. 68.2%; P = .001) compared with auto-HCT, while there were no significant differences between the groups in terms of 2-year overall survival or treatment-related mortality.
After a multivariable analysis adjusting for relevant clinical factors, CAR-T therapy remained associated with higher risk of relapse (HR 2.18; P < .0001) and an inferior progression-free survival (HR 1.83; P = .0011) compared with auto-HCT, with no differences in the risk of treatment-related mortality (HR 0.59; P = .36) or overall survival (HR 1.44; P = .12).
“These results are consistent with our previously reported findings, indicating higher efficacy of auto-HCT compared with CAR T in patients with partial remission,” Dr. Shadman said.
In addition to the study’s being a retrospective analysis, limitations include that more than half of patients in the CAR T cohort received tisa-cel, which could have lower efficacy compared with other approved CAR T therapies, Dr. Shadman noted.
“A repeat analysis by including more patients treated with axi-cel or liso-cel may address this issue in the future,” he said.
Discussing the results in a press briefing, Dr. Shadman underscored that “there is no question the choice of therapy for these DLBCL patients with primary refractory disease should be second-line CAR T therapy — we are not suggesting that those patients should be sent for auto-HCT,” he said.
“What we are saying is, in real-world practice ... patients may need chemotherapy treatment in the interim (awaiting CAR T treatment), and we don’t expect these patients to respond to those cycles because they have already shown us that they don’t do well with chemotherapy — however some do respond and can go into complete remission.”
The question then becomes whether patients at that point will fare better with CAR T or auto-HCT, and the results indicate that “auto-HCT gives those patients a pretty solid remission that looks better than [that with] CAR T therapy.”
Dr. Shadman noted that the results serve to inform or confirm key clinical practices, including “in patients with late relapses, after 12 months, auto-HCT should remain the standard of care.
“In patients with primary refractory disease or early relapse, CAR T should be the goal of therapy and improving access to CAR T should remain a priority.
“In the subset of patients who achieve a CR with interim treatment, a discussion about the possibility of utilizing auto-HCT seems reasonable and can provide another curative option for some patients while keeping CAR-T as a backup treatment plan in case of auto-HCT failure.”
Commenting on the study, Jonathan W. Friedberg, MD, the Samuel Durand Professor of Medicine and director of the Wilmot Cancer Institute, University of Rochester, New York, said, “these findings confirm utility of auto-HCT in patients who achieve a CR.”
However, “the problem is that only a small fraction of patients achieve CR in this situation, and we do not know who they are going to be at time of relapse,” he told this news organization.
He agreed that “given robust randomized trials showing overall survival benefit of CAR-T compared to auto-HCT in patients with high risk relapsed DLBCL, CAR-T treatment should remain the current standard.
“However, these current results help to confirm the strategy for management of low- risk (late) relapses and indicate that auto-HCT still has a place for these patients if they achieve CR with salvage therapy.”
Dr. Shadman reported relationships with ADC therapeutics, Bristol Myers Squibb, Genmab, Lilly, Vincerx, Kite (Gilead), Janssen, Fate Therapeutics, MorphoSys/Incyte, AstraZeneca, BeiGene, Pharmacyclics, Mustang Bio, AbbVie, Genentech, MEI Pharma, Regeneron, and TG Therapeutics. Dr. Friedberg had no disclosures to report.
FROM ASH 2023
Hematology is in the Brodsky family’s blood
In interviews, Robert and Max Brodsky spoke about the appeal of hematology and the threads that unite them with family members who came before. The elder Brodsky also talked about the work that’s made him the proudest during his year-long presidency at ASH.
Robert A. Brodsky is professor of medicine and director of hematology at Johns Hopkins University, Baltimore. He is stepping down as ASH president at its annual meeting in San Diego, December 9-12. Here are excerpts from our conversation:
Q: What drew your dad into medicine?
Dr. Robert A. Brodsky: He was going through his medical training at the University of Pennsylvania, then the Vietnam War came, and he served at the National Institutes of Health in what they referred to as the Yellow Berets. He got very interested in retroviruses and viruses that lead to cancer, which was a foreign idea at the time. This led him into hematology, stem cells, and myeloproliferative disorders.
He had a very successful career in hematology and just loved it. He performed the first bone marrow transplant in the tristate area of Pennsylvania, Delaware, and New Jersey.
Q: What did he like about hematology specifically?
Dr. Robert A. Brodsky: It’s a fascinating field, probably the most scientific area of medicine. It’s so easy to access blood and bone marrow. You can grow it, you can look at it, you can see it. It’s hard to do that with a lung, heart, kidney, or brain. Even back then, they could translate some of the science. What really drew him to hematology — and me, for that matter — was looking at a blood smear or bone marrow and being able to make a diagnosis. The other thing is the personal aspect. Hematologists tend to like the long-term relationships that they develop with their patients over the years.
Q: What were the biggest transformations in hematology during his career?
Dr. Robert A. Brodsky: Bone marrow transplant had the biggest impact, and it’s an area he really pioneered. He was very much involved in some of the early bone marrow transplants and was very close with Dr. George W. Santos, who was at Johns Hopkins and one of the big pioneers in that area as well. To be able to take marrow from related donors, get it to grow without the patient rejecting it, and cure a disease, was really huge. When he started doing this, patients had no other option. To see patients be cured was incredibly satisfying to him.
Q: How did you end up following your father into hematology?
Dr. Robert A. Brodsky: My brother Jeff, who’s a surgeon and older than me, knew he was going into medicine — probably about 3 hours after he was born. I came to it late. I was a political science major as an undergrad and really trying to figure out what I wanted to do. In my sophomore year, I decided I wanted to give this a shot. My dad worked very hard, long hours, but you could tell he loved what he did. And he was never absent, always involved in our lives and still made time for everyone. At some level, that must have had an influence on me.
Q: What has changed in hematology over your 30-plus years in medicine?
A: When I look back at when I was a fellow, it’s just mind-boggling how many lethal or life-threatening diseases are now pretty easy to treat. I studied disorders like aplastic anemia, which was very fatal. Without treatment, patients would die within a year. Now, over 95% are cured. Another classic examples is chronic myeloid leukemia disorder. Back when I was a fellow, the median survival for CML was maybe 4 to 6 years. Now, Kareem Abdul Jabbar has had this[for about 15 years]. Also a lot of hematologic malignancies are being cured with immunotherapy approaches. We’ve figured out the pathophysiology of a lot of diseases, and there are incredible genetic diagnostic assays.
Q: What was your father’s relationship with ASH?
Dr. Robert A. Brodsky: The first ASH meeting was 1958 in Atlantic City, New Jersey. There were 300 hematologists there, and my dad was one of them. We’re going to have over 30,000 people in San Diego, which is a record, and another 5,000 or 6,000 virtually.
Q: As ASH president, what are your biggest accomplishments when it comes to addressing the shortage of hematologists and other issues?
Dr. Robert A. Brodsky: ASH is investing $19 million to develop fellowships with a focus on hematology.* This is going to put lots of new hematologists into the workforce over the next 5 to 10 years. We’ve also been working on the Maintenance of Certification [MOC] process to make it less onerous on physicians. It’s really a bad process, and it’s not just ASH [that’s complaining], it’s all of medicine. We’re hearing this from GI, endocrine, renal and the general internists.
[In a September 2023 letter to the American Board of Internal Medicine’s president and chief officer, Dr. Brodsky wrote that “ASH continues to support the importance of lifelong learning for hematologists via a program that is evidence-based, relevant to one’s practice, and transparent; however, these three basic requirements are not met by the current ABIM MOC program.” ASH is calling for a new and reformed MOC program.]
Q: What convinced ASH to expand its journals by adding Blood Neoplasia and Blood Vessels, Thrombosis & Hemostasis?
Dr. Robert A. Brodsky: ASH has two flagship journals right now, Blood and Blood Advances, and they’re both very competitive, high-impact journals. It turns out there’s not enough room to publish all the new science, and they end up rejecting the majority of the submissions that come to them. We decided to keep these journals in the ASH family because there’s some fantastic clinical trials and science that would be going elsewhere.
Dr. Brodsky’s sons both have medical degrees: Brett Brodsky, DO, is a resident at Virginia Commonwealth University who plans to become a sports medicine specialist, and Max Brodsky, MD, is a second-year fellow in hematology at Johns Hopkins University.
In an interview, Max Brodsky, MD, talked about the roots of his family’s dedication to caring for others.
Q: What drew you to hematology?
Dr. Max Brodsky: I’ve watched both my dad and my grandfather be leaders in the field as both physicians and scientists, and that was very inspirational for me to see. And I went to a medical school [Drexel University College of Medicine] that my dad went to and where my grandfather was on faculty. That was like walking in their footsteps in a major way.
Q: What do you hope to focus on as a hematologist?
Dr. Max Brodsky: I’m still working through that, but I am really interested in thrombotic thrombocytopenic purpura. Patients used to not be able to survive their initial episodes, but now we have good treatments and are able to follow them as outpatients. With this whole cohort of patients that are surviving, we’re seeing that they have more health problems — more heart disease, more strokes and kidney disease. There’s a whole growing field exploring how to treat these patients for their lifespan.
Q: How do you deal with the reality that more of your patients will die than in some other medical fields?
Dr. Max Brodsky: It is challenging, but I also see those moments as opportunities to support patients and families. I’m good at connecting to patients and families who are in scary situations. I’ve always had that skill of putting people at ease, making people feel calm, knowing that they can trust me, and I have their best interests in mind.
Q: Why do you think your family is so committed to medicine?
Dr. Max Brodsky: We’re Jewish, and looking to help the world is one of the main core values of Judaism. The Torah expects us to make this world better. Actually, my great-grandfather Max, whom I’m named after, used to dig tunnels to help people escape Ukraine and get to freedom. He was always looking to help others as well. My great-grandmother was shot crossing the border escaping from Ukraine, and he carried her the whole way to the boat. They lived in very poor West Philadelphia and poured everything into my grandfather. He became a great doctor, and his sons and his grandchildren are in medicine today.
*Correction, 12/11: A previous version of this story misstated the amount of ASH’s $19 million investment in developing fellowships with a focus on hematology.
In interviews, Robert and Max Brodsky spoke about the appeal of hematology and the threads that unite them with family members who came before. The elder Brodsky also talked about the work that’s made him the proudest during his year-long presidency at ASH.
Robert A. Brodsky is professor of medicine and director of hematology at Johns Hopkins University, Baltimore. He is stepping down as ASH president at its annual meeting in San Diego, December 9-12. Here are excerpts from our conversation:
Q: What drew your dad into medicine?
Dr. Robert A. Brodsky: He was going through his medical training at the University of Pennsylvania, then the Vietnam War came, and he served at the National Institutes of Health in what they referred to as the Yellow Berets. He got very interested in retroviruses and viruses that lead to cancer, which was a foreign idea at the time. This led him into hematology, stem cells, and myeloproliferative disorders.
He had a very successful career in hematology and just loved it. He performed the first bone marrow transplant in the tristate area of Pennsylvania, Delaware, and New Jersey.
Q: What did he like about hematology specifically?
Dr. Robert A. Brodsky: It’s a fascinating field, probably the most scientific area of medicine. It’s so easy to access blood and bone marrow. You can grow it, you can look at it, you can see it. It’s hard to do that with a lung, heart, kidney, or brain. Even back then, they could translate some of the science. What really drew him to hematology — and me, for that matter — was looking at a blood smear or bone marrow and being able to make a diagnosis. The other thing is the personal aspect. Hematologists tend to like the long-term relationships that they develop with their patients over the years.
Q: What were the biggest transformations in hematology during his career?
Dr. Robert A. Brodsky: Bone marrow transplant had the biggest impact, and it’s an area he really pioneered. He was very much involved in some of the early bone marrow transplants and was very close with Dr. George W. Santos, who was at Johns Hopkins and one of the big pioneers in that area as well. To be able to take marrow from related donors, get it to grow without the patient rejecting it, and cure a disease, was really huge. When he started doing this, patients had no other option. To see patients be cured was incredibly satisfying to him.
Q: How did you end up following your father into hematology?
Dr. Robert A. Brodsky: My brother Jeff, who’s a surgeon and older than me, knew he was going into medicine — probably about 3 hours after he was born. I came to it late. I was a political science major as an undergrad and really trying to figure out what I wanted to do. In my sophomore year, I decided I wanted to give this a shot. My dad worked very hard, long hours, but you could tell he loved what he did. And he was never absent, always involved in our lives and still made time for everyone. At some level, that must have had an influence on me.
Q: What has changed in hematology over your 30-plus years in medicine?
A: When I look back at when I was a fellow, it’s just mind-boggling how many lethal or life-threatening diseases are now pretty easy to treat. I studied disorders like aplastic anemia, which was very fatal. Without treatment, patients would die within a year. Now, over 95% are cured. Another classic examples is chronic myeloid leukemia disorder. Back when I was a fellow, the median survival for CML was maybe 4 to 6 years. Now, Kareem Abdul Jabbar has had this[for about 15 years]. Also a lot of hematologic malignancies are being cured with immunotherapy approaches. We’ve figured out the pathophysiology of a lot of diseases, and there are incredible genetic diagnostic assays.
Q: What was your father’s relationship with ASH?
Dr. Robert A. Brodsky: The first ASH meeting was 1958 in Atlantic City, New Jersey. There were 300 hematologists there, and my dad was one of them. We’re going to have over 30,000 people in San Diego, which is a record, and another 5,000 or 6,000 virtually.
Q: As ASH president, what are your biggest accomplishments when it comes to addressing the shortage of hematologists and other issues?
Dr. Robert A. Brodsky: ASH is investing $19 million to develop fellowships with a focus on hematology.* This is going to put lots of new hematologists into the workforce over the next 5 to 10 years. We’ve also been working on the Maintenance of Certification [MOC] process to make it less onerous on physicians. It’s really a bad process, and it’s not just ASH [that’s complaining], it’s all of medicine. We’re hearing this from GI, endocrine, renal and the general internists.
[In a September 2023 letter to the American Board of Internal Medicine’s president and chief officer, Dr. Brodsky wrote that “ASH continues to support the importance of lifelong learning for hematologists via a program that is evidence-based, relevant to one’s practice, and transparent; however, these three basic requirements are not met by the current ABIM MOC program.” ASH is calling for a new and reformed MOC program.]
Q: What convinced ASH to expand its journals by adding Blood Neoplasia and Blood Vessels, Thrombosis & Hemostasis?
Dr. Robert A. Brodsky: ASH has two flagship journals right now, Blood and Blood Advances, and they’re both very competitive, high-impact journals. It turns out there’s not enough room to publish all the new science, and they end up rejecting the majority of the submissions that come to them. We decided to keep these journals in the ASH family because there’s some fantastic clinical trials and science that would be going elsewhere.
Dr. Brodsky’s sons both have medical degrees: Brett Brodsky, DO, is a resident at Virginia Commonwealth University who plans to become a sports medicine specialist, and Max Brodsky, MD, is a second-year fellow in hematology at Johns Hopkins University.
In an interview, Max Brodsky, MD, talked about the roots of his family’s dedication to caring for others.
Q: What drew you to hematology?
Dr. Max Brodsky: I’ve watched both my dad and my grandfather be leaders in the field as both physicians and scientists, and that was very inspirational for me to see. And I went to a medical school [Drexel University College of Medicine] that my dad went to and where my grandfather was on faculty. That was like walking in their footsteps in a major way.
Q: What do you hope to focus on as a hematologist?
Dr. Max Brodsky: I’m still working through that, but I am really interested in thrombotic thrombocytopenic purpura. Patients used to not be able to survive their initial episodes, but now we have good treatments and are able to follow them as outpatients. With this whole cohort of patients that are surviving, we’re seeing that they have more health problems — more heart disease, more strokes and kidney disease. There’s a whole growing field exploring how to treat these patients for their lifespan.
Q: How do you deal with the reality that more of your patients will die than in some other medical fields?
Dr. Max Brodsky: It is challenging, but I also see those moments as opportunities to support patients and families. I’m good at connecting to patients and families who are in scary situations. I’ve always had that skill of putting people at ease, making people feel calm, knowing that they can trust me, and I have their best interests in mind.
Q: Why do you think your family is so committed to medicine?
Dr. Max Brodsky: We’re Jewish, and looking to help the world is one of the main core values of Judaism. The Torah expects us to make this world better. Actually, my great-grandfather Max, whom I’m named after, used to dig tunnels to help people escape Ukraine and get to freedom. He was always looking to help others as well. My great-grandmother was shot crossing the border escaping from Ukraine, and he carried her the whole way to the boat. They lived in very poor West Philadelphia and poured everything into my grandfather. He became a great doctor, and his sons and his grandchildren are in medicine today.
*Correction, 12/11: A previous version of this story misstated the amount of ASH’s $19 million investment in developing fellowships with a focus on hematology.
In interviews, Robert and Max Brodsky spoke about the appeal of hematology and the threads that unite them with family members who came before. The elder Brodsky also talked about the work that’s made him the proudest during his year-long presidency at ASH.
Robert A. Brodsky is professor of medicine and director of hematology at Johns Hopkins University, Baltimore. He is stepping down as ASH president at its annual meeting in San Diego, December 9-12. Here are excerpts from our conversation:
Q: What drew your dad into medicine?
Dr. Robert A. Brodsky: He was going through his medical training at the University of Pennsylvania, then the Vietnam War came, and he served at the National Institutes of Health in what they referred to as the Yellow Berets. He got very interested in retroviruses and viruses that lead to cancer, which was a foreign idea at the time. This led him into hematology, stem cells, and myeloproliferative disorders.
He had a very successful career in hematology and just loved it. He performed the first bone marrow transplant in the tristate area of Pennsylvania, Delaware, and New Jersey.
Q: What did he like about hematology specifically?
Dr. Robert A. Brodsky: It’s a fascinating field, probably the most scientific area of medicine. It’s so easy to access blood and bone marrow. You can grow it, you can look at it, you can see it. It’s hard to do that with a lung, heart, kidney, or brain. Even back then, they could translate some of the science. What really drew him to hematology — and me, for that matter — was looking at a blood smear or bone marrow and being able to make a diagnosis. The other thing is the personal aspect. Hematologists tend to like the long-term relationships that they develop with their patients over the years.
Q: What were the biggest transformations in hematology during his career?
Dr. Robert A. Brodsky: Bone marrow transplant had the biggest impact, and it’s an area he really pioneered. He was very much involved in some of the early bone marrow transplants and was very close with Dr. George W. Santos, who was at Johns Hopkins and one of the big pioneers in that area as well. To be able to take marrow from related donors, get it to grow without the patient rejecting it, and cure a disease, was really huge. When he started doing this, patients had no other option. To see patients be cured was incredibly satisfying to him.
Q: How did you end up following your father into hematology?
Dr. Robert A. Brodsky: My brother Jeff, who’s a surgeon and older than me, knew he was going into medicine — probably about 3 hours after he was born. I came to it late. I was a political science major as an undergrad and really trying to figure out what I wanted to do. In my sophomore year, I decided I wanted to give this a shot. My dad worked very hard, long hours, but you could tell he loved what he did. And he was never absent, always involved in our lives and still made time for everyone. At some level, that must have had an influence on me.
Q: What has changed in hematology over your 30-plus years in medicine?
A: When I look back at when I was a fellow, it’s just mind-boggling how many lethal or life-threatening diseases are now pretty easy to treat. I studied disorders like aplastic anemia, which was very fatal. Without treatment, patients would die within a year. Now, over 95% are cured. Another classic examples is chronic myeloid leukemia disorder. Back when I was a fellow, the median survival for CML was maybe 4 to 6 years. Now, Kareem Abdul Jabbar has had this[for about 15 years]. Also a lot of hematologic malignancies are being cured with immunotherapy approaches. We’ve figured out the pathophysiology of a lot of diseases, and there are incredible genetic diagnostic assays.
Q: What was your father’s relationship with ASH?
Dr. Robert A. Brodsky: The first ASH meeting was 1958 in Atlantic City, New Jersey. There were 300 hematologists there, and my dad was one of them. We’re going to have over 30,000 people in San Diego, which is a record, and another 5,000 or 6,000 virtually.
Q: As ASH president, what are your biggest accomplishments when it comes to addressing the shortage of hematologists and other issues?
Dr. Robert A. Brodsky: ASH is investing $19 million to develop fellowships with a focus on hematology.* This is going to put lots of new hematologists into the workforce over the next 5 to 10 years. We’ve also been working on the Maintenance of Certification [MOC] process to make it less onerous on physicians. It’s really a bad process, and it’s not just ASH [that’s complaining], it’s all of medicine. We’re hearing this from GI, endocrine, renal and the general internists.
[In a September 2023 letter to the American Board of Internal Medicine’s president and chief officer, Dr. Brodsky wrote that “ASH continues to support the importance of lifelong learning for hematologists via a program that is evidence-based, relevant to one’s practice, and transparent; however, these three basic requirements are not met by the current ABIM MOC program.” ASH is calling for a new and reformed MOC program.]
Q: What convinced ASH to expand its journals by adding Blood Neoplasia and Blood Vessels, Thrombosis & Hemostasis?
Dr. Robert A. Brodsky: ASH has two flagship journals right now, Blood and Blood Advances, and they’re both very competitive, high-impact journals. It turns out there’s not enough room to publish all the new science, and they end up rejecting the majority of the submissions that come to them. We decided to keep these journals in the ASH family because there’s some fantastic clinical trials and science that would be going elsewhere.
Dr. Brodsky’s sons both have medical degrees: Brett Brodsky, DO, is a resident at Virginia Commonwealth University who plans to become a sports medicine specialist, and Max Brodsky, MD, is a second-year fellow in hematology at Johns Hopkins University.
In an interview, Max Brodsky, MD, talked about the roots of his family’s dedication to caring for others.
Q: What drew you to hematology?
Dr. Max Brodsky: I’ve watched both my dad and my grandfather be leaders in the field as both physicians and scientists, and that was very inspirational for me to see. And I went to a medical school [Drexel University College of Medicine] that my dad went to and where my grandfather was on faculty. That was like walking in their footsteps in a major way.
Q: What do you hope to focus on as a hematologist?
Dr. Max Brodsky: I’m still working through that, but I am really interested in thrombotic thrombocytopenic purpura. Patients used to not be able to survive their initial episodes, but now we have good treatments and are able to follow them as outpatients. With this whole cohort of patients that are surviving, we’re seeing that they have more health problems — more heart disease, more strokes and kidney disease. There’s a whole growing field exploring how to treat these patients for their lifespan.
Q: How do you deal with the reality that more of your patients will die than in some other medical fields?
Dr. Max Brodsky: It is challenging, but I also see those moments as opportunities to support patients and families. I’m good at connecting to patients and families who are in scary situations. I’ve always had that skill of putting people at ease, making people feel calm, knowing that they can trust me, and I have their best interests in mind.
Q: Why do you think your family is so committed to medicine?
Dr. Max Brodsky: We’re Jewish, and looking to help the world is one of the main core values of Judaism. The Torah expects us to make this world better. Actually, my great-grandfather Max, whom I’m named after, used to dig tunnels to help people escape Ukraine and get to freedom. He was always looking to help others as well. My great-grandmother was shot crossing the border escaping from Ukraine, and he carried her the whole way to the boat. They lived in very poor West Philadelphia and poured everything into my grandfather. He became a great doctor, and his sons and his grandchildren are in medicine today.
*Correction, 12/11: A previous version of this story misstated the amount of ASH’s $19 million investment in developing fellowships with a focus on hematology.
FROM ASH 2023
ASH 2023: Equity, Sickle Cell, and Real-Life Outcomes
Cynthia E. Dunbar, MD, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH, added that insight into actual patient experiences also will be a major theme at ASH 2023.
“There is a huge growth in research on outcomes and focusing on using real-world data and how important that is,” Dr. Dunbar said. “Academic research and hematology is really focusing on patient-reported outcomes and how care is delivered in a real-world setting – actually looking at what matters to patients. Are they alive in a certain number of years? And how are they feeling?”
As an example, Dr. Dunbar pointed to an abstract that examined clinical databases in Canada and found that real-world outcomes in multiple myeloma treatments were much worse than those in the original clinical trials for the therapies. Patients reached relapse 44% faster and their overall survival was 75% worse.
In the media briefing, ASH chair of communications Mikkael A. Sekeres, MD, MS, of the Sylvester Comprehensive Cancer Center at the University of Miami, noted that patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated.”
Dr. Dunbar agreed, noting that “patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects. They might stay on the drug for longer, or they have nurses who are always encouraging them of how to make it through a toxicity.”
Hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly,” she said.
Another highlighted study linked worse outcomes in African-Americans with pediatric acute myeloid leukemia to genetic traits that are more common in that population. The traits “likely explain at least in part the worst outcomes in Black patients in prior studies and on some regimens,” Dr. Dunbar said.
She added that the findings emphasize how testing for genetic variants and biomarkers that impact outcomes should be performed “instead of assuming that a certain dose should be given simply based on perceived or reported race or ethnicity.”
ASH President Robert A. Brodsky, MD, of Johns Hopkins University School of Medicine, Baltimore, highlighted an abstract that reported on the use of AI as a clinical decision support tool to differentiate two easily confused conditions — prefibrotic primary myelofibrosis and essential thrombocythemia.
AI “is a tool that’s going to help pathologists make more accurate and faster diagnoses,” he said. He also spotlighted an abstract about the use of “social media listening” to understand the experiences of patients with SCD and their caregivers. “There can be a lot of misuse and waste of time with social media, but they used this in a way to try and gain insight as to what’s really important to the patients and the caregiver.”
Also, in regard to SCD, Dr. Dunbar pointed to a study that reports on outcomes in patients who received lovotibeglogene autotemcel (lovo-cel) gene therapy for up to 60 months. Both this treatment and a CRISPR-based therapy called exa-cel “appear to result in comparable very impressive efficacy in terms of pain crises and organ dysfunction,” she said. “The hurdle is going to be figuring out how to deliver what will be very expensive and complicated therapies — but likely curative — therapies to patients.”
Another study to be presented at ASH — coauthored by Dr. Brodsky — shows promising results from reduced-intensity haploidentical bone marrow transplantation in adults with severe SCD. Results were similar to those seen with bone marrow from matched siblings, Dr. Sekeres said.
He added that more clarity is needed about new treatment options for SCD, perhaps through a “randomized trial where patients upfront get a haploidentical bone marrow transplant or fully matched bone marrow transplant. Then other patients are randomized to some of these other, newer technology therapies, and we follow them over time. We’re looking not only for overall survival but complications of the therapy itself and how many patients relapse from the treatment.”
Cynthia E. Dunbar, MD, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH, added that insight into actual patient experiences also will be a major theme at ASH 2023.
“There is a huge growth in research on outcomes and focusing on using real-world data and how important that is,” Dr. Dunbar said. “Academic research and hematology is really focusing on patient-reported outcomes and how care is delivered in a real-world setting – actually looking at what matters to patients. Are they alive in a certain number of years? And how are they feeling?”
As an example, Dr. Dunbar pointed to an abstract that examined clinical databases in Canada and found that real-world outcomes in multiple myeloma treatments were much worse than those in the original clinical trials for the therapies. Patients reached relapse 44% faster and their overall survival was 75% worse.
In the media briefing, ASH chair of communications Mikkael A. Sekeres, MD, MS, of the Sylvester Comprehensive Cancer Center at the University of Miami, noted that patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated.”
Dr. Dunbar agreed, noting that “patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects. They might stay on the drug for longer, or they have nurses who are always encouraging them of how to make it through a toxicity.”
Hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly,” she said.
Another highlighted study linked worse outcomes in African-Americans with pediatric acute myeloid leukemia to genetic traits that are more common in that population. The traits “likely explain at least in part the worst outcomes in Black patients in prior studies and on some regimens,” Dr. Dunbar said.
She added that the findings emphasize how testing for genetic variants and biomarkers that impact outcomes should be performed “instead of assuming that a certain dose should be given simply based on perceived or reported race or ethnicity.”
ASH President Robert A. Brodsky, MD, of Johns Hopkins University School of Medicine, Baltimore, highlighted an abstract that reported on the use of AI as a clinical decision support tool to differentiate two easily confused conditions — prefibrotic primary myelofibrosis and essential thrombocythemia.
AI “is a tool that’s going to help pathologists make more accurate and faster diagnoses,” he said. He also spotlighted an abstract about the use of “social media listening” to understand the experiences of patients with SCD and their caregivers. “There can be a lot of misuse and waste of time with social media, but they used this in a way to try and gain insight as to what’s really important to the patients and the caregiver.”
Also, in regard to SCD, Dr. Dunbar pointed to a study that reports on outcomes in patients who received lovotibeglogene autotemcel (lovo-cel) gene therapy for up to 60 months. Both this treatment and a CRISPR-based therapy called exa-cel “appear to result in comparable very impressive efficacy in terms of pain crises and organ dysfunction,” she said. “The hurdle is going to be figuring out how to deliver what will be very expensive and complicated therapies — but likely curative — therapies to patients.”
Another study to be presented at ASH — coauthored by Dr. Brodsky — shows promising results from reduced-intensity haploidentical bone marrow transplantation in adults with severe SCD. Results were similar to those seen with bone marrow from matched siblings, Dr. Sekeres said.
He added that more clarity is needed about new treatment options for SCD, perhaps through a “randomized trial where patients upfront get a haploidentical bone marrow transplant or fully matched bone marrow transplant. Then other patients are randomized to some of these other, newer technology therapies, and we follow them over time. We’re looking not only for overall survival but complications of the therapy itself and how many patients relapse from the treatment.”
Cynthia E. Dunbar, MD, chief of the Translational Stem Cell Biology Branch at the National Heart, Lung, and Blood Institute and secretary of ASH, added that insight into actual patient experiences also will be a major theme at ASH 2023.
“There is a huge growth in research on outcomes and focusing on using real-world data and how important that is,” Dr. Dunbar said. “Academic research and hematology is really focusing on patient-reported outcomes and how care is delivered in a real-world setting – actually looking at what matters to patients. Are they alive in a certain number of years? And how are they feeling?”
As an example, Dr. Dunbar pointed to an abstract that examined clinical databases in Canada and found that real-world outcomes in multiple myeloma treatments were much worse than those in the original clinical trials for the therapies. Patients reached relapse 44% faster and their overall survival was 75% worse.
In the media briefing, ASH chair of communications Mikkael A. Sekeres, MD, MS, of the Sylvester Comprehensive Cancer Center at the University of Miami, noted that patients in these types of clinical trials “are just these pristine specimens of human beings except for the cancer that’s being treated.”
Dr. Dunbar agreed, noting that “patients who are able to enroll in clinical trials are more likely to be able to show up at the treatment center at the right time and for every dose, have transportation, and afford drugs to prevent side effects. They might stay on the drug for longer, or they have nurses who are always encouraging them of how to make it through a toxicity.”
Hematologists and patients should consider randomized controlled trials to be “the best possible outcome, and perhaps adjust their thinking if an individual patient is older, sicker, or less able to follow a regimen exactly,” she said.
Another highlighted study linked worse outcomes in African-Americans with pediatric acute myeloid leukemia to genetic traits that are more common in that population. The traits “likely explain at least in part the worst outcomes in Black patients in prior studies and on some regimens,” Dr. Dunbar said.
She added that the findings emphasize how testing for genetic variants and biomarkers that impact outcomes should be performed “instead of assuming that a certain dose should be given simply based on perceived or reported race or ethnicity.”
ASH President Robert A. Brodsky, MD, of Johns Hopkins University School of Medicine, Baltimore, highlighted an abstract that reported on the use of AI as a clinical decision support tool to differentiate two easily confused conditions — prefibrotic primary myelofibrosis and essential thrombocythemia.
AI “is a tool that’s going to help pathologists make more accurate and faster diagnoses,” he said. He also spotlighted an abstract about the use of “social media listening” to understand the experiences of patients with SCD and their caregivers. “There can be a lot of misuse and waste of time with social media, but they used this in a way to try and gain insight as to what’s really important to the patients and the caregiver.”
Also, in regard to SCD, Dr. Dunbar pointed to a study that reports on outcomes in patients who received lovotibeglogene autotemcel (lovo-cel) gene therapy for up to 60 months. Both this treatment and a CRISPR-based therapy called exa-cel “appear to result in comparable very impressive efficacy in terms of pain crises and organ dysfunction,” she said. “The hurdle is going to be figuring out how to deliver what will be very expensive and complicated therapies — but likely curative — therapies to patients.”
Another study to be presented at ASH — coauthored by Dr. Brodsky — shows promising results from reduced-intensity haploidentical bone marrow transplantation in adults with severe SCD. Results were similar to those seen with bone marrow from matched siblings, Dr. Sekeres said.
He added that more clarity is needed about new treatment options for SCD, perhaps through a “randomized trial where patients upfront get a haploidentical bone marrow transplant or fully matched bone marrow transplant. Then other patients are randomized to some of these other, newer technology therapies, and we follow them over time. We’re looking not only for overall survival but complications of the therapy itself and how many patients relapse from the treatment.”
AT ASH 2023