User login
Vitamin K Supplementation Reduces Nocturnal Leg Cramps in Older Adults
TOPLINE:
Vitamin K supplementation significantly reduced the frequency, intensity, and duration of nocturnal leg cramps in older adults. No adverse events related to vitamin K were identified.
METHODOLOGY:
- Researchers conducted a multicenter, double-blind, placebo-controlled randomized clinical trial in China from September 2022 to December 2023.
- A total of 199 participants aged ≥ 65 years with at least two documented episodes of nocturnal leg cramps during a 2-week screening period were included.
- Participants were randomized in a 1:1 ratio to receive either 180 μg of vitamin K (menaquinone 7) or a placebo daily for 8 weeks.
- The primary outcome was the mean number of nocturnal leg cramps per week, while secondary outcomes were the duration and severity of muscle cramps.
- The ethics committees of Third People’s Hospital of Chengdu and Affiliated Hospital of North Sichuan Medical College approved the study, and all participants provided written informed consent.
TAKEAWAY:
- Vitamin K group experienced a significant reduction in the mean weekly frequency of cramps (mean difference, 2.60 [SD, 0.81] to 0.96 [SD, 1.41]) compared with the placebo group, which maintained a mean weekly frequency of 3.63 (SD, 2.20) (P < .001).
- The severity of nocturnal leg cramps decreased more in the vitamin K group (mean difference, −2.55 [SD, 2.12] points) than in the placebo group (mean difference, −1.24 [SD, 1.16] points).
- The duration of nocturnal leg cramps also decreased more in the vitamin K group (mean difference, −0.90 [SD, 0.88] minutes) than in the placebo group (mean difference, −0.32 [SD, 0.78] minutes).
- No adverse events related to vitamin K use were identified, indicating a good safety profile for the supplementation.
IN PRACTICE:
“Given the generally benign characteristics of NLCs, treatment modality must be both effective and safe, thus minimizing the risk of iatrogenic harm,” the study authors wrote.
SOURCE:
This study was led by Jing Tan, MD, the Third People’s Hospital of Chengdu in Chengdu, China. It was published online on October 28 in JAMA Internal Medicine.
LIMITATIONS:
This study did not investigate the quality of life or sleep, which could have provided additional insights into the impact of vitamin K on nocturnal leg cramps. The relatively mild nature of nocturnal leg cramps experienced by the participants may limit the generalizability of the findings to populations with more severe symptoms.
DISCLOSURES:
This study was supported by grants from China Health Promotion Foundation and the Third People’s Hospital of Chengdu Scientific Research Project. Tan disclosed receiving personal fees from BeiGene, AbbVie, Pfizer, Xian Janssen Pharmaceutical, and Takeda Pharmaceutical outside the submitted work.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
Vitamin K supplementation significantly reduced the frequency, intensity, and duration of nocturnal leg cramps in older adults. No adverse events related to vitamin K were identified.
METHODOLOGY:
- Researchers conducted a multicenter, double-blind, placebo-controlled randomized clinical trial in China from September 2022 to December 2023.
- A total of 199 participants aged ≥ 65 years with at least two documented episodes of nocturnal leg cramps during a 2-week screening period were included.
- Participants were randomized in a 1:1 ratio to receive either 180 μg of vitamin K (menaquinone 7) or a placebo daily for 8 weeks.
- The primary outcome was the mean number of nocturnal leg cramps per week, while secondary outcomes were the duration and severity of muscle cramps.
- The ethics committees of Third People’s Hospital of Chengdu and Affiliated Hospital of North Sichuan Medical College approved the study, and all participants provided written informed consent.
TAKEAWAY:
- Vitamin K group experienced a significant reduction in the mean weekly frequency of cramps (mean difference, 2.60 [SD, 0.81] to 0.96 [SD, 1.41]) compared with the placebo group, which maintained a mean weekly frequency of 3.63 (SD, 2.20) (P < .001).
- The severity of nocturnal leg cramps decreased more in the vitamin K group (mean difference, −2.55 [SD, 2.12] points) than in the placebo group (mean difference, −1.24 [SD, 1.16] points).
- The duration of nocturnal leg cramps also decreased more in the vitamin K group (mean difference, −0.90 [SD, 0.88] minutes) than in the placebo group (mean difference, −0.32 [SD, 0.78] minutes).
- No adverse events related to vitamin K use were identified, indicating a good safety profile for the supplementation.
IN PRACTICE:
“Given the generally benign characteristics of NLCs, treatment modality must be both effective and safe, thus minimizing the risk of iatrogenic harm,” the study authors wrote.
SOURCE:
This study was led by Jing Tan, MD, the Third People’s Hospital of Chengdu in Chengdu, China. It was published online on October 28 in JAMA Internal Medicine.
LIMITATIONS:
This study did not investigate the quality of life or sleep, which could have provided additional insights into the impact of vitamin K on nocturnal leg cramps. The relatively mild nature of nocturnal leg cramps experienced by the participants may limit the generalizability of the findings to populations with more severe symptoms.
DISCLOSURES:
This study was supported by grants from China Health Promotion Foundation and the Third People’s Hospital of Chengdu Scientific Research Project. Tan disclosed receiving personal fees from BeiGene, AbbVie, Pfizer, Xian Janssen Pharmaceutical, and Takeda Pharmaceutical outside the submitted work.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
TOPLINE:
Vitamin K supplementation significantly reduced the frequency, intensity, and duration of nocturnal leg cramps in older adults. No adverse events related to vitamin K were identified.
METHODOLOGY:
- Researchers conducted a multicenter, double-blind, placebo-controlled randomized clinical trial in China from September 2022 to December 2023.
- A total of 199 participants aged ≥ 65 years with at least two documented episodes of nocturnal leg cramps during a 2-week screening period were included.
- Participants were randomized in a 1:1 ratio to receive either 180 μg of vitamin K (menaquinone 7) or a placebo daily for 8 weeks.
- The primary outcome was the mean number of nocturnal leg cramps per week, while secondary outcomes were the duration and severity of muscle cramps.
- The ethics committees of Third People’s Hospital of Chengdu and Affiliated Hospital of North Sichuan Medical College approved the study, and all participants provided written informed consent.
TAKEAWAY:
- Vitamin K group experienced a significant reduction in the mean weekly frequency of cramps (mean difference, 2.60 [SD, 0.81] to 0.96 [SD, 1.41]) compared with the placebo group, which maintained a mean weekly frequency of 3.63 (SD, 2.20) (P < .001).
- The severity of nocturnal leg cramps decreased more in the vitamin K group (mean difference, −2.55 [SD, 2.12] points) than in the placebo group (mean difference, −1.24 [SD, 1.16] points).
- The duration of nocturnal leg cramps also decreased more in the vitamin K group (mean difference, −0.90 [SD, 0.88] minutes) than in the placebo group (mean difference, −0.32 [SD, 0.78] minutes).
- No adverse events related to vitamin K use were identified, indicating a good safety profile for the supplementation.
IN PRACTICE:
“Given the generally benign characteristics of NLCs, treatment modality must be both effective and safe, thus minimizing the risk of iatrogenic harm,” the study authors wrote.
SOURCE:
This study was led by Jing Tan, MD, the Third People’s Hospital of Chengdu in Chengdu, China. It was published online on October 28 in JAMA Internal Medicine.
LIMITATIONS:
This study did not investigate the quality of life or sleep, which could have provided additional insights into the impact of vitamin K on nocturnal leg cramps. The relatively mild nature of nocturnal leg cramps experienced by the participants may limit the generalizability of the findings to populations with more severe symptoms.
DISCLOSURES:
This study was supported by grants from China Health Promotion Foundation and the Third People’s Hospital of Chengdu Scientific Research Project. Tan disclosed receiving personal fees from BeiGene, AbbVie, Pfizer, Xian Janssen Pharmaceutical, and Takeda Pharmaceutical outside the submitted work.
This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.
Semiannual Time Changes Linked to Accidents, Heart Attacks
As people turn their clocks back an hour on November 3 to mark the end of daylight saving time and return to standard time, they should remain aware of their sleep health and of potential risks associated with shifts in sleep patterns, according to a University of Calgary psychology professor who researches circadian cycles.
In an interview, Antle explained the science behind the health risks associated with time changes, offered tips to prepare for the shift, and discussed scientists’ suggestion to move to year-round standard time. This interview has been condensed and edited for clarity.
Why is it important to pay attention to circadian rhythms?
Circadian rhythms are patterns of physiologic and behavioral changes that affect everything inside the body and everything we do, including when hormones are secreted, digestive juices are ready to digest, and growth hormones are released at night. The body is a carefully coordinated orchestra, and everything has to happen at the right time.
When we start messing with those rhythms, that’s when states of disease start coming on and we don’t feel well. You’ve probably experienced it — when you try to stay up late, eat at the wrong times, or have jet lag. Flying across one or two time zones is usually tolerable, but if you fly across the world, it can be profound and make you feel bad, even up to a week. Similar shifts happen with the time changes.
How do the time changes affect health risks?
The wintertime change is generally more tolerable, and you’ll hear people talk about “gaining an hour” of sleep. It’s better than that, because we’re realigning our social clocks — such as our work schedules and school schedules — with daylight. We tend to go to bed relative to the sun but wake up based on when our boss says to be at our desk, so an earlier sunset helps us to fall asleep earlier and is healthier for our body.
In the spring, the opposite happens, and the time change affects us much more than just one bad night of sleep. For some people, it can feel like losing an hour of sleep every day for weeks, and that abrupt change can lead to car accidents, workplace injuries, heart attacks, and strokes. Our body experiences extra strain when we’re not awake and ready for the day.
What does your research show?
Most of my work focuses on preclinical models to understand what’s going on in the brain and body. Because we can’t study this ethically in humans, we learn a lot from animal models, especially mice. In a recent study looking at mild circadian disruption — where we raised mice on days that were about 75 minutes shorter — we saw they started developing diabetes, heart disease, and insulin resistance within in a few months, or about the time they were a young adult.
Oftentimes, people think about their sleep rhythm as an arbitrary choice, but in fact, it does affect your health. We know that if your human circadian clock runs slow, morning light can help fix that and reset it, whereas evening light moves us in the other direction and makes it harder to get up in the morning.
Some people want to switch to one year-round time. What do you advocate?
In most cases, the standard time (or winter time) is the more natural time that fits better with our body cycle. If we follow a time where we get up before sunrise or have a later sunset, then it’s linked to more social jet lag, where people are less attentive at work, don’t learn as well at school, and have more accidents.
Instead of picking what sounds good or chasing the name — such as “daylight saving time” — we need to think about the right time for us and our circadian clock. Some places, such as Maine in the United States, would actually fit better with the Atlantic time zone or the Maritime provinces in Canada, whereas some parts of Alberta are geographically west of Los Angeles based on longitude and would fit better with the Pacific time zone. Sticking with a year-round daylight saving time in some cities in Alberta would mean people wouldn’t see the sun until 10:30 AM in the winter, which is really late and could affect activities such as skiing and hockey.
The Canadian Society for Chronobiology advocates for year-round standard time to align our social clocks with our biological clocks. Sleep and circadian rhythm experts in the US and globally have issued similar position statements.
What tips do you suggest to help people adjust their circadian clocks in November?
For people who know their bodies and that it will affect them more, give yourself extra time. If your schedule permits, plan ahead and change your clocks sooner, especially if you’re able to do so over the weekend. Don’t rush around while tired — rushing when you’re not ready leads to those increased accidents on the road or on the job. Know that the sun will still be mismatched for a bit and your body clock will take time to adjust, so you might feel out of sorts for a few days.
Antle reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
As people turn their clocks back an hour on November 3 to mark the end of daylight saving time and return to standard time, they should remain aware of their sleep health and of potential risks associated with shifts in sleep patterns, according to a University of Calgary psychology professor who researches circadian cycles.
In an interview, Antle explained the science behind the health risks associated with time changes, offered tips to prepare for the shift, and discussed scientists’ suggestion to move to year-round standard time. This interview has been condensed and edited for clarity.
Why is it important to pay attention to circadian rhythms?
Circadian rhythms are patterns of physiologic and behavioral changes that affect everything inside the body and everything we do, including when hormones are secreted, digestive juices are ready to digest, and growth hormones are released at night. The body is a carefully coordinated orchestra, and everything has to happen at the right time.
When we start messing with those rhythms, that’s when states of disease start coming on and we don’t feel well. You’ve probably experienced it — when you try to stay up late, eat at the wrong times, or have jet lag. Flying across one or two time zones is usually tolerable, but if you fly across the world, it can be profound and make you feel bad, even up to a week. Similar shifts happen with the time changes.
How do the time changes affect health risks?
The wintertime change is generally more tolerable, and you’ll hear people talk about “gaining an hour” of sleep. It’s better than that, because we’re realigning our social clocks — such as our work schedules and school schedules — with daylight. We tend to go to bed relative to the sun but wake up based on when our boss says to be at our desk, so an earlier sunset helps us to fall asleep earlier and is healthier for our body.
In the spring, the opposite happens, and the time change affects us much more than just one bad night of sleep. For some people, it can feel like losing an hour of sleep every day for weeks, and that abrupt change can lead to car accidents, workplace injuries, heart attacks, and strokes. Our body experiences extra strain when we’re not awake and ready for the day.
What does your research show?
Most of my work focuses on preclinical models to understand what’s going on in the brain and body. Because we can’t study this ethically in humans, we learn a lot from animal models, especially mice. In a recent study looking at mild circadian disruption — where we raised mice on days that were about 75 minutes shorter — we saw they started developing diabetes, heart disease, and insulin resistance within in a few months, or about the time they were a young adult.
Oftentimes, people think about their sleep rhythm as an arbitrary choice, but in fact, it does affect your health. We know that if your human circadian clock runs slow, morning light can help fix that and reset it, whereas evening light moves us in the other direction and makes it harder to get up in the morning.
Some people want to switch to one year-round time. What do you advocate?
In most cases, the standard time (or winter time) is the more natural time that fits better with our body cycle. If we follow a time where we get up before sunrise or have a later sunset, then it’s linked to more social jet lag, where people are less attentive at work, don’t learn as well at school, and have more accidents.
Instead of picking what sounds good or chasing the name — such as “daylight saving time” — we need to think about the right time for us and our circadian clock. Some places, such as Maine in the United States, would actually fit better with the Atlantic time zone or the Maritime provinces in Canada, whereas some parts of Alberta are geographically west of Los Angeles based on longitude and would fit better with the Pacific time zone. Sticking with a year-round daylight saving time in some cities in Alberta would mean people wouldn’t see the sun until 10:30 AM in the winter, which is really late and could affect activities such as skiing and hockey.
The Canadian Society for Chronobiology advocates for year-round standard time to align our social clocks with our biological clocks. Sleep and circadian rhythm experts in the US and globally have issued similar position statements.
What tips do you suggest to help people adjust their circadian clocks in November?
For people who know their bodies and that it will affect them more, give yourself extra time. If your schedule permits, plan ahead and change your clocks sooner, especially if you’re able to do so over the weekend. Don’t rush around while tired — rushing when you’re not ready leads to those increased accidents on the road or on the job. Know that the sun will still be mismatched for a bit and your body clock will take time to adjust, so you might feel out of sorts for a few days.
Antle reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
As people turn their clocks back an hour on November 3 to mark the end of daylight saving time and return to standard time, they should remain aware of their sleep health and of potential risks associated with shifts in sleep patterns, according to a University of Calgary psychology professor who researches circadian cycles.
In an interview, Antle explained the science behind the health risks associated with time changes, offered tips to prepare for the shift, and discussed scientists’ suggestion to move to year-round standard time. This interview has been condensed and edited for clarity.
Why is it important to pay attention to circadian rhythms?
Circadian rhythms are patterns of physiologic and behavioral changes that affect everything inside the body and everything we do, including when hormones are secreted, digestive juices are ready to digest, and growth hormones are released at night. The body is a carefully coordinated orchestra, and everything has to happen at the right time.
When we start messing with those rhythms, that’s when states of disease start coming on and we don’t feel well. You’ve probably experienced it — when you try to stay up late, eat at the wrong times, or have jet lag. Flying across one or two time zones is usually tolerable, but if you fly across the world, it can be profound and make you feel bad, even up to a week. Similar shifts happen with the time changes.
How do the time changes affect health risks?
The wintertime change is generally more tolerable, and you’ll hear people talk about “gaining an hour” of sleep. It’s better than that, because we’re realigning our social clocks — such as our work schedules and school schedules — with daylight. We tend to go to bed relative to the sun but wake up based on when our boss says to be at our desk, so an earlier sunset helps us to fall asleep earlier and is healthier for our body.
In the spring, the opposite happens, and the time change affects us much more than just one bad night of sleep. For some people, it can feel like losing an hour of sleep every day for weeks, and that abrupt change can lead to car accidents, workplace injuries, heart attacks, and strokes. Our body experiences extra strain when we’re not awake and ready for the day.
What does your research show?
Most of my work focuses on preclinical models to understand what’s going on in the brain and body. Because we can’t study this ethically in humans, we learn a lot from animal models, especially mice. In a recent study looking at mild circadian disruption — where we raised mice on days that were about 75 minutes shorter — we saw they started developing diabetes, heart disease, and insulin resistance within in a few months, or about the time they were a young adult.
Oftentimes, people think about their sleep rhythm as an arbitrary choice, but in fact, it does affect your health. We know that if your human circadian clock runs slow, morning light can help fix that and reset it, whereas evening light moves us in the other direction and makes it harder to get up in the morning.
Some people want to switch to one year-round time. What do you advocate?
In most cases, the standard time (or winter time) is the more natural time that fits better with our body cycle. If we follow a time where we get up before sunrise or have a later sunset, then it’s linked to more social jet lag, where people are less attentive at work, don’t learn as well at school, and have more accidents.
Instead of picking what sounds good or chasing the name — such as “daylight saving time” — we need to think about the right time for us and our circadian clock. Some places, such as Maine in the United States, would actually fit better with the Atlantic time zone or the Maritime provinces in Canada, whereas some parts of Alberta are geographically west of Los Angeles based on longitude and would fit better with the Pacific time zone. Sticking with a year-round daylight saving time in some cities in Alberta would mean people wouldn’t see the sun until 10:30 AM in the winter, which is really late and could affect activities such as skiing and hockey.
The Canadian Society for Chronobiology advocates for year-round standard time to align our social clocks with our biological clocks. Sleep and circadian rhythm experts in the US and globally have issued similar position statements.
What tips do you suggest to help people adjust their circadian clocks in November?
For people who know their bodies and that it will affect them more, give yourself extra time. If your schedule permits, plan ahead and change your clocks sooner, especially if you’re able to do so over the weekend. Don’t rush around while tired — rushing when you’re not ready leads to those increased accidents on the road or on the job. Know that the sun will still be mismatched for a bit and your body clock will take time to adjust, so you might feel out of sorts for a few days.
Antle reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Should napping be recommended as a health behavior?
I was invited to a cardiology conference to talk about sleep, specifically the benefits of napping for health and cognition. After the talk, along with the usual questions related to my research, the cardiac surgeons in the room shifted the conversation to better resemble a group therapy session, sharing their harrowing personal tales of coping with sleep loss on the job. The most dramatic story involved a resident in a military hospital who, unable to avoid the effects of her mounting sleep loss, did a face plant into the open chest of the patient on the surgery table.
Given this ever-increasing list of ill effects of poor sleep, the quest for an effective, inexpensive, and manageable intervention for sleep loss often leads to the question: What about naps? A nap is typically defined as a period of sleep between five minutes to three hours, although naps can occur at any hour, they are usually daytime sleep behaviors. Between 40% and 60% of adults nap regularly, at least once a week, and, excluding novelty nap boutiques, they are free of charge and require little management or oversight. Yet, for all their apparent positive aspects, the jury is still out on whether naps should be recommended as a sleep loss countermeasure due to the lack of agreement across studies as to their effects on health.
Naps are studied in primarily two scientific contexts: laboratory experimental studies and epidemiological studies. Laboratory experimental studies measure the effect of short bouts of sleep as a fatigue countermeasure or cognitive enhancer under total sleep deprivation, sleep restriction (four to six hours of nighttime sleep), or well-rested conditions. These experiments are usually conducted in small (20 to 30 participants) convenience samples of young adults without medical and mental health problems. Performance on computer-based cognitive tasks is tested before and after naps of varying durations. By varying nap durations, researchers can test the impact of specific sleep stages on performance improvement. For example, in well-rested, intermediate chronotype individuals, a 30-minute nap between 13:00 and 15:00 will contain mostly stage 2 sleep, whereas a nap of up to 60 minutes will include slow wave sleep, and a 90-minute nap will end on a bout of rapid eye movement sleep. Studies that vary nap duration and therefore sleep quality have demonstrated an important principle of sleep’s effect on the brain and cognitive processing, namely that each sleep stage uniquely contributes to different aspects of cognitive and emotional processing. And that when naps are inserted into a person’s day, even in well-rested conditions, they tend to perform better after the nap than if they had stayed awake. Napping leads to greater vigilance, attention, memory, motor performance, and creativity, among others, compared with equivalent wake periods.1,2 Compared with the common fatigue countermeasure—caffeine—naps enhance explicit memory performance to a greater extent.
In the second context, epidemiological studies examining the impact of napping on health outcomes are typically conducted in older, less healthy, less active populations who tend to have poorer eating habits, multiple comorbidities, psychological problems, and a wide range of socioeconomic status. The strength of this approach is the sample size, which allows for correlations between factors on a large scale while providing enough data to hopefully control for possible confounds (eg, demographics, SES, exercise and eating habits, comorbidities). However, as the data were usually collected by a different group with different goals than the current epidemiologist exploring the data, there can be a disconnect between the current study goals and the variables that were initially collected by the original research team. As such, the current researcher is left with a patchwork of dissimilar variables that they must find a way to organize to answer the current question.3
When applied to the question of health effects of napping, epidemiology researchers typically divide the population into two groups, either based on a yes or no response to a napping question, or a frequency score where those who indicate napping more than one, two, or three times a week are distinguished as nappers compared to non-nappers who don’t meet these criteria. As the field lacks standard definitions for categorizing nap behavior, it is left to the discretion of the researcher to make these decisions. Furthermore, there is usually little other information collected about napping habits that could be used to better characterize napping behavior, such as lifetime nap habits, intentional vs accidental napping, and specific motivations for napping. These secondary factors have been shown to significantly moderate the effects of napping in experimental studies.
Considering the challenges, it is not surprising that there is wide disagreement across studies as to the health effects of napping.4 On the negative side, some studies have demonstrated that napping leads to increased risk of cardiovascular disease, dementia, and mortality.5-7 On the positive side, large cohort studies that control for some of these limitations report that habitual napping can predict better health outcomes, including lower mortality risk, reduced cardiovascular disease, and increased brain volume.8,9 Furthermore, age complicates matters as recent studies in older adults report that more frequent napping may be associated with reduced propensity for sleep during morning hours, and late afternoon naps were associated with earlier melatonin onset and increased evening activity, suggesting greater circadian misalignment in nappers and strategic use of napping as an evening fatigue countermeasure. More frequent napping in older adults was also correlated with lower cognitive performance in one of three cognitive domains. These results implicate more frequent and later-in-the-day napping habits in older adults may indicate altered circadian rhythms and reduced early morning sleep, with a potential functional impact on memory function. However, the same cautionary note applies to these studies, as few nap characteristics were reported that would help interpret the study outcomes and guide recommendations.10 Thus, the important and timely question of whether napping should be recommended does not, as of yet, have an answer. For clinicians weighing the multidimensional factors associated with napping in efforts to give a considered response to their patients, I can offer a set of questions that may help with tailoring responses to each individual. A lifetime history of napping can be an indicator of a health-promoting behavior, whereas a relatively recent desire to nap may reflect an underlying comorbidity that increases fatigue, sleepiness, and unintentional daytime sleep. Motivation for napping can also be revealing, as the desire to nap may be masking symptoms of depression and anxiety.11 Nighttime sleep disturbance may promote napping or, in some cases, arise from too much napping and should always be considered as a primary health measurement. In conclusion, it’s important to recognize the significance of addressing nighttime sleep disturbance and the potential impact of napping on overall health. For many, napping can be an essential and potent habit that can be encouraged throughout the lifespan for its salutary influences.
References
1. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003 Jul;6(7):697-8. doi: 10.1038/nn1078. PMID: 12819785.
2. Jones BJ, Spencer RMC. Role of Napping for Learning across the Lifespan. Curr Sleep Med Rep. 2020 Dec;6(4):290-297. Doi: 10.1007/s40675-020-00193-9. Epub 2020 Nov 12. PMID: 33816064; PMCID: PMC8011550.
3. Dunietz GL, Jansen EC, Hershner S, O’Brien LM, Peterson KE, Baylin A. Parallel Assessment Challenges in Nutritional and Sleep Epidemiology. Am J Epidemiol. 2021 Jun 1;190(6):954-961. doi: 10.1093/aje/kwaa230. PMID: 33089309; PMCID: PMC8168107.
4. Stang A. Daytime napping and health consequences: much epidemiologic work to do. Sleep Med. 2015 Jul;16(7):809-10. doi: 10.1016/j.sleep.2015.02.522. Epub 2015 Feb 14. PMID: 25772544.
5. Li, P., Gao, L., Yu, L., Zheng, X., Ulsa, M. C., Yang, H.-W., Gaba, A., Yaffe, K., Bennett, D. A., Buchman, A. S., Hu, K., & Leng, Y. (2022). Daytime napping and Alzheimer’s dementia: A potential bidirectional relationship. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association. https://doi.org/10.1002/alz.12636
6. Stang A, Dragano N., Moebus S, et al. Midday naps and the risk of coronary artery disease: results of the Heinz Nixdorf Recall Study Sleep, 35 (12) (2012), pp. 1705-1712
7. Wang K, Hu L, Wang L, Shu HN, Wang YT, Yuan Y, Cheng HP, Zhang YQ. Midday Napping, Nighttime Sleep, and Mortality: Prospective Cohort Evidence in China. Biomed Environ Sci. 2023 Aug 20;36(8):702-714. doi: 10.3967/bes2023.073. PMID: 37711082.
8. Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D. Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med. 2007 Feb 12;167(3):296-301. Doi: 10.1001/archinte.167.3.296. PMID: 17296887.
9. Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health. 2023 Oct;9(5):786-793. Doi: 10.1016/j.sleh.2023.05.002. Epub 2023 Jun 20. PMID: 37344293.
10. Mednick SC. Is napping in older adults problematic or productive? The answer may lie in the reason they nap. Sleep. 2024 May 10;47(5):zsae056. doi: 10.1093/sleep/zsae056. PMID: 38421680; PMCID: PMC11082470.
11. Duggan KA, McDevitt EA, Whitehurst LN, Mednick SC. To Nap, Perchance to DREAM: A Factor Analysis of College Students’ Self-Reported Reasons for Napping. Behav Sleep Med. 2018 Mar-Apr;16(2):135-153. doi: 10.1080/15402002.2016.1178115. Epub 2016 Jun 27. PMID: 27347727; PMCID: PMC5374038.
I was invited to a cardiology conference to talk about sleep, specifically the benefits of napping for health and cognition. After the talk, along with the usual questions related to my research, the cardiac surgeons in the room shifted the conversation to better resemble a group therapy session, sharing their harrowing personal tales of coping with sleep loss on the job. The most dramatic story involved a resident in a military hospital who, unable to avoid the effects of her mounting sleep loss, did a face plant into the open chest of the patient on the surgery table.
Given this ever-increasing list of ill effects of poor sleep, the quest for an effective, inexpensive, and manageable intervention for sleep loss often leads to the question: What about naps? A nap is typically defined as a period of sleep between five minutes to three hours, although naps can occur at any hour, they are usually daytime sleep behaviors. Between 40% and 60% of adults nap regularly, at least once a week, and, excluding novelty nap boutiques, they are free of charge and require little management or oversight. Yet, for all their apparent positive aspects, the jury is still out on whether naps should be recommended as a sleep loss countermeasure due to the lack of agreement across studies as to their effects on health.
Naps are studied in primarily two scientific contexts: laboratory experimental studies and epidemiological studies. Laboratory experimental studies measure the effect of short bouts of sleep as a fatigue countermeasure or cognitive enhancer under total sleep deprivation, sleep restriction (four to six hours of nighttime sleep), or well-rested conditions. These experiments are usually conducted in small (20 to 30 participants) convenience samples of young adults without medical and mental health problems. Performance on computer-based cognitive tasks is tested before and after naps of varying durations. By varying nap durations, researchers can test the impact of specific sleep stages on performance improvement. For example, in well-rested, intermediate chronotype individuals, a 30-minute nap between 13:00 and 15:00 will contain mostly stage 2 sleep, whereas a nap of up to 60 minutes will include slow wave sleep, and a 90-minute nap will end on a bout of rapid eye movement sleep. Studies that vary nap duration and therefore sleep quality have demonstrated an important principle of sleep’s effect on the brain and cognitive processing, namely that each sleep stage uniquely contributes to different aspects of cognitive and emotional processing. And that when naps are inserted into a person’s day, even in well-rested conditions, they tend to perform better after the nap than if they had stayed awake. Napping leads to greater vigilance, attention, memory, motor performance, and creativity, among others, compared with equivalent wake periods.1,2 Compared with the common fatigue countermeasure—caffeine—naps enhance explicit memory performance to a greater extent.
In the second context, epidemiological studies examining the impact of napping on health outcomes are typically conducted in older, less healthy, less active populations who tend to have poorer eating habits, multiple comorbidities, psychological problems, and a wide range of socioeconomic status. The strength of this approach is the sample size, which allows for correlations between factors on a large scale while providing enough data to hopefully control for possible confounds (eg, demographics, SES, exercise and eating habits, comorbidities). However, as the data were usually collected by a different group with different goals than the current epidemiologist exploring the data, there can be a disconnect between the current study goals and the variables that were initially collected by the original research team. As such, the current researcher is left with a patchwork of dissimilar variables that they must find a way to organize to answer the current question.3
When applied to the question of health effects of napping, epidemiology researchers typically divide the population into two groups, either based on a yes or no response to a napping question, or a frequency score where those who indicate napping more than one, two, or three times a week are distinguished as nappers compared to non-nappers who don’t meet these criteria. As the field lacks standard definitions for categorizing nap behavior, it is left to the discretion of the researcher to make these decisions. Furthermore, there is usually little other information collected about napping habits that could be used to better characterize napping behavior, such as lifetime nap habits, intentional vs accidental napping, and specific motivations for napping. These secondary factors have been shown to significantly moderate the effects of napping in experimental studies.
Considering the challenges, it is not surprising that there is wide disagreement across studies as to the health effects of napping.4 On the negative side, some studies have demonstrated that napping leads to increased risk of cardiovascular disease, dementia, and mortality.5-7 On the positive side, large cohort studies that control for some of these limitations report that habitual napping can predict better health outcomes, including lower mortality risk, reduced cardiovascular disease, and increased brain volume.8,9 Furthermore, age complicates matters as recent studies in older adults report that more frequent napping may be associated with reduced propensity for sleep during morning hours, and late afternoon naps were associated with earlier melatonin onset and increased evening activity, suggesting greater circadian misalignment in nappers and strategic use of napping as an evening fatigue countermeasure. More frequent napping in older adults was also correlated with lower cognitive performance in one of three cognitive domains. These results implicate more frequent and later-in-the-day napping habits in older adults may indicate altered circadian rhythms and reduced early morning sleep, with a potential functional impact on memory function. However, the same cautionary note applies to these studies, as few nap characteristics were reported that would help interpret the study outcomes and guide recommendations.10 Thus, the important and timely question of whether napping should be recommended does not, as of yet, have an answer. For clinicians weighing the multidimensional factors associated with napping in efforts to give a considered response to their patients, I can offer a set of questions that may help with tailoring responses to each individual. A lifetime history of napping can be an indicator of a health-promoting behavior, whereas a relatively recent desire to nap may reflect an underlying comorbidity that increases fatigue, sleepiness, and unintentional daytime sleep. Motivation for napping can also be revealing, as the desire to nap may be masking symptoms of depression and anxiety.11 Nighttime sleep disturbance may promote napping or, in some cases, arise from too much napping and should always be considered as a primary health measurement. In conclusion, it’s important to recognize the significance of addressing nighttime sleep disturbance and the potential impact of napping on overall health. For many, napping can be an essential and potent habit that can be encouraged throughout the lifespan for its salutary influences.
References
1. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003 Jul;6(7):697-8. doi: 10.1038/nn1078. PMID: 12819785.
2. Jones BJ, Spencer RMC. Role of Napping for Learning across the Lifespan. Curr Sleep Med Rep. 2020 Dec;6(4):290-297. Doi: 10.1007/s40675-020-00193-9. Epub 2020 Nov 12. PMID: 33816064; PMCID: PMC8011550.
3. Dunietz GL, Jansen EC, Hershner S, O’Brien LM, Peterson KE, Baylin A. Parallel Assessment Challenges in Nutritional and Sleep Epidemiology. Am J Epidemiol. 2021 Jun 1;190(6):954-961. doi: 10.1093/aje/kwaa230. PMID: 33089309; PMCID: PMC8168107.
4. Stang A. Daytime napping and health consequences: much epidemiologic work to do. Sleep Med. 2015 Jul;16(7):809-10. doi: 10.1016/j.sleep.2015.02.522. Epub 2015 Feb 14. PMID: 25772544.
5. Li, P., Gao, L., Yu, L., Zheng, X., Ulsa, M. C., Yang, H.-W., Gaba, A., Yaffe, K., Bennett, D. A., Buchman, A. S., Hu, K., & Leng, Y. (2022). Daytime napping and Alzheimer’s dementia: A potential bidirectional relationship. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association. https://doi.org/10.1002/alz.12636
6. Stang A, Dragano N., Moebus S, et al. Midday naps and the risk of coronary artery disease: results of the Heinz Nixdorf Recall Study Sleep, 35 (12) (2012), pp. 1705-1712
7. Wang K, Hu L, Wang L, Shu HN, Wang YT, Yuan Y, Cheng HP, Zhang YQ. Midday Napping, Nighttime Sleep, and Mortality: Prospective Cohort Evidence in China. Biomed Environ Sci. 2023 Aug 20;36(8):702-714. doi: 10.3967/bes2023.073. PMID: 37711082.
8. Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D. Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med. 2007 Feb 12;167(3):296-301. Doi: 10.1001/archinte.167.3.296. PMID: 17296887.
9. Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health. 2023 Oct;9(5):786-793. Doi: 10.1016/j.sleh.2023.05.002. Epub 2023 Jun 20. PMID: 37344293.
10. Mednick SC. Is napping in older adults problematic or productive? The answer may lie in the reason they nap. Sleep. 2024 May 10;47(5):zsae056. doi: 10.1093/sleep/zsae056. PMID: 38421680; PMCID: PMC11082470.
11. Duggan KA, McDevitt EA, Whitehurst LN, Mednick SC. To Nap, Perchance to DREAM: A Factor Analysis of College Students’ Self-Reported Reasons for Napping. Behav Sleep Med. 2018 Mar-Apr;16(2):135-153. doi: 10.1080/15402002.2016.1178115. Epub 2016 Jun 27. PMID: 27347727; PMCID: PMC5374038.
I was invited to a cardiology conference to talk about sleep, specifically the benefits of napping for health and cognition. After the talk, along with the usual questions related to my research, the cardiac surgeons in the room shifted the conversation to better resemble a group therapy session, sharing their harrowing personal tales of coping with sleep loss on the job. The most dramatic story involved a resident in a military hospital who, unable to avoid the effects of her mounting sleep loss, did a face plant into the open chest of the patient on the surgery table.
Given this ever-increasing list of ill effects of poor sleep, the quest for an effective, inexpensive, and manageable intervention for sleep loss often leads to the question: What about naps? A nap is typically defined as a period of sleep between five minutes to three hours, although naps can occur at any hour, they are usually daytime sleep behaviors. Between 40% and 60% of adults nap regularly, at least once a week, and, excluding novelty nap boutiques, they are free of charge and require little management or oversight. Yet, for all their apparent positive aspects, the jury is still out on whether naps should be recommended as a sleep loss countermeasure due to the lack of agreement across studies as to their effects on health.
Naps are studied in primarily two scientific contexts: laboratory experimental studies and epidemiological studies. Laboratory experimental studies measure the effect of short bouts of sleep as a fatigue countermeasure or cognitive enhancer under total sleep deprivation, sleep restriction (four to six hours of nighttime sleep), or well-rested conditions. These experiments are usually conducted in small (20 to 30 participants) convenience samples of young adults without medical and mental health problems. Performance on computer-based cognitive tasks is tested before and after naps of varying durations. By varying nap durations, researchers can test the impact of specific sleep stages on performance improvement. For example, in well-rested, intermediate chronotype individuals, a 30-minute nap between 13:00 and 15:00 will contain mostly stage 2 sleep, whereas a nap of up to 60 minutes will include slow wave sleep, and a 90-minute nap will end on a bout of rapid eye movement sleep. Studies that vary nap duration and therefore sleep quality have demonstrated an important principle of sleep’s effect on the brain and cognitive processing, namely that each sleep stage uniquely contributes to different aspects of cognitive and emotional processing. And that when naps are inserted into a person’s day, even in well-rested conditions, they tend to perform better after the nap than if they had stayed awake. Napping leads to greater vigilance, attention, memory, motor performance, and creativity, among others, compared with equivalent wake periods.1,2 Compared with the common fatigue countermeasure—caffeine—naps enhance explicit memory performance to a greater extent.
In the second context, epidemiological studies examining the impact of napping on health outcomes are typically conducted in older, less healthy, less active populations who tend to have poorer eating habits, multiple comorbidities, psychological problems, and a wide range of socioeconomic status. The strength of this approach is the sample size, which allows for correlations between factors on a large scale while providing enough data to hopefully control for possible confounds (eg, demographics, SES, exercise and eating habits, comorbidities). However, as the data were usually collected by a different group with different goals than the current epidemiologist exploring the data, there can be a disconnect between the current study goals and the variables that were initially collected by the original research team. As such, the current researcher is left with a patchwork of dissimilar variables that they must find a way to organize to answer the current question.3
When applied to the question of health effects of napping, epidemiology researchers typically divide the population into two groups, either based on a yes or no response to a napping question, or a frequency score where those who indicate napping more than one, two, or three times a week are distinguished as nappers compared to non-nappers who don’t meet these criteria. As the field lacks standard definitions for categorizing nap behavior, it is left to the discretion of the researcher to make these decisions. Furthermore, there is usually little other information collected about napping habits that could be used to better characterize napping behavior, such as lifetime nap habits, intentional vs accidental napping, and specific motivations for napping. These secondary factors have been shown to significantly moderate the effects of napping in experimental studies.
Considering the challenges, it is not surprising that there is wide disagreement across studies as to the health effects of napping.4 On the negative side, some studies have demonstrated that napping leads to increased risk of cardiovascular disease, dementia, and mortality.5-7 On the positive side, large cohort studies that control for some of these limitations report that habitual napping can predict better health outcomes, including lower mortality risk, reduced cardiovascular disease, and increased brain volume.8,9 Furthermore, age complicates matters as recent studies in older adults report that more frequent napping may be associated with reduced propensity for sleep during morning hours, and late afternoon naps were associated with earlier melatonin onset and increased evening activity, suggesting greater circadian misalignment in nappers and strategic use of napping as an evening fatigue countermeasure. More frequent napping in older adults was also correlated with lower cognitive performance in one of three cognitive domains. These results implicate more frequent and later-in-the-day napping habits in older adults may indicate altered circadian rhythms and reduced early morning sleep, with a potential functional impact on memory function. However, the same cautionary note applies to these studies, as few nap characteristics were reported that would help interpret the study outcomes and guide recommendations.10 Thus, the important and timely question of whether napping should be recommended does not, as of yet, have an answer. For clinicians weighing the multidimensional factors associated with napping in efforts to give a considered response to their patients, I can offer a set of questions that may help with tailoring responses to each individual. A lifetime history of napping can be an indicator of a health-promoting behavior, whereas a relatively recent desire to nap may reflect an underlying comorbidity that increases fatigue, sleepiness, and unintentional daytime sleep. Motivation for napping can also be revealing, as the desire to nap may be masking symptoms of depression and anxiety.11 Nighttime sleep disturbance may promote napping or, in some cases, arise from too much napping and should always be considered as a primary health measurement. In conclusion, it’s important to recognize the significance of addressing nighttime sleep disturbance and the potential impact of napping on overall health. For many, napping can be an essential and potent habit that can be encouraged throughout the lifespan for its salutary influences.
References
1. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003 Jul;6(7):697-8. doi: 10.1038/nn1078. PMID: 12819785.
2. Jones BJ, Spencer RMC. Role of Napping for Learning across the Lifespan. Curr Sleep Med Rep. 2020 Dec;6(4):290-297. Doi: 10.1007/s40675-020-00193-9. Epub 2020 Nov 12. PMID: 33816064; PMCID: PMC8011550.
3. Dunietz GL, Jansen EC, Hershner S, O’Brien LM, Peterson KE, Baylin A. Parallel Assessment Challenges in Nutritional and Sleep Epidemiology. Am J Epidemiol. 2021 Jun 1;190(6):954-961. doi: 10.1093/aje/kwaa230. PMID: 33089309; PMCID: PMC8168107.
4. Stang A. Daytime napping and health consequences: much epidemiologic work to do. Sleep Med. 2015 Jul;16(7):809-10. doi: 10.1016/j.sleep.2015.02.522. Epub 2015 Feb 14. PMID: 25772544.
5. Li, P., Gao, L., Yu, L., Zheng, X., Ulsa, M. C., Yang, H.-W., Gaba, A., Yaffe, K., Bennett, D. A., Buchman, A. S., Hu, K., & Leng, Y. (2022). Daytime napping and Alzheimer’s dementia: A potential bidirectional relationship. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association. https://doi.org/10.1002/alz.12636
6. Stang A, Dragano N., Moebus S, et al. Midday naps and the risk of coronary artery disease: results of the Heinz Nixdorf Recall Study Sleep, 35 (12) (2012), pp. 1705-1712
7. Wang K, Hu L, Wang L, Shu HN, Wang YT, Yuan Y, Cheng HP, Zhang YQ. Midday Napping, Nighttime Sleep, and Mortality: Prospective Cohort Evidence in China. Biomed Environ Sci. 2023 Aug 20;36(8):702-714. doi: 10.3967/bes2023.073. PMID: 37711082.
8. Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D. Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med. 2007 Feb 12;167(3):296-301. Doi: 10.1001/archinte.167.3.296. PMID: 17296887.
9. Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health. 2023 Oct;9(5):786-793. Doi: 10.1016/j.sleh.2023.05.002. Epub 2023 Jun 20. PMID: 37344293.
10. Mednick SC. Is napping in older adults problematic or productive? The answer may lie in the reason they nap. Sleep. 2024 May 10;47(5):zsae056. doi: 10.1093/sleep/zsae056. PMID: 38421680; PMCID: PMC11082470.
11. Duggan KA, McDevitt EA, Whitehurst LN, Mednick SC. To Nap, Perchance to DREAM: A Factor Analysis of College Students’ Self-Reported Reasons for Napping. Behav Sleep Med. 2018 Mar-Apr;16(2):135-153. doi: 10.1080/15402002.2016.1178115. Epub 2016 Jun 27. PMID: 27347727; PMCID: PMC5374038.
Why Scientists Are Linking More Diseases to Light at Night
This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.
It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear.
“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program.
Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.
Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.
But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said.
Bright Lights, Big Problems
For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms.
Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light).
Research has found links between the nighttime glow outside and other diseases:
Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%.
Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.
Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution.
What Happens in Your Body When You’re Exposed to Light at Night
“hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.
Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.
“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.”
This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.
The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half.
When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.
Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers).
Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact.
When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.
A similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
What Can You Do About This?
Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight.
You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.
Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away.
And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.”
A version of this article appeared on WebMD.com.
This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.
It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear.
“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program.
Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.
Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.
But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said.
Bright Lights, Big Problems
For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms.
Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light).
Research has found links between the nighttime glow outside and other diseases:
Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%.
Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.
Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution.
What Happens in Your Body When You’re Exposed to Light at Night
“hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.
Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.
“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.”
This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.
The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half.
When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.
Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers).
Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact.
When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.
A similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
What Can You Do About This?
Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight.
You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.
Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away.
And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.”
A version of this article appeared on WebMD.com.
This October, millions of Americans missed out on two of the most spectacular shows in the universe: the northern lights and a rare comet. Even if you were aware of them, light pollution made them difficult to see, unless you went to a dark area and let your eyes adjust.
It’s not getting any easier — the night sky over North America has been growing brighter by about 10% per year since 2011. More and more research is linking all that light pollution to a surprising range of health consequences: cancer, heart disease, diabetes, Alzheimer’s disease, and even low sperm quality, though the reasons for these troubling associations are not always clear.
“We’ve lost the contrast between light and dark, and we are confusing our physiology on a regular basis,” said John Hanifin, PhD, associate director of Thomas Jefferson University’s Light Research Program.
Our own galaxy is invisible to nearly 80% of people in North America. In 1994, an earthquake-triggered blackout in Los Angeles led to calls to the Griffith Observatory from people wondering about that hazy blob of light in the night sky. It was the Milky Way.
Glaring headlights, illuminated buildings, blazing billboards, and streetlights fill our urban skies with a glow that even affects rural residents. Inside, since the invention of the lightbulb, we’ve kept our homes bright at night. Now, we’ve also added blue light-emitting devices — smartphones, television screens, tablets — which have been linked to sleep problems.
But outdoor light may matter for our health, too. “Every photon counts,” Hanifin said.
Bright Lights, Big Problems
For one 2024 study researchers used satellite data to measure light pollution at residential addresses of over 13,000 people. They found that those who lived in places with the brightest skies at night had a 31% higher risk of high blood pressure. Another study out of Hong Kong showed a 29% higher risk of death from coronary heart disease. And yet another found a 17%higher risk of cerebrovascular disease, such as strokes or brain aneurysms.
Of course, urban areas also have air pollution, noise, and a lack of greenery. So, for some studies, scientists controlled for these factors, and the correlation remained strong (although air pollution with fine particulate matter appeared to be worse for heart health than outdoor light).
Research has found links between the nighttime glow outside and other diseases:
Breast cancer. “It’s a very strong correlation,” said Randy Nelson, PhD, a neuroscientist at West Virginia University. A study of over 100,000 teachers in California revealed that women living in areas with the most light pollution had a 12%higher risk. That effect is comparable to increasing your intake of ultra-processed foods by 10%.
Alzheimer’s disease. In a study published this fall, outdoor light at night was more strongly linked to the disease than even alcohol misuse or obesity.
Diabetes. In one recent study, people living in the most illuminated areas had a 28% higher risk of diabetes than those residing in much darker places. In a country like China, scientists concluded that 9 million cases of diabetes could be linked to light pollution.
What Happens in Your Body When You’re Exposed to Light at Night
“hormone of darkness.” “Darkness is very important,” Hanifin said. When he and his colleagues decades ago started studying the effects of light on human physiology, “people thought we were borderline crazy,” he said.
Nighttime illumination affects the health and behavior of species as diverse as Siberian hamsters, zebra finches, mice, crickets, and mosquitoes. Like most creatures on Earth, humans have internal clocks that are synced to the 24-hour cycle of day and night. The master clock is in your hypothalamus, a diamond-shaped part of the brain, but every cell in your body has its own clock, too. Many physiological processes run on circadian rhythms (a term derived from a Latin phrase meaning “about a day”), from sleep-wake cycle to hormone secretion, as well as processes involved in cancer progression, such as cell division.
“There are special photoreceptors in the eye that don’t deal with visual information. They just send light information,” Nelson said. “If you get light at the wrong time, you’re resetting the clocks.”
This internal clock “prepares the body for various recurrent challenges, such as eating,” said Christian Benedict, PhD, a sleep researcher at Uppsala University, Sweden. “Light exposure [at night] can mess up this very important system.” This could mean, for instance, that your insulin is released at the wrong time, Benedict said, causing “a jet lag-ish condition that will then impair the ability to handle blood sugar.” Animal studies confirm that exposure to light at night can reduce glucose tolerance and alter insulin secretion – potential pathways to diabetes.
The hormone melatonin, produced when it’s dark by the pineal gland in the brain, is a key player in this modern struggle. Melatonin helps you sleep, synchronizes the body’s circadian rhythms, protects neurons from damage, regulates the immune system, and fights inflammation. But even a sliver of light at night can suppress its secretion. Less than 30 lux of light, about the level of a pedestrian street at night, can slash melatonin by half.
When lab animals are exposed to nighttime light, they “show enormous neuroinflammation” — that is, inflammation of nervous tissue, Nelson said. In one experiment on humans, those who slept immersed in weak light had higher levels of C-reactive protein in their blood, a marker of inflammation.
Low melatonin has also been linked to cancer. It “allows the metabolic machinery of the cancer cells to be active,” Hanifin said. One of melatonin’s effects is stimulation of natural killer cells, which can recognize and destroy cancer cells. What’s more, when melatonin plunges, estrogen may go up, which could explain the link between light at night and breast cancer (estrogen fuels tumor growth in breast cancers).
Researchers concede that satellite data might be too coarse to estimate how much light people are actually exposed to while they sleep. Plus, many of us are staring at bright screens. “But the studies keep coming,” Nelson said, suggesting that outdoor light pollution does have an impact.
When researchers put wrist-worn light sensors on over 80,000 British people, they found that the more light the device registered between half-past midnight and 6 a.m., the more its wearer was at risk of having diabetes several years down the road — no matter how long they’ve actually slept. This, according to the study’s authors, supports the findings of satellite data.
A similar study that used actigraphy with built-in light sensors, measuring whether people had been sleeping in complete darkness for at least five hours, found that light pollution upped the risk of heart disease by 74%.
What Can You Do About This?
Not everyone’s melatonin is affected by nighttime light to the same degree. “Some people are very much sensitive to very dim light, whereas others are not as sensitive and need far, far more light stimulation [to impact melatonin],” Benedict said. In one study, some volunteers needed 350 lux to lower their melatonin by half. For such people, flipping on the light in the bathroom at night wouldn’t matter; for others, though, a mere 6 lux was already as harmful – which is darker than twilight.
You can protect yourself by keeping your bedroom lights off and your screens stashed away, but avoiding outdoor light pollution may be harder. You can invest in high-quality blackout curtains, of course, although some light may still seep inside. You can plant trees in front of your windows, reorient any motion-detector lights, and even petition your local government to reduce over-illumination of buildings and to choose better streetlights. You can support organizations, such as the International Dark-Sky Association, that work to preserve darkness.
Last but not least, you might want to change your habits. If you live in a particularly light-polluted area, such as the District of Columbia, America’s top place for urban blaze, you might reconsider late-night walks or drives around the neighborhood. Instead, Hanifin said, read a book in bed, while keeping the light “as dim as you can.” It’s “a much better idea versus being outside in midtown Manhattan,” he said. According to recent recommendations published by Hanifin and his colleagues, when you sleep, there should be no more than 1 lux of illumination at the level of your eyes — about as much as you’d get from having a lit candle 1 meter away.
And if we manage to preserve outdoor darkness, and the stars reappear (including the breathtaking Milky Way), we could reap more benefits — some research suggests that stargazing can elicit positive emotions, a sense of personal growth, and “a variety of transcendent thoughts and experiences.”
A version of this article appeared on WebMD.com.
The Rising Tide of Atrial Fibrillation: Is Primary Care Ready?
The incidence of atrial fibrillation (AF) is on the rise, and recent joint guidelines from the American College of Cardiology and American Heart Association (ACC/AHA) stress the role of primary care clinicians in prevention and management.
One in three White and one in five Black Americans will develop AF in their lifetime, and the projected number of individuals diagnosed with AF in the United States is expected to double by 2050.
Cardiologists who spoke to Medscape Medical News said primary care clinicians can help control AF by focusing on diabetes and hypertension, along with lifestyle factors such as diet, exercise, and alcohol intake.
“It’s not just a rhythm abnormality, but a complex disease that needs to be addressed in a multidisciplinary, holistic way,” said Jose Joglar, MD, a professor in the Department of Internal Medicine at the UT Southwestern Medical Center in Dallas and lead author of the guidelines.
Joglar said primary care clinicians can play an important role in counseling on lifestyle changes for patients with the most common etiologies such as poorly controlled hypertension, diabetes, and obesity.
The Primary Care Physicians ABCs: Risk Factors and Comorbidities
“As a primary care physician or as a cardiologist, I often think that if I do these things, I’m going to help with a lot of conditions, not just atrial fibrillation,” said Manesh Patel, MD, chief of the Divisions of Cardiology and Clinical Pharmacology at the Duke University School of Medicine in Durham, North Carolina.
Lifestyle choices such as sleeping habits can play a big part in AF outcomes. Although the guidelines specifically address obstructive sleep apnea as a risk factor, he said more data are needed on the effect of sleep hygiene — getting 8 hours of sleep a night — a goal few people attain.
“What we do know is people that can routinely try to go to sleep and sleep with some regularity seem to have less cardiovascular risk,” Patel said.
Although existing data are limited, literature reviews have found evidence that sleep disruptions, sleep duration, circadian rhythm, and insomnia are associated with heart disease, independent of obstructive sleep apnea.
Use of alcohol should also be discussed with patients, as many are unaware of the effects of the drug on cardiovascular disease, said Joglar, who is also the program director of the Clinical Cardiac Electrophysiology Fellowship program at the UT Southwestern Medical Center.
“Doctors can inform the patient that this is not a judgment call but simple medical fact,” he said.
Joglar also said many physicians need to become educated on a common misconception.
“Every time a patient develops palpitations or atrial fibrillation, the first thing every patient tells me is, I quit drinking coffee,” Joglar said.
However, as the guidelines point out, the link between caffeine and AF is uncertain at best.
Preventing AF
A newer class of drugs may help clinicians manage comorbidities that contribute to AF, such as hypertension, sleep apnea, and obesity, said John Mandrola, MD, an electrophysiologist in Louisville, Kentucky, who hosts This Week in Cardiology on Medscape.
Although originally approved for treatment of diabetes, sodium-glucose cotransporter-2 inhibitors are also approved for management of heart failure. Mandrola started prescribing these drugs 2 years ago for patients, given the links of both conditions with AF.
“I think the next frontier for us in cardiology and AF management will be the GLP-1 agonists,” Mandrola said. He hasn’t started prescribing these drugs for his patients yet but said they will likely play a role in the management of patients with AF with the common constellation of comorbidities such as obesity, hypertension, and sleep apnea.
“The GLP-1 agonists have a really good chance of competing with AF ablation for rhythm control over the long term,” he said.
Decisions, Decisions: Stroke Risk Scoring Systems
The risk for stroke varies widely among patients with AF, so primary care clinicians can pick among several scoring systems to estimate the risk for stroke and guide the decision on whether to initiate anticoagulation therapy.
The ACC/AHA guidelines do not state a preference for a particular instrument. The Congestive heart failure, Hypertension, Age, Diabetes mellitus, Stroke, Vascular disease, Sex (CHA2DS2-VASc) score is the most widely used and validated instrument, Joglar said. He usually recommends anticoagulation if the CHA2DS2-VASc score is > 2, dependent on individual patient factors.
“If you have a CHA2DS2-VASc score of 1, and you only had one episode of AF for a few hours a year ago, then your risk of stroke is not as high as somebody who has a score of 1 but has more frequent or persistent AF,” Joglar said.
None of the systems is perfect at predicting risk for stroke, so clinicians should discuss options with patients.
“The real message is, are you talking about the risk of stroke and systemic embolism to your patient, so that the patient understands that risk?” he said.
Patel also said measuring creatine clearance can be analogous to using an instrument like CHA2DS2-VASc.
“I often think about renal disease as a very good risk marker and something that does elevate your risk,” he said.
Which Anticoagulant?
Although the ACC/AHA guidelines still recommend warfarin for patients with AF with mechanical heart valves or moderate to severe rheumatic fever, direct oral anticoagulants (DOACs) are the first-line therapy for all other patients with AF.
In terms of which DOACs to use, the differences are subtle, according to Patel.
“I don’t know that they’re that different from each other,” he said. “All of the new drugs are better than warfarin by far.”
Patel pointed out that dabigatran at 150 mg is the only DOAC shown to reduce the incidence of ischemic stroke. For patients with renal dysfunction, he has a slight preference for a 15-mg dose of rivaroxaban.
Mandrola said he mainly prescribes apixaban and rivaroxaban, the latter of which requires only once a day dosing.
“We stopped using dabigatran because 10% of people get gastrointestinal upset,” he said.
Although studies suggest aspirin is less effective than either warfarin or DOACs for the prevention of stroke, Joglar said he still sees patients who come to him after being prescribed low-dose aspirin from primary care clinicians.
“We made it very clear that it should not be recommended just for mitigating stroke risk in atrial fibrillation,” Joglar said. “You could use it if the patient has another indication, such as a prior heart attack.”
Does My Patient Have to Be in Normal Sinus Rhythm?
The new guidelines present evidence maintaining sinus rhythm should be favored over controlling heart rate for managing AF.
“We’ve focused on rhythm control as a better strategy, especially catheter ablation, which seems to be particularly effective in parallel to lifestyle interventions and management of comorbidities,” Joglar said. Rhythm control is of particular benefit for patients with AF triggered by heart failure. Control of rhythm in these patients has been shown to improve multiple outcomes such as ejection fraction, symptoms, and survival.
Patel said as a patient’s symptoms increase, the more likely a clinician will be able to control sinus rhythm. Some patients do not notice their arrhythmia, but others feel dizzy or have chest pain.
“The less symptomatic the patient is, the more likely they’re going to tolerate it, especially if they’re older, and it’s hard to get them into sinus rhythm,” Patel said.
When to Refer for Catheter Ablation?
The new guidelines upgraded the recommendation for catheter ablation to class I (strong recommendation) for patients with symptomatic AF in whom anti-arrhythmic therapy is unsuccessful, not tolerated, or contraindicated; patients with symptomatic paroxysmal AF (typically younger patients with few comorbidities); and patients with symptomatic or clinically significant atrial flutter. The previous iteration recommended trying drug therapy first.
Multiple randomized clinical trials have demonstrated the effectiveness of catheter ablation.
“In somebody who is younger, with a healthy heart, the 1-year success rate of the procedure might be about 70%,” Joglar said. While 70% of patients receiving a catheter have no AF episodes in the following year, Joglar said 20%-25% of those who do have recurrences will experience fewer or shorter episodes.
Conversations about rate vs rhythm control and whether to pursue catheter ablation often come down to preference, Patel said. He would tend to intervene earlier using ablation in patients with heart failure or those experiencing symptoms of AF who cannot be controlled with a heart rate < 100 beats/min.
But he said he prefers using medication for rate control in many of his patients who are older, have chronic AF, and do not have heart failure.
Mandrola takes a more conservative approach, reserving catheter ablation for patients in whom risk factor management and anti-arrhythmic drugs have not been successful.
“In my hospital, it’s done for patients who have symptomatic AF that’s really impacting their quality of life,” he said. But for those with fewer symptoms, his advice is to provide education, reassurance, and time because AF can resolve on its own.
What About Data From Implantables and Wearables?
The guidelines provide an algorithm for when to treat non-symptomatic atrial high-rate episodes detected by a cardiovascular implantable electronic device such as a pacemaker or defibrillator. Episodes less than 5 minutes can be ignored, while treatment could be considered for those with episodes lasting 5 minutes up to 24 hours with a CHA2DS2-VASc score ≥ 3, or lasting longer than 24 hours with a CHA2DS2-VASc score ≥ 2.
But whether anticoagulation improves outcomes is unclear.
“That is a $64,000 question,” Mandrola said. “I would bet every day I get a notification in the electronic health record that says Mr. Smith had 2 hours of AFib 2 weeks ago.”
He also hears from patients who report their Apple Watch has detected an episode of AF.
Mandrola cited evidence from two recent studies of patients who had an atrial high-rate episode longer than 6 minutes detected by implantable devices. The NOAH-AFNET 6 trial randomized patients over 65 years with one or more risk factors for stroke to receive a DOAC or placebo, while the ARTESIA trial used similar inclusion criteria to assign patients to receive either DOAC or aspirin. Both studies reported modest reductions in stroke that were outweighed by a higher incidence of major bleeding in the group receiving anticoagulation.
Shared decision-making should play a role in deciding how aggressively to treat episodes of AF detected by implantable or wearable devices.
He said some patients fear having a stroke, while others are adamantly opposed to taking an anticoagulant.
For patients who present with a documented episode of AF but who otherwise have no symptoms, Patel said clinicians should consider risk for stroke and frequency and duration of episodes.
“One way clinicians should be thinking about it is, the more risk factors they have, the lower burden of AF I need to treat,” Patel said. Even for patients who are having only short episodes of AF, he has a low threshold for recommending an anticoagulation drug if the patient’s CHA2DS2-VASc score is high.
Patel reported research grants from Bayer, Novartis, Idorsia, NHLBI, and Janssen Pharmaceuticals and served as a consultant on the advisory boards of Bayer, Janssen Pharmaceuticals, and Esperion Therapeutics.
Joglar and Mandrola had no disclosures.
A version of this article appeared on Medscape.com.
The incidence of atrial fibrillation (AF) is on the rise, and recent joint guidelines from the American College of Cardiology and American Heart Association (ACC/AHA) stress the role of primary care clinicians in prevention and management.
One in three White and one in five Black Americans will develop AF in their lifetime, and the projected number of individuals diagnosed with AF in the United States is expected to double by 2050.
Cardiologists who spoke to Medscape Medical News said primary care clinicians can help control AF by focusing on diabetes and hypertension, along with lifestyle factors such as diet, exercise, and alcohol intake.
“It’s not just a rhythm abnormality, but a complex disease that needs to be addressed in a multidisciplinary, holistic way,” said Jose Joglar, MD, a professor in the Department of Internal Medicine at the UT Southwestern Medical Center in Dallas and lead author of the guidelines.
Joglar said primary care clinicians can play an important role in counseling on lifestyle changes for patients with the most common etiologies such as poorly controlled hypertension, diabetes, and obesity.
The Primary Care Physicians ABCs: Risk Factors and Comorbidities
“As a primary care physician or as a cardiologist, I often think that if I do these things, I’m going to help with a lot of conditions, not just atrial fibrillation,” said Manesh Patel, MD, chief of the Divisions of Cardiology and Clinical Pharmacology at the Duke University School of Medicine in Durham, North Carolina.
Lifestyle choices such as sleeping habits can play a big part in AF outcomes. Although the guidelines specifically address obstructive sleep apnea as a risk factor, he said more data are needed on the effect of sleep hygiene — getting 8 hours of sleep a night — a goal few people attain.
“What we do know is people that can routinely try to go to sleep and sleep with some regularity seem to have less cardiovascular risk,” Patel said.
Although existing data are limited, literature reviews have found evidence that sleep disruptions, sleep duration, circadian rhythm, and insomnia are associated with heart disease, independent of obstructive sleep apnea.
Use of alcohol should also be discussed with patients, as many are unaware of the effects of the drug on cardiovascular disease, said Joglar, who is also the program director of the Clinical Cardiac Electrophysiology Fellowship program at the UT Southwestern Medical Center.
“Doctors can inform the patient that this is not a judgment call but simple medical fact,” he said.
Joglar also said many physicians need to become educated on a common misconception.
“Every time a patient develops palpitations or atrial fibrillation, the first thing every patient tells me is, I quit drinking coffee,” Joglar said.
However, as the guidelines point out, the link between caffeine and AF is uncertain at best.
Preventing AF
A newer class of drugs may help clinicians manage comorbidities that contribute to AF, such as hypertension, sleep apnea, and obesity, said John Mandrola, MD, an electrophysiologist in Louisville, Kentucky, who hosts This Week in Cardiology on Medscape.
Although originally approved for treatment of diabetes, sodium-glucose cotransporter-2 inhibitors are also approved for management of heart failure. Mandrola started prescribing these drugs 2 years ago for patients, given the links of both conditions with AF.
“I think the next frontier for us in cardiology and AF management will be the GLP-1 agonists,” Mandrola said. He hasn’t started prescribing these drugs for his patients yet but said they will likely play a role in the management of patients with AF with the common constellation of comorbidities such as obesity, hypertension, and sleep apnea.
“The GLP-1 agonists have a really good chance of competing with AF ablation for rhythm control over the long term,” he said.
Decisions, Decisions: Stroke Risk Scoring Systems
The risk for stroke varies widely among patients with AF, so primary care clinicians can pick among several scoring systems to estimate the risk for stroke and guide the decision on whether to initiate anticoagulation therapy.
The ACC/AHA guidelines do not state a preference for a particular instrument. The Congestive heart failure, Hypertension, Age, Diabetes mellitus, Stroke, Vascular disease, Sex (CHA2DS2-VASc) score is the most widely used and validated instrument, Joglar said. He usually recommends anticoagulation if the CHA2DS2-VASc score is > 2, dependent on individual patient factors.
“If you have a CHA2DS2-VASc score of 1, and you only had one episode of AF for a few hours a year ago, then your risk of stroke is not as high as somebody who has a score of 1 but has more frequent or persistent AF,” Joglar said.
None of the systems is perfect at predicting risk for stroke, so clinicians should discuss options with patients.
“The real message is, are you talking about the risk of stroke and systemic embolism to your patient, so that the patient understands that risk?” he said.
Patel also said measuring creatine clearance can be analogous to using an instrument like CHA2DS2-VASc.
“I often think about renal disease as a very good risk marker and something that does elevate your risk,” he said.
Which Anticoagulant?
Although the ACC/AHA guidelines still recommend warfarin for patients with AF with mechanical heart valves or moderate to severe rheumatic fever, direct oral anticoagulants (DOACs) are the first-line therapy for all other patients with AF.
In terms of which DOACs to use, the differences are subtle, according to Patel.
“I don’t know that they’re that different from each other,” he said. “All of the new drugs are better than warfarin by far.”
Patel pointed out that dabigatran at 150 mg is the only DOAC shown to reduce the incidence of ischemic stroke. For patients with renal dysfunction, he has a slight preference for a 15-mg dose of rivaroxaban.
Mandrola said he mainly prescribes apixaban and rivaroxaban, the latter of which requires only once a day dosing.
“We stopped using dabigatran because 10% of people get gastrointestinal upset,” he said.
Although studies suggest aspirin is less effective than either warfarin or DOACs for the prevention of stroke, Joglar said he still sees patients who come to him after being prescribed low-dose aspirin from primary care clinicians.
“We made it very clear that it should not be recommended just for mitigating stroke risk in atrial fibrillation,” Joglar said. “You could use it if the patient has another indication, such as a prior heart attack.”
Does My Patient Have to Be in Normal Sinus Rhythm?
The new guidelines present evidence maintaining sinus rhythm should be favored over controlling heart rate for managing AF.
“We’ve focused on rhythm control as a better strategy, especially catheter ablation, which seems to be particularly effective in parallel to lifestyle interventions and management of comorbidities,” Joglar said. Rhythm control is of particular benefit for patients with AF triggered by heart failure. Control of rhythm in these patients has been shown to improve multiple outcomes such as ejection fraction, symptoms, and survival.
Patel said as a patient’s symptoms increase, the more likely a clinician will be able to control sinus rhythm. Some patients do not notice their arrhythmia, but others feel dizzy or have chest pain.
“The less symptomatic the patient is, the more likely they’re going to tolerate it, especially if they’re older, and it’s hard to get them into sinus rhythm,” Patel said.
When to Refer for Catheter Ablation?
The new guidelines upgraded the recommendation for catheter ablation to class I (strong recommendation) for patients with symptomatic AF in whom anti-arrhythmic therapy is unsuccessful, not tolerated, or contraindicated; patients with symptomatic paroxysmal AF (typically younger patients with few comorbidities); and patients with symptomatic or clinically significant atrial flutter. The previous iteration recommended trying drug therapy first.
Multiple randomized clinical trials have demonstrated the effectiveness of catheter ablation.
“In somebody who is younger, with a healthy heart, the 1-year success rate of the procedure might be about 70%,” Joglar said. While 70% of patients receiving a catheter have no AF episodes in the following year, Joglar said 20%-25% of those who do have recurrences will experience fewer or shorter episodes.
Conversations about rate vs rhythm control and whether to pursue catheter ablation often come down to preference, Patel said. He would tend to intervene earlier using ablation in patients with heart failure or those experiencing symptoms of AF who cannot be controlled with a heart rate < 100 beats/min.
But he said he prefers using medication for rate control in many of his patients who are older, have chronic AF, and do not have heart failure.
Mandrola takes a more conservative approach, reserving catheter ablation for patients in whom risk factor management and anti-arrhythmic drugs have not been successful.
“In my hospital, it’s done for patients who have symptomatic AF that’s really impacting their quality of life,” he said. But for those with fewer symptoms, his advice is to provide education, reassurance, and time because AF can resolve on its own.
What About Data From Implantables and Wearables?
The guidelines provide an algorithm for when to treat non-symptomatic atrial high-rate episodes detected by a cardiovascular implantable electronic device such as a pacemaker or defibrillator. Episodes less than 5 minutes can be ignored, while treatment could be considered for those with episodes lasting 5 minutes up to 24 hours with a CHA2DS2-VASc score ≥ 3, or lasting longer than 24 hours with a CHA2DS2-VASc score ≥ 2.
But whether anticoagulation improves outcomes is unclear.
“That is a $64,000 question,” Mandrola said. “I would bet every day I get a notification in the electronic health record that says Mr. Smith had 2 hours of AFib 2 weeks ago.”
He also hears from patients who report their Apple Watch has detected an episode of AF.
Mandrola cited evidence from two recent studies of patients who had an atrial high-rate episode longer than 6 minutes detected by implantable devices. The NOAH-AFNET 6 trial randomized patients over 65 years with one or more risk factors for stroke to receive a DOAC or placebo, while the ARTESIA trial used similar inclusion criteria to assign patients to receive either DOAC or aspirin. Both studies reported modest reductions in stroke that were outweighed by a higher incidence of major bleeding in the group receiving anticoagulation.
Shared decision-making should play a role in deciding how aggressively to treat episodes of AF detected by implantable or wearable devices.
He said some patients fear having a stroke, while others are adamantly opposed to taking an anticoagulant.
For patients who present with a documented episode of AF but who otherwise have no symptoms, Patel said clinicians should consider risk for stroke and frequency and duration of episodes.
“One way clinicians should be thinking about it is, the more risk factors they have, the lower burden of AF I need to treat,” Patel said. Even for patients who are having only short episodes of AF, he has a low threshold for recommending an anticoagulation drug if the patient’s CHA2DS2-VASc score is high.
Patel reported research grants from Bayer, Novartis, Idorsia, NHLBI, and Janssen Pharmaceuticals and served as a consultant on the advisory boards of Bayer, Janssen Pharmaceuticals, and Esperion Therapeutics.
Joglar and Mandrola had no disclosures.
A version of this article appeared on Medscape.com.
The incidence of atrial fibrillation (AF) is on the rise, and recent joint guidelines from the American College of Cardiology and American Heart Association (ACC/AHA) stress the role of primary care clinicians in prevention and management.
One in three White and one in five Black Americans will develop AF in their lifetime, and the projected number of individuals diagnosed with AF in the United States is expected to double by 2050.
Cardiologists who spoke to Medscape Medical News said primary care clinicians can help control AF by focusing on diabetes and hypertension, along with lifestyle factors such as diet, exercise, and alcohol intake.
“It’s not just a rhythm abnormality, but a complex disease that needs to be addressed in a multidisciplinary, holistic way,” said Jose Joglar, MD, a professor in the Department of Internal Medicine at the UT Southwestern Medical Center in Dallas and lead author of the guidelines.
Joglar said primary care clinicians can play an important role in counseling on lifestyle changes for patients with the most common etiologies such as poorly controlled hypertension, diabetes, and obesity.
The Primary Care Physicians ABCs: Risk Factors and Comorbidities
“As a primary care physician or as a cardiologist, I often think that if I do these things, I’m going to help with a lot of conditions, not just atrial fibrillation,” said Manesh Patel, MD, chief of the Divisions of Cardiology and Clinical Pharmacology at the Duke University School of Medicine in Durham, North Carolina.
Lifestyle choices such as sleeping habits can play a big part in AF outcomes. Although the guidelines specifically address obstructive sleep apnea as a risk factor, he said more data are needed on the effect of sleep hygiene — getting 8 hours of sleep a night — a goal few people attain.
“What we do know is people that can routinely try to go to sleep and sleep with some regularity seem to have less cardiovascular risk,” Patel said.
Although existing data are limited, literature reviews have found evidence that sleep disruptions, sleep duration, circadian rhythm, and insomnia are associated with heart disease, independent of obstructive sleep apnea.
Use of alcohol should also be discussed with patients, as many are unaware of the effects of the drug on cardiovascular disease, said Joglar, who is also the program director of the Clinical Cardiac Electrophysiology Fellowship program at the UT Southwestern Medical Center.
“Doctors can inform the patient that this is not a judgment call but simple medical fact,” he said.
Joglar also said many physicians need to become educated on a common misconception.
“Every time a patient develops palpitations or atrial fibrillation, the first thing every patient tells me is, I quit drinking coffee,” Joglar said.
However, as the guidelines point out, the link between caffeine and AF is uncertain at best.
Preventing AF
A newer class of drugs may help clinicians manage comorbidities that contribute to AF, such as hypertension, sleep apnea, and obesity, said John Mandrola, MD, an electrophysiologist in Louisville, Kentucky, who hosts This Week in Cardiology on Medscape.
Although originally approved for treatment of diabetes, sodium-glucose cotransporter-2 inhibitors are also approved for management of heart failure. Mandrola started prescribing these drugs 2 years ago for patients, given the links of both conditions with AF.
“I think the next frontier for us in cardiology and AF management will be the GLP-1 agonists,” Mandrola said. He hasn’t started prescribing these drugs for his patients yet but said they will likely play a role in the management of patients with AF with the common constellation of comorbidities such as obesity, hypertension, and sleep apnea.
“The GLP-1 agonists have a really good chance of competing with AF ablation for rhythm control over the long term,” he said.
Decisions, Decisions: Stroke Risk Scoring Systems
The risk for stroke varies widely among patients with AF, so primary care clinicians can pick among several scoring systems to estimate the risk for stroke and guide the decision on whether to initiate anticoagulation therapy.
The ACC/AHA guidelines do not state a preference for a particular instrument. The Congestive heart failure, Hypertension, Age, Diabetes mellitus, Stroke, Vascular disease, Sex (CHA2DS2-VASc) score is the most widely used and validated instrument, Joglar said. He usually recommends anticoagulation if the CHA2DS2-VASc score is > 2, dependent on individual patient factors.
“If you have a CHA2DS2-VASc score of 1, and you only had one episode of AF for a few hours a year ago, then your risk of stroke is not as high as somebody who has a score of 1 but has more frequent or persistent AF,” Joglar said.
None of the systems is perfect at predicting risk for stroke, so clinicians should discuss options with patients.
“The real message is, are you talking about the risk of stroke and systemic embolism to your patient, so that the patient understands that risk?” he said.
Patel also said measuring creatine clearance can be analogous to using an instrument like CHA2DS2-VASc.
“I often think about renal disease as a very good risk marker and something that does elevate your risk,” he said.
Which Anticoagulant?
Although the ACC/AHA guidelines still recommend warfarin for patients with AF with mechanical heart valves or moderate to severe rheumatic fever, direct oral anticoagulants (DOACs) are the first-line therapy for all other patients with AF.
In terms of which DOACs to use, the differences are subtle, according to Patel.
“I don’t know that they’re that different from each other,” he said. “All of the new drugs are better than warfarin by far.”
Patel pointed out that dabigatran at 150 mg is the only DOAC shown to reduce the incidence of ischemic stroke. For patients with renal dysfunction, he has a slight preference for a 15-mg dose of rivaroxaban.
Mandrola said he mainly prescribes apixaban and rivaroxaban, the latter of which requires only once a day dosing.
“We stopped using dabigatran because 10% of people get gastrointestinal upset,” he said.
Although studies suggest aspirin is less effective than either warfarin or DOACs for the prevention of stroke, Joglar said he still sees patients who come to him after being prescribed low-dose aspirin from primary care clinicians.
“We made it very clear that it should not be recommended just for mitigating stroke risk in atrial fibrillation,” Joglar said. “You could use it if the patient has another indication, such as a prior heart attack.”
Does My Patient Have to Be in Normal Sinus Rhythm?
The new guidelines present evidence maintaining sinus rhythm should be favored over controlling heart rate for managing AF.
“We’ve focused on rhythm control as a better strategy, especially catheter ablation, which seems to be particularly effective in parallel to lifestyle interventions and management of comorbidities,” Joglar said. Rhythm control is of particular benefit for patients with AF triggered by heart failure. Control of rhythm in these patients has been shown to improve multiple outcomes such as ejection fraction, symptoms, and survival.
Patel said as a patient’s symptoms increase, the more likely a clinician will be able to control sinus rhythm. Some patients do not notice their arrhythmia, but others feel dizzy or have chest pain.
“The less symptomatic the patient is, the more likely they’re going to tolerate it, especially if they’re older, and it’s hard to get them into sinus rhythm,” Patel said.
When to Refer for Catheter Ablation?
The new guidelines upgraded the recommendation for catheter ablation to class I (strong recommendation) for patients with symptomatic AF in whom anti-arrhythmic therapy is unsuccessful, not tolerated, or contraindicated; patients with symptomatic paroxysmal AF (typically younger patients with few comorbidities); and patients with symptomatic or clinically significant atrial flutter. The previous iteration recommended trying drug therapy first.
Multiple randomized clinical trials have demonstrated the effectiveness of catheter ablation.
“In somebody who is younger, with a healthy heart, the 1-year success rate of the procedure might be about 70%,” Joglar said. While 70% of patients receiving a catheter have no AF episodes in the following year, Joglar said 20%-25% of those who do have recurrences will experience fewer or shorter episodes.
Conversations about rate vs rhythm control and whether to pursue catheter ablation often come down to preference, Patel said. He would tend to intervene earlier using ablation in patients with heart failure or those experiencing symptoms of AF who cannot be controlled with a heart rate < 100 beats/min.
But he said he prefers using medication for rate control in many of his patients who are older, have chronic AF, and do not have heart failure.
Mandrola takes a more conservative approach, reserving catheter ablation for patients in whom risk factor management and anti-arrhythmic drugs have not been successful.
“In my hospital, it’s done for patients who have symptomatic AF that’s really impacting their quality of life,” he said. But for those with fewer symptoms, his advice is to provide education, reassurance, and time because AF can resolve on its own.
What About Data From Implantables and Wearables?
The guidelines provide an algorithm for when to treat non-symptomatic atrial high-rate episodes detected by a cardiovascular implantable electronic device such as a pacemaker or defibrillator. Episodes less than 5 minutes can be ignored, while treatment could be considered for those with episodes lasting 5 minutes up to 24 hours with a CHA2DS2-VASc score ≥ 3, or lasting longer than 24 hours with a CHA2DS2-VASc score ≥ 2.
But whether anticoagulation improves outcomes is unclear.
“That is a $64,000 question,” Mandrola said. “I would bet every day I get a notification in the electronic health record that says Mr. Smith had 2 hours of AFib 2 weeks ago.”
He also hears from patients who report their Apple Watch has detected an episode of AF.
Mandrola cited evidence from two recent studies of patients who had an atrial high-rate episode longer than 6 minutes detected by implantable devices. The NOAH-AFNET 6 trial randomized patients over 65 years with one or more risk factors for stroke to receive a DOAC or placebo, while the ARTESIA trial used similar inclusion criteria to assign patients to receive either DOAC or aspirin. Both studies reported modest reductions in stroke that were outweighed by a higher incidence of major bleeding in the group receiving anticoagulation.
Shared decision-making should play a role in deciding how aggressively to treat episodes of AF detected by implantable or wearable devices.
He said some patients fear having a stroke, while others are adamantly opposed to taking an anticoagulant.
For patients who present with a documented episode of AF but who otherwise have no symptoms, Patel said clinicians should consider risk for stroke and frequency and duration of episodes.
“One way clinicians should be thinking about it is, the more risk factors they have, the lower burden of AF I need to treat,” Patel said. Even for patients who are having only short episodes of AF, he has a low threshold for recommending an anticoagulation drug if the patient’s CHA2DS2-VASc score is high.
Patel reported research grants from Bayer, Novartis, Idorsia, NHLBI, and Janssen Pharmaceuticals and served as a consultant on the advisory boards of Bayer, Janssen Pharmaceuticals, and Esperion Therapeutics.
Joglar and Mandrola had no disclosures.
A version of this article appeared on Medscape.com.
Insulin Pump Glitches: A Call to End Daylight Saving Time?
Katie Sullivan, DNP, FNP-C, is publicizing her own challenge with updating an insulin pump as part of an effort to bring an end to the biannual seasonal clock changes in the United States.
On March 10, 2024, Sullivan, who works in the Endocrinology Clinic, Michigan State University, East Lansing, Michigan, mistakenly reversed the AM and PM settings while adjusting her own insulin pump. Sullivan, who has type 1 diabetes, noticed several hours later that her blood glucose levels had become higher than usual and was surprised to see her pump showed sleep mode during the day.
She was able to address this glitch before going to sleep and thus “escaped a potential occurrence of nocturnal hypoglycemia,” Sullivan and her colleague, Saleh Aldasouqi, MD, wrote in a September commentary in the journal Clinical Diabetes.
The risk of daylight saving time (DST) changes for people with insulin pumps is well known. Aldasouqi himself raised it in a 2014 article in the Journal of Diabetes Science and Technology.
Medtronic Inc., the leading maker of insulin pumps, told this news organization in an email that it intends for future devices to automate DST changes. The company did not provide any further details on when such changes would happen.
For now, Medtronic and other makers of insulin pumps join in twice-a-year efforts to remind people they need to update their devices to adjust for DST changes. They will need to gear up these outreach campaigns, which include social media posts, again ahead of the end of DST on November 3, when clocks shift back an hour. Diabetes clinics and hospitals also send notes to patients.
Even so, people will fail to make this change or to do it correctly.
“Despite our efforts to educate our patients about DST glitches, we have detected incorrect time settings in some of our patients’ insulin pumps after the DST changes in the fall and spring and occasional cases of incorrect insulin dosing, resulting in hyperglycemia or hypoglycemia,” Sullivan and Aldasouqi wrote in their article.
The US Food and Drug Administration (FDA) database of injuries and mishaps with devices contains many reports about patients not adjusting their insulin pumps for DST.
Known as Manufacturer and User Facility Device Experience (MAUDE), this database does not provide identifying details about the patients. Instead, the reports contain only a few lines describing what happened. In many cases, people were able to easily resolve their temporary glycemic issues and then set their devices to the correct time.
But some of the MAUDE reports tell of more severe consequences, with people ending up in emergency rooms because they did not adjust their insulin pumps for DST.
Among these is a report about a November 2022 incident, where a patient suffered due to what appeared to be inaccurate continuous glucose monitor readings, combined with the effects of an insulin pump that had not been updated for a DST change.
Although that patient’s mother was available to assist and the patient consumed three dextrose candies, the patient still reportedly lost consciousness and experienced tremors. That led to hospitalization, where the patient was treated with intravenous saline, intravenous insulin, saline fluids, and insulin fluids. The patient left the hospital with “the issue resolved and no permanent damage” but then switched to another method of insulin therapy, the MAUDE report said.
It’s unclear how often DST changes lead to problems with insulin pumps, reflecting difficulties in tracking flaws and glitches in medical devices, Madris Kinard, the chief executive officer and founder of Device Events, told this news organization.
The FDA relies heavily on passive surveillance, gathering MAUDE reports submitted by companies, clinicians, and patients. That means many cases likely are missed, said Kinard who earlier worked as an analyst at the FDA, updating processes and systems to help identify risky devices.
For example, Sullivan told this news organization she had not filed a report for her incident with the insulin pump.
Permanent Standard Time?
Many clinicians, including Aldasouqi and Sullivan, argue a better solution to these challenges would be to end DST.
In their Clinical Diabetes article, they also cited other health risks associated with clock changes such as fatigue, headache, and loss of attention and alertness that can result in injuries.
But a permanent time change is a “politically charged issue, and it continues to be debated nationally and at the state level,” they wrote.
At least 30 states also considered measures this year related to DST, according to the National Conference of State Legislatures. A pending Senate bill intended to make DST permanent has the support of 8 Democrats and 11 Republicans, including Sen. Tommy Tuberville (R-Ala).
“It’s amazing how many phone calls we get over this one topic. People across America agree that changing our clocks back and forth twice a year really makes no sense,” Tuberville said last year on the Senate floor. “People call and say they’re just sick of it.”
These federal and state efforts have stalled to date on the key question of whether to make either standard time or DST permanent, the National Conference of State Legislatures noted. A shift to permanent DST might have benefits for some agricultural and recreational industries, but many physicians say it would be bad for people’s health.
The American Academy of Sleep Medicine (AASM) argues strongly for moving to permanent standard time. In a position statement published in the Journal of Clinical Sleep Medicine, the group said the acute transitions from standard time to DST pose harms, citing research indicating increased risks for adverse cardiovascular events, mood disorders, and motor vehicle crashes.
The solution is to end shifts in time and opt for standard time, which best aligns with the human biological clock, AASM said.
AASM noted that there already was a failed experiment in the United States with a shift to permanent DST. Congress established this in response to the 1973 OPEC oil embargo, expecting that allowing more evening hours with light would lead to energy savings. That didn’t pay off in the expected reduction in energy and the policy was highly unpopular, especially in rural areas, AASM said.
“After a single winter, the policy was reversed by an overwhelming congressional majority,” wrote Muhammad Adeel Rishi, MD, and other authors of the statement. “The unpopularity of the act was likely because despite greater evening light, the policy resulted in a greater proportion of days that required waking up on dark mornings, particularly in the winter.”
Karin G. Johnson, MD, professor of neurology at the UMass Chan School of Medicine, Worcester, Massachusetts, told this news organization that a shift to permanent DST would rob many people of the signals their bodies need for sleep.
“Sunrises and sunsets are later and that creates a desire for our body to stay up later and have more trouble getting up in the morning,” Johnson said. “You’re all but making it impossible for certain segments of the population to get enough sleep” with permanent DST.
Johnson, Sullivan, and Aldasouqi had no relevant financial disclosures.
A version of this article first appeared on Medscape.com.
Katie Sullivan, DNP, FNP-C, is publicizing her own challenge with updating an insulin pump as part of an effort to bring an end to the biannual seasonal clock changes in the United States.
On March 10, 2024, Sullivan, who works in the Endocrinology Clinic, Michigan State University, East Lansing, Michigan, mistakenly reversed the AM and PM settings while adjusting her own insulin pump. Sullivan, who has type 1 diabetes, noticed several hours later that her blood glucose levels had become higher than usual and was surprised to see her pump showed sleep mode during the day.
She was able to address this glitch before going to sleep and thus “escaped a potential occurrence of nocturnal hypoglycemia,” Sullivan and her colleague, Saleh Aldasouqi, MD, wrote in a September commentary in the journal Clinical Diabetes.
The risk of daylight saving time (DST) changes for people with insulin pumps is well known. Aldasouqi himself raised it in a 2014 article in the Journal of Diabetes Science and Technology.
Medtronic Inc., the leading maker of insulin pumps, told this news organization in an email that it intends for future devices to automate DST changes. The company did not provide any further details on when such changes would happen.
For now, Medtronic and other makers of insulin pumps join in twice-a-year efforts to remind people they need to update their devices to adjust for DST changes. They will need to gear up these outreach campaigns, which include social media posts, again ahead of the end of DST on November 3, when clocks shift back an hour. Diabetes clinics and hospitals also send notes to patients.
Even so, people will fail to make this change or to do it correctly.
“Despite our efforts to educate our patients about DST glitches, we have detected incorrect time settings in some of our patients’ insulin pumps after the DST changes in the fall and spring and occasional cases of incorrect insulin dosing, resulting in hyperglycemia or hypoglycemia,” Sullivan and Aldasouqi wrote in their article.
The US Food and Drug Administration (FDA) database of injuries and mishaps with devices contains many reports about patients not adjusting their insulin pumps for DST.
Known as Manufacturer and User Facility Device Experience (MAUDE), this database does not provide identifying details about the patients. Instead, the reports contain only a few lines describing what happened. In many cases, people were able to easily resolve their temporary glycemic issues and then set their devices to the correct time.
But some of the MAUDE reports tell of more severe consequences, with people ending up in emergency rooms because they did not adjust their insulin pumps for DST.
Among these is a report about a November 2022 incident, where a patient suffered due to what appeared to be inaccurate continuous glucose monitor readings, combined with the effects of an insulin pump that had not been updated for a DST change.
Although that patient’s mother was available to assist and the patient consumed three dextrose candies, the patient still reportedly lost consciousness and experienced tremors. That led to hospitalization, where the patient was treated with intravenous saline, intravenous insulin, saline fluids, and insulin fluids. The patient left the hospital with “the issue resolved and no permanent damage” but then switched to another method of insulin therapy, the MAUDE report said.
It’s unclear how often DST changes lead to problems with insulin pumps, reflecting difficulties in tracking flaws and glitches in medical devices, Madris Kinard, the chief executive officer and founder of Device Events, told this news organization.
The FDA relies heavily on passive surveillance, gathering MAUDE reports submitted by companies, clinicians, and patients. That means many cases likely are missed, said Kinard who earlier worked as an analyst at the FDA, updating processes and systems to help identify risky devices.
For example, Sullivan told this news organization she had not filed a report for her incident with the insulin pump.
Permanent Standard Time?
Many clinicians, including Aldasouqi and Sullivan, argue a better solution to these challenges would be to end DST.
In their Clinical Diabetes article, they also cited other health risks associated with clock changes such as fatigue, headache, and loss of attention and alertness that can result in injuries.
But a permanent time change is a “politically charged issue, and it continues to be debated nationally and at the state level,” they wrote.
At least 30 states also considered measures this year related to DST, according to the National Conference of State Legislatures. A pending Senate bill intended to make DST permanent has the support of 8 Democrats and 11 Republicans, including Sen. Tommy Tuberville (R-Ala).
“It’s amazing how many phone calls we get over this one topic. People across America agree that changing our clocks back and forth twice a year really makes no sense,” Tuberville said last year on the Senate floor. “People call and say they’re just sick of it.”
These federal and state efforts have stalled to date on the key question of whether to make either standard time or DST permanent, the National Conference of State Legislatures noted. A shift to permanent DST might have benefits for some agricultural and recreational industries, but many physicians say it would be bad for people’s health.
The American Academy of Sleep Medicine (AASM) argues strongly for moving to permanent standard time. In a position statement published in the Journal of Clinical Sleep Medicine, the group said the acute transitions from standard time to DST pose harms, citing research indicating increased risks for adverse cardiovascular events, mood disorders, and motor vehicle crashes.
The solution is to end shifts in time and opt for standard time, which best aligns with the human biological clock, AASM said.
AASM noted that there already was a failed experiment in the United States with a shift to permanent DST. Congress established this in response to the 1973 OPEC oil embargo, expecting that allowing more evening hours with light would lead to energy savings. That didn’t pay off in the expected reduction in energy and the policy was highly unpopular, especially in rural areas, AASM said.
“After a single winter, the policy was reversed by an overwhelming congressional majority,” wrote Muhammad Adeel Rishi, MD, and other authors of the statement. “The unpopularity of the act was likely because despite greater evening light, the policy resulted in a greater proportion of days that required waking up on dark mornings, particularly in the winter.”
Karin G. Johnson, MD, professor of neurology at the UMass Chan School of Medicine, Worcester, Massachusetts, told this news organization that a shift to permanent DST would rob many people of the signals their bodies need for sleep.
“Sunrises and sunsets are later and that creates a desire for our body to stay up later and have more trouble getting up in the morning,” Johnson said. “You’re all but making it impossible for certain segments of the population to get enough sleep” with permanent DST.
Johnson, Sullivan, and Aldasouqi had no relevant financial disclosures.
A version of this article first appeared on Medscape.com.
Katie Sullivan, DNP, FNP-C, is publicizing her own challenge with updating an insulin pump as part of an effort to bring an end to the biannual seasonal clock changes in the United States.
On March 10, 2024, Sullivan, who works in the Endocrinology Clinic, Michigan State University, East Lansing, Michigan, mistakenly reversed the AM and PM settings while adjusting her own insulin pump. Sullivan, who has type 1 diabetes, noticed several hours later that her blood glucose levels had become higher than usual and was surprised to see her pump showed sleep mode during the day.
She was able to address this glitch before going to sleep and thus “escaped a potential occurrence of nocturnal hypoglycemia,” Sullivan and her colleague, Saleh Aldasouqi, MD, wrote in a September commentary in the journal Clinical Diabetes.
The risk of daylight saving time (DST) changes for people with insulin pumps is well known. Aldasouqi himself raised it in a 2014 article in the Journal of Diabetes Science and Technology.
Medtronic Inc., the leading maker of insulin pumps, told this news organization in an email that it intends for future devices to automate DST changes. The company did not provide any further details on when such changes would happen.
For now, Medtronic and other makers of insulin pumps join in twice-a-year efforts to remind people they need to update their devices to adjust for DST changes. They will need to gear up these outreach campaigns, which include social media posts, again ahead of the end of DST on November 3, when clocks shift back an hour. Diabetes clinics and hospitals also send notes to patients.
Even so, people will fail to make this change or to do it correctly.
“Despite our efforts to educate our patients about DST glitches, we have detected incorrect time settings in some of our patients’ insulin pumps after the DST changes in the fall and spring and occasional cases of incorrect insulin dosing, resulting in hyperglycemia or hypoglycemia,” Sullivan and Aldasouqi wrote in their article.
The US Food and Drug Administration (FDA) database of injuries and mishaps with devices contains many reports about patients not adjusting their insulin pumps for DST.
Known as Manufacturer and User Facility Device Experience (MAUDE), this database does not provide identifying details about the patients. Instead, the reports contain only a few lines describing what happened. In many cases, people were able to easily resolve their temporary glycemic issues and then set their devices to the correct time.
But some of the MAUDE reports tell of more severe consequences, with people ending up in emergency rooms because they did not adjust their insulin pumps for DST.
Among these is a report about a November 2022 incident, where a patient suffered due to what appeared to be inaccurate continuous glucose monitor readings, combined with the effects of an insulin pump that had not been updated for a DST change.
Although that patient’s mother was available to assist and the patient consumed three dextrose candies, the patient still reportedly lost consciousness and experienced tremors. That led to hospitalization, where the patient was treated with intravenous saline, intravenous insulin, saline fluids, and insulin fluids. The patient left the hospital with “the issue resolved and no permanent damage” but then switched to another method of insulin therapy, the MAUDE report said.
It’s unclear how often DST changes lead to problems with insulin pumps, reflecting difficulties in tracking flaws and glitches in medical devices, Madris Kinard, the chief executive officer and founder of Device Events, told this news organization.
The FDA relies heavily on passive surveillance, gathering MAUDE reports submitted by companies, clinicians, and patients. That means many cases likely are missed, said Kinard who earlier worked as an analyst at the FDA, updating processes and systems to help identify risky devices.
For example, Sullivan told this news organization she had not filed a report for her incident with the insulin pump.
Permanent Standard Time?
Many clinicians, including Aldasouqi and Sullivan, argue a better solution to these challenges would be to end DST.
In their Clinical Diabetes article, they also cited other health risks associated with clock changes such as fatigue, headache, and loss of attention and alertness that can result in injuries.
But a permanent time change is a “politically charged issue, and it continues to be debated nationally and at the state level,” they wrote.
At least 30 states also considered measures this year related to DST, according to the National Conference of State Legislatures. A pending Senate bill intended to make DST permanent has the support of 8 Democrats and 11 Republicans, including Sen. Tommy Tuberville (R-Ala).
“It’s amazing how many phone calls we get over this one topic. People across America agree that changing our clocks back and forth twice a year really makes no sense,” Tuberville said last year on the Senate floor. “People call and say they’re just sick of it.”
These federal and state efforts have stalled to date on the key question of whether to make either standard time or DST permanent, the National Conference of State Legislatures noted. A shift to permanent DST might have benefits for some agricultural and recreational industries, but many physicians say it would be bad for people’s health.
The American Academy of Sleep Medicine (AASM) argues strongly for moving to permanent standard time. In a position statement published in the Journal of Clinical Sleep Medicine, the group said the acute transitions from standard time to DST pose harms, citing research indicating increased risks for adverse cardiovascular events, mood disorders, and motor vehicle crashes.
The solution is to end shifts in time and opt for standard time, which best aligns with the human biological clock, AASM said.
AASM noted that there already was a failed experiment in the United States with a shift to permanent DST. Congress established this in response to the 1973 OPEC oil embargo, expecting that allowing more evening hours with light would lead to energy savings. That didn’t pay off in the expected reduction in energy and the policy was highly unpopular, especially in rural areas, AASM said.
“After a single winter, the policy was reversed by an overwhelming congressional majority,” wrote Muhammad Adeel Rishi, MD, and other authors of the statement. “The unpopularity of the act was likely because despite greater evening light, the policy resulted in a greater proportion of days that required waking up on dark mornings, particularly in the winter.”
Karin G. Johnson, MD, professor of neurology at the UMass Chan School of Medicine, Worcester, Massachusetts, told this news organization that a shift to permanent DST would rob many people of the signals their bodies need for sleep.
“Sunrises and sunsets are later and that creates a desire for our body to stay up later and have more trouble getting up in the morning,” Johnson said. “You’re all but making it impossible for certain segments of the population to get enough sleep” with permanent DST.
Johnson, Sullivan, and Aldasouqi had no relevant financial disclosures.
A version of this article first appeared on Medscape.com.
CBTI Strategy Reduces Sleeping Pill Use in Canadian Seniors
A strategy developed by Canadian researchers for encouraging older patients with insomnia to wean themselves from sleeping pills and improve their sleep through behavioral techniques is effective, data suggest. If proven helpful for the millions of older Canadians who currently rely on nightly benzodiazepines (BZDs) and non-BZDs (colloquially known as Z drugs) for their sleep, it might yield an additional benefit: Reducing resource utilization.
“We know that cognitive behavioral therapy for insomnia (CBTI) works. It’s recommended as first-line therapy because it works,” study author David Gardner, PharmD, professor of psychiatry at Dalhousie University in Halifax, Nova Scotia, Canada, told this news organization.
“We’re sharing information about sleeping pills, information that has been embedded with behavior-change techniques that lead people to second-guess or rethink their long-term use of sedative hypnotics and then bring that information to their provider or pharmacist to discuss it,” he said.
The results were published in JAMA Psychiatry.
Better Sleep, Fewer Pills
Dr. Gardner and his team created a direct-to-patient, patient-directed, multicomponent knowledge mobilization intervention called Sleepwell. It incorporates best practice– and guideline-based evidence and multiple behavioral change techniques with content and graphics. Dr. Gardner emphasized that it represents a directional shift in care that alleviates providers’ burden without removing it entirely.
To test the intervention’s effectiveness, Dr. Gardner and his team chose New Brunswick as a location for a 6-month, three-arm, open-label, randomized controlled trial; the province has one of the highest rates of sedative use and an older adult population that is vulnerable to the serious side effects of these drugs (eg, cognitive impairment, falls, and frailty). The study was called Your Answers When Needing Sleep in New Brunswick (YAWNS NB).
Eligible participants were aged ≥ 65 years, lived in the community, and had taken benzodiazepine receptor agonists (BZRAs) for ≥ 3 nights per week for 3 or more months. Participants were randomly assigned to a control group or one of the two intervention groups. The YAWNS-1 intervention group (n = 195) received a mailed package containing a cover letter, a booklet outlining how to stop sleeping pills, a booklet on how to “get your sleep back,” and a companion website. The YAWNS-2 group (n = 193) received updated versions of the booklets used in a prior trial. The control group (n = 192) was assigned treatment as usual (TAU).
A greater proportion of YAWNS-1 participants discontinued BZRAs at 6 months (26.2%) and had dose reductions (20.4%), compared with YAWNS-2 participants (20.3% and 14.4%, respectively) and TAU participants (7.5% and 12.8%, respectively). The corresponding numbers needed to mail to achieve an additional discontinuation was 5.3 YAWNS-1 packages and 7.8 YAWNS-2 packages.
At 6 months, BZRA cessation was sustained a mean 13.6 weeks for YAWNS-1, 14.3 weeks for YAWNS-2, and 16.9 weeks for TAU.
Sleep measures also improved with YAWNS-1, compared with YAWNs-2 and TAU. Sleep onset latency was reduced by 26.1 minutes among YAWNS-1 participants, compared with YAWNS-2 (P < .001), and by 27.7 minutes, compared with TAU (P < .001). Wake after sleep onset increased by 4.1 minutes in YAWNS-1, 11.1 minutes in YAWNS-2, and 7.5 minutes in TAU.
Although all participants underwent rigorous assessment before inclusion, less than half of participants receiving either intervention (36% in YAWNS-1 and 43% in YAWNS-2) contacted their provider or pharmacist to discuss BZD dose reductions. This finding may have resulted partly from limited access because of the COVID-19 pandemic, according to the authors.
A Stepped-Care Model
The intervention is intended to help patients “change their approach from sleeping pills to a short-term CBTI course for long-term sleep benefits, and then speak to their provider,” said Dr. Gardner.
He pointed to a post-study follow-up of the study participants’ health providers, most of whom had moderate to extensive experience deprescribing BZRAs, which showed that 87.5%-100% fully or nearly fully agreed with or supported using the Sleepwell strategy and its content with older patients who rely on sedatives.
“Providers said that deprescribing is difficult, time-consuming, and often not a productive use of their time,” said Dr. Gardner. “I see insomnia as a health issue well set up for a stepped-care model. Self-help approaches are at the very bottom of that model and can help shift the initial burden to patients and out of the healthcare system.”
Poor uptake has prevented CBTI from demonstrating its potential, which is a challenge that Charles M. Morin, PhD, professor of psychology at Laval University in Quebec City, Quebec, Canada, attributes to two factors. “Clearly, there aren’t enough providers with this kind of expertise, and it’s not always covered by public health insurance, so people have to pay out of pocket to treat their insomnia,” he said.
“Overall, I think that this was a very nice study, well conducted, with an impressive sample size,” said Dr. Morin, who was not involved in the study. “The results are quite encouraging, telling us that even when older adults have used sleep medications for an average of 10 years, it’s still possible to reduce the medication. But this doesn’t happen alone. People need to be guided in doing that, not only to decrease medication use, but they also need an alternative,” he said.
Dr. Morin questioned how many patients agree to start with a low intensity. “Ideally, it should be a shared decision paradigm, where the physician or whoever sees the patient first presents the available options and explains the pluses and minuses of each. Some patients might choose medication because it’s a quick fix,” he said. “But some might want to do CBTI, even if it takes more work. The results are sustainable over time,” he added.
The study was jointly funded by the Public Health Agency of Canada and the government of New Brunswick as a Healthy Seniors Pilot Project. Dr. Gardner and Dr. Morin reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
A strategy developed by Canadian researchers for encouraging older patients with insomnia to wean themselves from sleeping pills and improve their sleep through behavioral techniques is effective, data suggest. If proven helpful for the millions of older Canadians who currently rely on nightly benzodiazepines (BZDs) and non-BZDs (colloquially known as Z drugs) for their sleep, it might yield an additional benefit: Reducing resource utilization.
“We know that cognitive behavioral therapy for insomnia (CBTI) works. It’s recommended as first-line therapy because it works,” study author David Gardner, PharmD, professor of psychiatry at Dalhousie University in Halifax, Nova Scotia, Canada, told this news organization.
“We’re sharing information about sleeping pills, information that has been embedded with behavior-change techniques that lead people to second-guess or rethink their long-term use of sedative hypnotics and then bring that information to their provider or pharmacist to discuss it,” he said.
The results were published in JAMA Psychiatry.
Better Sleep, Fewer Pills
Dr. Gardner and his team created a direct-to-patient, patient-directed, multicomponent knowledge mobilization intervention called Sleepwell. It incorporates best practice– and guideline-based evidence and multiple behavioral change techniques with content and graphics. Dr. Gardner emphasized that it represents a directional shift in care that alleviates providers’ burden without removing it entirely.
To test the intervention’s effectiveness, Dr. Gardner and his team chose New Brunswick as a location for a 6-month, three-arm, open-label, randomized controlled trial; the province has one of the highest rates of sedative use and an older adult population that is vulnerable to the serious side effects of these drugs (eg, cognitive impairment, falls, and frailty). The study was called Your Answers When Needing Sleep in New Brunswick (YAWNS NB).
Eligible participants were aged ≥ 65 years, lived in the community, and had taken benzodiazepine receptor agonists (BZRAs) for ≥ 3 nights per week for 3 or more months. Participants were randomly assigned to a control group or one of the two intervention groups. The YAWNS-1 intervention group (n = 195) received a mailed package containing a cover letter, a booklet outlining how to stop sleeping pills, a booklet on how to “get your sleep back,” and a companion website. The YAWNS-2 group (n = 193) received updated versions of the booklets used in a prior trial. The control group (n = 192) was assigned treatment as usual (TAU).
A greater proportion of YAWNS-1 participants discontinued BZRAs at 6 months (26.2%) and had dose reductions (20.4%), compared with YAWNS-2 participants (20.3% and 14.4%, respectively) and TAU participants (7.5% and 12.8%, respectively). The corresponding numbers needed to mail to achieve an additional discontinuation was 5.3 YAWNS-1 packages and 7.8 YAWNS-2 packages.
At 6 months, BZRA cessation was sustained a mean 13.6 weeks for YAWNS-1, 14.3 weeks for YAWNS-2, and 16.9 weeks for TAU.
Sleep measures also improved with YAWNS-1, compared with YAWNs-2 and TAU. Sleep onset latency was reduced by 26.1 minutes among YAWNS-1 participants, compared with YAWNS-2 (P < .001), and by 27.7 minutes, compared with TAU (P < .001). Wake after sleep onset increased by 4.1 minutes in YAWNS-1, 11.1 minutes in YAWNS-2, and 7.5 minutes in TAU.
Although all participants underwent rigorous assessment before inclusion, less than half of participants receiving either intervention (36% in YAWNS-1 and 43% in YAWNS-2) contacted their provider or pharmacist to discuss BZD dose reductions. This finding may have resulted partly from limited access because of the COVID-19 pandemic, according to the authors.
A Stepped-Care Model
The intervention is intended to help patients “change their approach from sleeping pills to a short-term CBTI course for long-term sleep benefits, and then speak to their provider,” said Dr. Gardner.
He pointed to a post-study follow-up of the study participants’ health providers, most of whom had moderate to extensive experience deprescribing BZRAs, which showed that 87.5%-100% fully or nearly fully agreed with or supported using the Sleepwell strategy and its content with older patients who rely on sedatives.
“Providers said that deprescribing is difficult, time-consuming, and often not a productive use of their time,” said Dr. Gardner. “I see insomnia as a health issue well set up for a stepped-care model. Self-help approaches are at the very bottom of that model and can help shift the initial burden to patients and out of the healthcare system.”
Poor uptake has prevented CBTI from demonstrating its potential, which is a challenge that Charles M. Morin, PhD, professor of psychology at Laval University in Quebec City, Quebec, Canada, attributes to two factors. “Clearly, there aren’t enough providers with this kind of expertise, and it’s not always covered by public health insurance, so people have to pay out of pocket to treat their insomnia,” he said.
“Overall, I think that this was a very nice study, well conducted, with an impressive sample size,” said Dr. Morin, who was not involved in the study. “The results are quite encouraging, telling us that even when older adults have used sleep medications for an average of 10 years, it’s still possible to reduce the medication. But this doesn’t happen alone. People need to be guided in doing that, not only to decrease medication use, but they also need an alternative,” he said.
Dr. Morin questioned how many patients agree to start with a low intensity. “Ideally, it should be a shared decision paradigm, where the physician or whoever sees the patient first presents the available options and explains the pluses and minuses of each. Some patients might choose medication because it’s a quick fix,” he said. “But some might want to do CBTI, even if it takes more work. The results are sustainable over time,” he added.
The study was jointly funded by the Public Health Agency of Canada and the government of New Brunswick as a Healthy Seniors Pilot Project. Dr. Gardner and Dr. Morin reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
A strategy developed by Canadian researchers for encouraging older patients with insomnia to wean themselves from sleeping pills and improve their sleep through behavioral techniques is effective, data suggest. If proven helpful for the millions of older Canadians who currently rely on nightly benzodiazepines (BZDs) and non-BZDs (colloquially known as Z drugs) for their sleep, it might yield an additional benefit: Reducing resource utilization.
“We know that cognitive behavioral therapy for insomnia (CBTI) works. It’s recommended as first-line therapy because it works,” study author David Gardner, PharmD, professor of psychiatry at Dalhousie University in Halifax, Nova Scotia, Canada, told this news organization.
“We’re sharing information about sleeping pills, information that has been embedded with behavior-change techniques that lead people to second-guess or rethink their long-term use of sedative hypnotics and then bring that information to their provider or pharmacist to discuss it,” he said.
The results were published in JAMA Psychiatry.
Better Sleep, Fewer Pills
Dr. Gardner and his team created a direct-to-patient, patient-directed, multicomponent knowledge mobilization intervention called Sleepwell. It incorporates best practice– and guideline-based evidence and multiple behavioral change techniques with content and graphics. Dr. Gardner emphasized that it represents a directional shift in care that alleviates providers’ burden without removing it entirely.
To test the intervention’s effectiveness, Dr. Gardner and his team chose New Brunswick as a location for a 6-month, three-arm, open-label, randomized controlled trial; the province has one of the highest rates of sedative use and an older adult population that is vulnerable to the serious side effects of these drugs (eg, cognitive impairment, falls, and frailty). The study was called Your Answers When Needing Sleep in New Brunswick (YAWNS NB).
Eligible participants were aged ≥ 65 years, lived in the community, and had taken benzodiazepine receptor agonists (BZRAs) for ≥ 3 nights per week for 3 or more months. Participants were randomly assigned to a control group or one of the two intervention groups. The YAWNS-1 intervention group (n = 195) received a mailed package containing a cover letter, a booklet outlining how to stop sleeping pills, a booklet on how to “get your sleep back,” and a companion website. The YAWNS-2 group (n = 193) received updated versions of the booklets used in a prior trial. The control group (n = 192) was assigned treatment as usual (TAU).
A greater proportion of YAWNS-1 participants discontinued BZRAs at 6 months (26.2%) and had dose reductions (20.4%), compared with YAWNS-2 participants (20.3% and 14.4%, respectively) and TAU participants (7.5% and 12.8%, respectively). The corresponding numbers needed to mail to achieve an additional discontinuation was 5.3 YAWNS-1 packages and 7.8 YAWNS-2 packages.
At 6 months, BZRA cessation was sustained a mean 13.6 weeks for YAWNS-1, 14.3 weeks for YAWNS-2, and 16.9 weeks for TAU.
Sleep measures also improved with YAWNS-1, compared with YAWNs-2 and TAU. Sleep onset latency was reduced by 26.1 minutes among YAWNS-1 participants, compared with YAWNS-2 (P < .001), and by 27.7 minutes, compared with TAU (P < .001). Wake after sleep onset increased by 4.1 minutes in YAWNS-1, 11.1 minutes in YAWNS-2, and 7.5 minutes in TAU.
Although all participants underwent rigorous assessment before inclusion, less than half of participants receiving either intervention (36% in YAWNS-1 and 43% in YAWNS-2) contacted their provider or pharmacist to discuss BZD dose reductions. This finding may have resulted partly from limited access because of the COVID-19 pandemic, according to the authors.
A Stepped-Care Model
The intervention is intended to help patients “change their approach from sleeping pills to a short-term CBTI course for long-term sleep benefits, and then speak to their provider,” said Dr. Gardner.
He pointed to a post-study follow-up of the study participants’ health providers, most of whom had moderate to extensive experience deprescribing BZRAs, which showed that 87.5%-100% fully or nearly fully agreed with or supported using the Sleepwell strategy and its content with older patients who rely on sedatives.
“Providers said that deprescribing is difficult, time-consuming, and often not a productive use of their time,” said Dr. Gardner. “I see insomnia as a health issue well set up for a stepped-care model. Self-help approaches are at the very bottom of that model and can help shift the initial burden to patients and out of the healthcare system.”
Poor uptake has prevented CBTI from demonstrating its potential, which is a challenge that Charles M. Morin, PhD, professor of psychology at Laval University in Quebec City, Quebec, Canada, attributes to two factors. “Clearly, there aren’t enough providers with this kind of expertise, and it’s not always covered by public health insurance, so people have to pay out of pocket to treat their insomnia,” he said.
“Overall, I think that this was a very nice study, well conducted, with an impressive sample size,” said Dr. Morin, who was not involved in the study. “The results are quite encouraging, telling us that even when older adults have used sleep medications for an average of 10 years, it’s still possible to reduce the medication. But this doesn’t happen alone. People need to be guided in doing that, not only to decrease medication use, but they also need an alternative,” he said.
Dr. Morin questioned how many patients agree to start with a low intensity. “Ideally, it should be a shared decision paradigm, where the physician or whoever sees the patient first presents the available options and explains the pluses and minuses of each. Some patients might choose medication because it’s a quick fix,” he said. “But some might want to do CBTI, even if it takes more work. The results are sustainable over time,” he added.
The study was jointly funded by the Public Health Agency of Canada and the government of New Brunswick as a Healthy Seniors Pilot Project. Dr. Gardner and Dr. Morin reported no relevant financial relationships.
A version of this article first appeared on Medscape.com.
Modified Sleep Apnea Index Score Associated With CV Risk
Use of a modified sleep apnea index can identify cardiovascular risk factors in adults with moderate to severe obstructive sleep apnea (OSA), according to results from a new study presented at the American Academy of Otolaryngology–Head and Neck Surgery 2024 Annual Meeting.
OSA has an association with many negative cardiovascular comorbidities; however, “the AHI provides only a single metric and does not provide a holistic assessment of the individual patient’s disease severity,” said senior author Colin T. Huntley, MD, also of Thomas Jefferson University.
“OSA is very complex, and having a robust system to assess the disease may be a better predictor of overall severity,” he told this news organization.
Previous research has shown a correlation between mSASI and mean arterial pressure and serum C-reactive protein in OSA patients, but the connection with cardiovascular risk factors has not been well studied, Ms. Goldfarb noted.
In the retrospective cohort study, Ms. Goldfarb and colleagues looked at mSASI scores from 260 CPAP-intolerant patients with OSA who underwent upper airway stimulation, maxillomandibular advancement, or expansion sphincter pharyngoplasty at a single sleep surgery clinic between 2014 and 2021. The mSASI uses a score of 1-3, with 3 as the highest level of OSA severity.
Cardiovascular risk factors were assessed at the patient’s initial evaluation by the sleep surgery team. They included coronary artery disease, type 2 diabetes, atrial fibrillation, congestive heart failure, hypertension, and cerebrovascular accident.
A total of 142 patients (55%) had an mSASI of 1; 91 (35%) had an mSASI of 2; and 27 (10%) had an mSASI of 3. At least one cardiovascular risk factor was present in 58%, 68%, and 63% of these groups, respectively (P = .3).
Stratifying participants by mSASI scores, the researchers found that patients with an mSASI of 2 or 3 were significantly more likely than those with an mSASI of 1 to have more cardiovascular risk factors on initial presentation, and were significantly more likely to be diagnosed with hypertension (P = .02 for both).
Using the AHI, however, patients with moderate to severe OSA (AHI > 15) had a similar number of cardiovascular risk factors as those with mild OSA (P > .05).
“A higher mSASI score, which represents worse disease, was associated with a higher Framingham risk score, which supported our hypothesis; however, the AHI was not found to be associated with an increased Framingham score,” Dr. Huntley told this news organization.
Takeaways and Next Steps
These results suggest that the AHI, while a good metric, might not be the best tool for assessment of overall disease severity, given the complexity of OSA, the impact of the disease on patient quality of life, and the risk for downstream cardiovascular disease, said Dr. Huntley.
The findings were limited by the retrospective design and use of data from a single center.
Population-level data are needed to identify variables that may be meaningful to create a future tool that provides the best picture of the individual patient’s disease, he added. Additional prospective data are also needed to assess the impact of the scoring system on long-term treatment outcomes.
“The current study is especially interesting as we are just beginning to understand the factors that predict cardiovascular risk for patients with obstructive sleep apnea,” Megan Durr, MD, of the University of California, San Francisco, said in an interview.
“For a long time, we primarily looked at the AHI and/or oxygen levels during sleep as risk factors, and we haven’t looked as much at other factors.” said Dr. Durr, who served as a moderator for the session in which the study was presented.
The current findings provide a more comprehensive look at cardiovascular risk; the inclusion of patient anatomy and symptoms add to the knowledge of this topic, and will lead to further work in this area, she added.
The study received no outside funding. The researchers had no financial conflicts to disclose. Dr. Huntley disclosed receiving research support from Nyxoah and Inspire, and serving as a consultant for Nyxoah, Inspire, and Avivomed.
Dr. Durr had no financial conflicts to disclose.
A version of this article appeared on Medscape.com.
Use of a modified sleep apnea index can identify cardiovascular risk factors in adults with moderate to severe obstructive sleep apnea (OSA), according to results from a new study presented at the American Academy of Otolaryngology–Head and Neck Surgery 2024 Annual Meeting.
OSA has an association with many negative cardiovascular comorbidities; however, “the AHI provides only a single metric and does not provide a holistic assessment of the individual patient’s disease severity,” said senior author Colin T. Huntley, MD, also of Thomas Jefferson University.
“OSA is very complex, and having a robust system to assess the disease may be a better predictor of overall severity,” he told this news organization.
Previous research has shown a correlation between mSASI and mean arterial pressure and serum C-reactive protein in OSA patients, but the connection with cardiovascular risk factors has not been well studied, Ms. Goldfarb noted.
In the retrospective cohort study, Ms. Goldfarb and colleagues looked at mSASI scores from 260 CPAP-intolerant patients with OSA who underwent upper airway stimulation, maxillomandibular advancement, or expansion sphincter pharyngoplasty at a single sleep surgery clinic between 2014 and 2021. The mSASI uses a score of 1-3, with 3 as the highest level of OSA severity.
Cardiovascular risk factors were assessed at the patient’s initial evaluation by the sleep surgery team. They included coronary artery disease, type 2 diabetes, atrial fibrillation, congestive heart failure, hypertension, and cerebrovascular accident.
A total of 142 patients (55%) had an mSASI of 1; 91 (35%) had an mSASI of 2; and 27 (10%) had an mSASI of 3. At least one cardiovascular risk factor was present in 58%, 68%, and 63% of these groups, respectively (P = .3).
Stratifying participants by mSASI scores, the researchers found that patients with an mSASI of 2 or 3 were significantly more likely than those with an mSASI of 1 to have more cardiovascular risk factors on initial presentation, and were significantly more likely to be diagnosed with hypertension (P = .02 for both).
Using the AHI, however, patients with moderate to severe OSA (AHI > 15) had a similar number of cardiovascular risk factors as those with mild OSA (P > .05).
“A higher mSASI score, which represents worse disease, was associated with a higher Framingham risk score, which supported our hypothesis; however, the AHI was not found to be associated with an increased Framingham score,” Dr. Huntley told this news organization.
Takeaways and Next Steps
These results suggest that the AHI, while a good metric, might not be the best tool for assessment of overall disease severity, given the complexity of OSA, the impact of the disease on patient quality of life, and the risk for downstream cardiovascular disease, said Dr. Huntley.
The findings were limited by the retrospective design and use of data from a single center.
Population-level data are needed to identify variables that may be meaningful to create a future tool that provides the best picture of the individual patient’s disease, he added. Additional prospective data are also needed to assess the impact of the scoring system on long-term treatment outcomes.
“The current study is especially interesting as we are just beginning to understand the factors that predict cardiovascular risk for patients with obstructive sleep apnea,” Megan Durr, MD, of the University of California, San Francisco, said in an interview.
“For a long time, we primarily looked at the AHI and/or oxygen levels during sleep as risk factors, and we haven’t looked as much at other factors.” said Dr. Durr, who served as a moderator for the session in which the study was presented.
The current findings provide a more comprehensive look at cardiovascular risk; the inclusion of patient anatomy and symptoms add to the knowledge of this topic, and will lead to further work in this area, she added.
The study received no outside funding. The researchers had no financial conflicts to disclose. Dr. Huntley disclosed receiving research support from Nyxoah and Inspire, and serving as a consultant for Nyxoah, Inspire, and Avivomed.
Dr. Durr had no financial conflicts to disclose.
A version of this article appeared on Medscape.com.
Use of a modified sleep apnea index can identify cardiovascular risk factors in adults with moderate to severe obstructive sleep apnea (OSA), according to results from a new study presented at the American Academy of Otolaryngology–Head and Neck Surgery 2024 Annual Meeting.
OSA has an association with many negative cardiovascular comorbidities; however, “the AHI provides only a single metric and does not provide a holistic assessment of the individual patient’s disease severity,” said senior author Colin T. Huntley, MD, also of Thomas Jefferson University.
“OSA is very complex, and having a robust system to assess the disease may be a better predictor of overall severity,” he told this news organization.
Previous research has shown a correlation between mSASI and mean arterial pressure and serum C-reactive protein in OSA patients, but the connection with cardiovascular risk factors has not been well studied, Ms. Goldfarb noted.
In the retrospective cohort study, Ms. Goldfarb and colleagues looked at mSASI scores from 260 CPAP-intolerant patients with OSA who underwent upper airway stimulation, maxillomandibular advancement, or expansion sphincter pharyngoplasty at a single sleep surgery clinic between 2014 and 2021. The mSASI uses a score of 1-3, with 3 as the highest level of OSA severity.
Cardiovascular risk factors were assessed at the patient’s initial evaluation by the sleep surgery team. They included coronary artery disease, type 2 diabetes, atrial fibrillation, congestive heart failure, hypertension, and cerebrovascular accident.
A total of 142 patients (55%) had an mSASI of 1; 91 (35%) had an mSASI of 2; and 27 (10%) had an mSASI of 3. At least one cardiovascular risk factor was present in 58%, 68%, and 63% of these groups, respectively (P = .3).
Stratifying participants by mSASI scores, the researchers found that patients with an mSASI of 2 or 3 were significantly more likely than those with an mSASI of 1 to have more cardiovascular risk factors on initial presentation, and were significantly more likely to be diagnosed with hypertension (P = .02 for both).
Using the AHI, however, patients with moderate to severe OSA (AHI > 15) had a similar number of cardiovascular risk factors as those with mild OSA (P > .05).
“A higher mSASI score, which represents worse disease, was associated with a higher Framingham risk score, which supported our hypothesis; however, the AHI was not found to be associated with an increased Framingham score,” Dr. Huntley told this news organization.
Takeaways and Next Steps
These results suggest that the AHI, while a good metric, might not be the best tool for assessment of overall disease severity, given the complexity of OSA, the impact of the disease on patient quality of life, and the risk for downstream cardiovascular disease, said Dr. Huntley.
The findings were limited by the retrospective design and use of data from a single center.
Population-level data are needed to identify variables that may be meaningful to create a future tool that provides the best picture of the individual patient’s disease, he added. Additional prospective data are also needed to assess the impact of the scoring system on long-term treatment outcomes.
“The current study is especially interesting as we are just beginning to understand the factors that predict cardiovascular risk for patients with obstructive sleep apnea,” Megan Durr, MD, of the University of California, San Francisco, said in an interview.
“For a long time, we primarily looked at the AHI and/or oxygen levels during sleep as risk factors, and we haven’t looked as much at other factors.” said Dr. Durr, who served as a moderator for the session in which the study was presented.
The current findings provide a more comprehensive look at cardiovascular risk; the inclusion of patient anatomy and symptoms add to the knowledge of this topic, and will lead to further work in this area, she added.
The study received no outside funding. The researchers had no financial conflicts to disclose. Dr. Huntley disclosed receiving research support from Nyxoah and Inspire, and serving as a consultant for Nyxoah, Inspire, and Avivomed.
Dr. Durr had no financial conflicts to disclose.
A version of this article appeared on Medscape.com.
FROM AAO-HNS 2024
Elinzanetant Shows Significant Improvement in Menopausal Vasomotor and Sleep Symptoms
CHICAGO — The nonhormonal investigational drug elinzanetant led to significant improvement in hot flashes as well as sleep disturbance and quality of life, according to data from three randomized controlled trials presented at The Menopause Society 2024 Annual Meeting in Chicago. Two phase 3 trials, OASIS 1 and 2, were also published in JAMA, and the longer-term OASIS 3 trial was presented as a poster at the conference.
Elinzanetant is a selective neurokinin (NK) receptor antagonist, similar to fezolinetant, the first drug in this class approved by the US Food and Drug Administration (FDA) for vasomotor symptoms in May 2023. This class of medications targets the estrogen-sensitive kisspeptin/NK B/dynorphin (KNDy) neurons thought to play a role in thermoregulation and hot flashes during menopause. While fezolinetant targets only the NK-3 receptor, elinzanetant is a dual NK receptor antagonist that targets both NK-1 and NK-3. Bayer submitted a New Drug Application for elinzanetant to the FDA on August 1.
For those in whom hormone therapy is contraindicated, “it’s always been difficult for women with really severe symptoms to have a safe and effective therapy,” lead author JoAnn Pinkerton, MD, a professor of ob.gyn. at the University of Virginia in Charlottesville, Virginia, told this news organization. “The nonhormonal therapies we’ve used mostly off-label — the antidepressants, gabapentin, clonidine, oxybutynin — do help the hot flashes, but they don’t work nearly as effectively as these new NK receptor antagonists, and having one that looks like it might have a broader use for hot flashes, night sweats, mood, and sleep is just really exciting.”
Dr. Pinkerton said approximately 80% of the women in the OASIS 1 and 2 studies had at least a 50% reduction in hot flashes. “It was a very strong, dramatic positive finding, but the improvements in sleep and mood have really encouraged us to go further,” she said.
Declining estrogen levels during and after menopause can cause hypertrophy and hyperactivity of the KNDy neurons, which has been linked to thermoregulation disruptions that may trigger hot flashes, James Simon, MD, a clinical professor of ob.gyn. at The George Washington University School of Medicine & Health Sciences and medical director of IntimMedicine in Washington, DC, told attendees. He presented pooled data from OASIS 1 and 2. The NK-1 receptor, targeted by elinzanetant but not fezolinetant, is also thought to play a role in insomnia and possibly in mood.
“Oftentimes the focus on a lot of these drugs is hot flashes, hot flashes, hot flashes, but we know hot flashes do not occur in isolation,” Chrisandra Shufelt, MD, professor and chair of general internal medicine and associate director of the Women’s Health Research Center at Mayo Clinic in Jacksonville, Florida, told this news organization. Elinzanetant is “an interesting compound because it actually works on sleep, and that was critical because sleep disturbance precedes” many other menopausal symptoms, said Dr. Shufelt, who was not involved in the study.
“I think it is an outstanding option for women who don’t have the opportunity to get hormones,” Dr. Shufelt said, and she was particularly pleased to see there were no safety concerns for the liver in the trial data. The FDA issued a warning on September 12 about the risk for rare liver injury with fezolinetant, but the early signals that had been seen in fezolinetant data were not seen in these elinzanetant data.
The OASIS 1 and 2 trials enrolled postmenopausal women, aged 40-65 years, who had at least 50 moderate to severe vasomotor occurrences per week.
“A moderate hot flash is a hot flash that is also associated with sweating, and a severe hot flash is a moderate hot flash that stops a woman in her tracks,” Dr. Simon said. “Namely, it’s severe enough with sweating and central nervous system effects that she is interrupted in whatever it is that she’s doing at the time.”
Exclusion criteria for the trials included a history of arrhythmias, heart block, or QT prolongation; abnormal lab results; history of malignancy within the past 5 years; uncontrolled or treatment-resistant hypertension, hypothyroidism, or hyperthyroidism; unexplained postmenopausal bleeding; clinically relevant abnormal mammogram findings; or disordered proliferative endometrium, endometrial hyperplasia, polyp, or endometrial cancer.
The predominantly White (80%) women were an average 54 years old, with an average body mass index (BMI) of 27.8, and were an average 3.5 years from their last period. For the first 12 weeks of the trials, 399 women were assigned to receive 120 mg once daily of oral elinzanetant and 397 were assigned to once daily placebo. Then the women taking placebo switched to elinzanetant for the final 14 weeks of the study.
The endpoints included mean change in frequency and severity of vasomotor symptoms at weeks 1, 4, and 12 as well as change in sleep disturbance and quality of life at week 12. Sleep was assessed with the Patient-Reported Outcomes Measurement Information System Sleep Disturbance–Short Form score, which ranges from 28.9 to 76.5, with a higher number denoting greater sleep disturbance. The Menopause-Specific Quality-of-Life score ranges from 1 to 8, with a higher score indicating poorer quality of life.
Daily frequency of vasomotor symptoms was 14 per day at baseline in the elinzanetant group, decreasing by 4.8 per day at week 1, 8 per day at week 4, and 9.4 per day at week 12. In the placebo group, women had an average 15.2 occurrences per day at baseline, which decreased by 3.2 at week 1, 5.2 at week 4, and 6.4 at week 12. Comparing the groups at 12 weeks, those receiving elinzanetant had 3.2 fewer daily vasomotor symptoms than those receiving placebo (P < .0001).
The severity of vasomotor symptoms also improved more in the elinzanetant group than in the placebo group over 12 weeks, after which severity improved further in those who switched from placebo to elinzanetant (P < .0001).
Sleep disturbance scores, starting at a mean 61.5 in the elinzanetant group and 60.5 in the placebo group, fell 10.7 points in the elinzanetant group and 5.3 points in the placebo group at 12 weeks, for a difference of 4.9 points (P < .0001). Sleep then further improved in those who switched from placebo to elinzanetant. Quality-of-life scores improved 1.37 points (from 4.52 at baseline) in the elinzanetant group and 0.96 points (from 4.49 at baseline) in the placebo group, for a mean difference at 12 weeks of 0.36 (P < .0001).
Though no head-to-head data exist comparing elinzanetant and fezolinetant, Dr. Simon told this news organization the side effects with fezolinetant “tend to be gastrointestinal, whereas the side effects for elinzanetant tend to be central nervous system,” such as drowsiness and lethargy.
The women who are the best candidates for elinzanetant, Dr. Pinkerton told this news organization, include those who have had an estrogen-sensitive cancer, such as breast or endometrial cancer, or who have fear of it, a family history, or are otherwise high risk. Other ideal candidates include those with a history of venous thromboembolism, people who have migraine with aura (due to concerns about increased risk for stroke), and those who have endometriosis or large fibroids.
“Then the last group might be women who took hormone therapy in their 50s and want to continue, but they’re trying to go off, and they have a recurrence of their hot flashes or night sweats or sleep issues,” Dr. Pinkerton said. “This might be a great group to switch over.”
OASIS 3 assessed the drug for 1 year and “supported the results of OASIS 1 and 2, demonstrating efficacy over a longer study duration and in a population with a vasomotor symptom profile representative of that seen in clinical practice,” Nick Panay, BSc, MBBS, director of the Menopause & PMS Centre at Queen Charlotte’s Hospital & Imperial College London, London, England, and his colleague reported.
Among 628 postmenopausal women aged 40-65, the predominantly White (78.5%) women were an average 54 years old, with an average BMI of 27.6, and were an average 5 years past their last period. Half received 120 mg elinzanetant and half received a placebo for 52 weeks.
At 12 weeks, the women receiving elinzanetant reported an average 1.6 moderate to severe vasomotor symptoms per day, down from 6.7 at baseline. Daily average symptoms in the placebo group fell from 6.8 at baseline to 3.4 at 12 weeks, for a difference of 1.6 fewer occurrences per day in the elinzanetant group (P < .0001).
Sleep disturbances also improved, falling 9.4 points from a baseline 57.4 in the elinzanetant group and 5.7 points from a baseline 58 in the placebo group. Quality-of-life scores improved from 4.1 to 2.8 (−1.3 change) in the elinzanetant group and from 4.4 to 3.3 (−1.1 change) in the placebo group.
In addition to looking at treatment-emergent adverse events, the safety assessments also included endometrial biopsies; bone mineral density in the femoral neck, hip, and lumbar spine; weight; and labs. Adverse events related to the study drug occurred in 30.4% of those in the elinzanetant group and 14.6% of those in the placebo group. The most commonly reported adverse events were headache (9.6% elinzanetant vs 7% placebo), fatigue (7% vs 10.2%), and sleepiness (5.1% vs 1.3%). A higher proportion of women taking elinzanetant (12.5%) than those taking placebo (4.1%) discontinued the study.
No serious adverse events deemed to be treatment-related occurred in either group, and no endometrial hyperplasia or malignant neoplasm occurred in either group. Bone mineral density changes in both groups were within the expected range for the women’s age, and their weight remained stable over the 52 weeks.
Six women taking elinzanetant and four taking placebo met predefined criteria for close liver observation, but none showed hepatotoxicity or evidence of possible drug-induced liver injury.
The research was funded by Bayer. Dr. Pinkerton has run a trial funded by Bayer and is a consultant for Bayer and Pfizer. Dr. Shufelt had no disclosures. Dr. Simon had grant/research support, consulting/advisory board participation, and/or speaking disclosures with AbbVie, Bayer Healthcare, Besins Healthcare, California Institute of Integral Studies, Camargo Pharmaceutical Services, Covance, Daré Bioscience, DEKA M.E.L.A S.r.l., Femasys, Ipsen, KaNDy/NeRRe Therapeutics, Khyria, Madorra, Mayne Pharma, Mitsubishi Tanabe Pharma Development America, Mylan/Viatris Inc, Myovant Sciences, ObsEva SA, Pfizer, Pharmavite, QUE Oncology, Scynexis, Sebela Pharmaceuticals, Sprout Pharmaceuticals, TherapeuticsMD, Vella Bioscience, and Viveve Medical, and he is a stockholder in Sermonix Pharmaceuticals.
A version of this article first appeared on Medscape.com.
CHICAGO — The nonhormonal investigational drug elinzanetant led to significant improvement in hot flashes as well as sleep disturbance and quality of life, according to data from three randomized controlled trials presented at The Menopause Society 2024 Annual Meeting in Chicago. Two phase 3 trials, OASIS 1 and 2, were also published in JAMA, and the longer-term OASIS 3 trial was presented as a poster at the conference.
Elinzanetant is a selective neurokinin (NK) receptor antagonist, similar to fezolinetant, the first drug in this class approved by the US Food and Drug Administration (FDA) for vasomotor symptoms in May 2023. This class of medications targets the estrogen-sensitive kisspeptin/NK B/dynorphin (KNDy) neurons thought to play a role in thermoregulation and hot flashes during menopause. While fezolinetant targets only the NK-3 receptor, elinzanetant is a dual NK receptor antagonist that targets both NK-1 and NK-3. Bayer submitted a New Drug Application for elinzanetant to the FDA on August 1.
For those in whom hormone therapy is contraindicated, “it’s always been difficult for women with really severe symptoms to have a safe and effective therapy,” lead author JoAnn Pinkerton, MD, a professor of ob.gyn. at the University of Virginia in Charlottesville, Virginia, told this news organization. “The nonhormonal therapies we’ve used mostly off-label — the antidepressants, gabapentin, clonidine, oxybutynin — do help the hot flashes, but they don’t work nearly as effectively as these new NK receptor antagonists, and having one that looks like it might have a broader use for hot flashes, night sweats, mood, and sleep is just really exciting.”
Dr. Pinkerton said approximately 80% of the women in the OASIS 1 and 2 studies had at least a 50% reduction in hot flashes. “It was a very strong, dramatic positive finding, but the improvements in sleep and mood have really encouraged us to go further,” she said.
Declining estrogen levels during and after menopause can cause hypertrophy and hyperactivity of the KNDy neurons, which has been linked to thermoregulation disruptions that may trigger hot flashes, James Simon, MD, a clinical professor of ob.gyn. at The George Washington University School of Medicine & Health Sciences and medical director of IntimMedicine in Washington, DC, told attendees. He presented pooled data from OASIS 1 and 2. The NK-1 receptor, targeted by elinzanetant but not fezolinetant, is also thought to play a role in insomnia and possibly in mood.
“Oftentimes the focus on a lot of these drugs is hot flashes, hot flashes, hot flashes, but we know hot flashes do not occur in isolation,” Chrisandra Shufelt, MD, professor and chair of general internal medicine and associate director of the Women’s Health Research Center at Mayo Clinic in Jacksonville, Florida, told this news organization. Elinzanetant is “an interesting compound because it actually works on sleep, and that was critical because sleep disturbance precedes” many other menopausal symptoms, said Dr. Shufelt, who was not involved in the study.
“I think it is an outstanding option for women who don’t have the opportunity to get hormones,” Dr. Shufelt said, and she was particularly pleased to see there were no safety concerns for the liver in the trial data. The FDA issued a warning on September 12 about the risk for rare liver injury with fezolinetant, but the early signals that had been seen in fezolinetant data were not seen in these elinzanetant data.
The OASIS 1 and 2 trials enrolled postmenopausal women, aged 40-65 years, who had at least 50 moderate to severe vasomotor occurrences per week.
“A moderate hot flash is a hot flash that is also associated with sweating, and a severe hot flash is a moderate hot flash that stops a woman in her tracks,” Dr. Simon said. “Namely, it’s severe enough with sweating and central nervous system effects that she is interrupted in whatever it is that she’s doing at the time.”
Exclusion criteria for the trials included a history of arrhythmias, heart block, or QT prolongation; abnormal lab results; history of malignancy within the past 5 years; uncontrolled or treatment-resistant hypertension, hypothyroidism, or hyperthyroidism; unexplained postmenopausal bleeding; clinically relevant abnormal mammogram findings; or disordered proliferative endometrium, endometrial hyperplasia, polyp, or endometrial cancer.
The predominantly White (80%) women were an average 54 years old, with an average body mass index (BMI) of 27.8, and were an average 3.5 years from their last period. For the first 12 weeks of the trials, 399 women were assigned to receive 120 mg once daily of oral elinzanetant and 397 were assigned to once daily placebo. Then the women taking placebo switched to elinzanetant for the final 14 weeks of the study.
The endpoints included mean change in frequency and severity of vasomotor symptoms at weeks 1, 4, and 12 as well as change in sleep disturbance and quality of life at week 12. Sleep was assessed with the Patient-Reported Outcomes Measurement Information System Sleep Disturbance–Short Form score, which ranges from 28.9 to 76.5, with a higher number denoting greater sleep disturbance. The Menopause-Specific Quality-of-Life score ranges from 1 to 8, with a higher score indicating poorer quality of life.
Daily frequency of vasomotor symptoms was 14 per day at baseline in the elinzanetant group, decreasing by 4.8 per day at week 1, 8 per day at week 4, and 9.4 per day at week 12. In the placebo group, women had an average 15.2 occurrences per day at baseline, which decreased by 3.2 at week 1, 5.2 at week 4, and 6.4 at week 12. Comparing the groups at 12 weeks, those receiving elinzanetant had 3.2 fewer daily vasomotor symptoms than those receiving placebo (P < .0001).
The severity of vasomotor symptoms also improved more in the elinzanetant group than in the placebo group over 12 weeks, after which severity improved further in those who switched from placebo to elinzanetant (P < .0001).
Sleep disturbance scores, starting at a mean 61.5 in the elinzanetant group and 60.5 in the placebo group, fell 10.7 points in the elinzanetant group and 5.3 points in the placebo group at 12 weeks, for a difference of 4.9 points (P < .0001). Sleep then further improved in those who switched from placebo to elinzanetant. Quality-of-life scores improved 1.37 points (from 4.52 at baseline) in the elinzanetant group and 0.96 points (from 4.49 at baseline) in the placebo group, for a mean difference at 12 weeks of 0.36 (P < .0001).
Though no head-to-head data exist comparing elinzanetant and fezolinetant, Dr. Simon told this news organization the side effects with fezolinetant “tend to be gastrointestinal, whereas the side effects for elinzanetant tend to be central nervous system,” such as drowsiness and lethargy.
The women who are the best candidates for elinzanetant, Dr. Pinkerton told this news organization, include those who have had an estrogen-sensitive cancer, such as breast or endometrial cancer, or who have fear of it, a family history, or are otherwise high risk. Other ideal candidates include those with a history of venous thromboembolism, people who have migraine with aura (due to concerns about increased risk for stroke), and those who have endometriosis or large fibroids.
“Then the last group might be women who took hormone therapy in their 50s and want to continue, but they’re trying to go off, and they have a recurrence of their hot flashes or night sweats or sleep issues,” Dr. Pinkerton said. “This might be a great group to switch over.”
OASIS 3 assessed the drug for 1 year and “supported the results of OASIS 1 and 2, demonstrating efficacy over a longer study duration and in a population with a vasomotor symptom profile representative of that seen in clinical practice,” Nick Panay, BSc, MBBS, director of the Menopause & PMS Centre at Queen Charlotte’s Hospital & Imperial College London, London, England, and his colleague reported.
Among 628 postmenopausal women aged 40-65, the predominantly White (78.5%) women were an average 54 years old, with an average BMI of 27.6, and were an average 5 years past their last period. Half received 120 mg elinzanetant and half received a placebo for 52 weeks.
At 12 weeks, the women receiving elinzanetant reported an average 1.6 moderate to severe vasomotor symptoms per day, down from 6.7 at baseline. Daily average symptoms in the placebo group fell from 6.8 at baseline to 3.4 at 12 weeks, for a difference of 1.6 fewer occurrences per day in the elinzanetant group (P < .0001).
Sleep disturbances also improved, falling 9.4 points from a baseline 57.4 in the elinzanetant group and 5.7 points from a baseline 58 in the placebo group. Quality-of-life scores improved from 4.1 to 2.8 (−1.3 change) in the elinzanetant group and from 4.4 to 3.3 (−1.1 change) in the placebo group.
In addition to looking at treatment-emergent adverse events, the safety assessments also included endometrial biopsies; bone mineral density in the femoral neck, hip, and lumbar spine; weight; and labs. Adverse events related to the study drug occurred in 30.4% of those in the elinzanetant group and 14.6% of those in the placebo group. The most commonly reported adverse events were headache (9.6% elinzanetant vs 7% placebo), fatigue (7% vs 10.2%), and sleepiness (5.1% vs 1.3%). A higher proportion of women taking elinzanetant (12.5%) than those taking placebo (4.1%) discontinued the study.
No serious adverse events deemed to be treatment-related occurred in either group, and no endometrial hyperplasia or malignant neoplasm occurred in either group. Bone mineral density changes in both groups were within the expected range for the women’s age, and their weight remained stable over the 52 weeks.
Six women taking elinzanetant and four taking placebo met predefined criteria for close liver observation, but none showed hepatotoxicity or evidence of possible drug-induced liver injury.
The research was funded by Bayer. Dr. Pinkerton has run a trial funded by Bayer and is a consultant for Bayer and Pfizer. Dr. Shufelt had no disclosures. Dr. Simon had grant/research support, consulting/advisory board participation, and/or speaking disclosures with AbbVie, Bayer Healthcare, Besins Healthcare, California Institute of Integral Studies, Camargo Pharmaceutical Services, Covance, Daré Bioscience, DEKA M.E.L.A S.r.l., Femasys, Ipsen, KaNDy/NeRRe Therapeutics, Khyria, Madorra, Mayne Pharma, Mitsubishi Tanabe Pharma Development America, Mylan/Viatris Inc, Myovant Sciences, ObsEva SA, Pfizer, Pharmavite, QUE Oncology, Scynexis, Sebela Pharmaceuticals, Sprout Pharmaceuticals, TherapeuticsMD, Vella Bioscience, and Viveve Medical, and he is a stockholder in Sermonix Pharmaceuticals.
A version of this article first appeared on Medscape.com.
CHICAGO — The nonhormonal investigational drug elinzanetant led to significant improvement in hot flashes as well as sleep disturbance and quality of life, according to data from three randomized controlled trials presented at The Menopause Society 2024 Annual Meeting in Chicago. Two phase 3 trials, OASIS 1 and 2, were also published in JAMA, and the longer-term OASIS 3 trial was presented as a poster at the conference.
Elinzanetant is a selective neurokinin (NK) receptor antagonist, similar to fezolinetant, the first drug in this class approved by the US Food and Drug Administration (FDA) for vasomotor symptoms in May 2023. This class of medications targets the estrogen-sensitive kisspeptin/NK B/dynorphin (KNDy) neurons thought to play a role in thermoregulation and hot flashes during menopause. While fezolinetant targets only the NK-3 receptor, elinzanetant is a dual NK receptor antagonist that targets both NK-1 and NK-3. Bayer submitted a New Drug Application for elinzanetant to the FDA on August 1.
For those in whom hormone therapy is contraindicated, “it’s always been difficult for women with really severe symptoms to have a safe and effective therapy,” lead author JoAnn Pinkerton, MD, a professor of ob.gyn. at the University of Virginia in Charlottesville, Virginia, told this news organization. “The nonhormonal therapies we’ve used mostly off-label — the antidepressants, gabapentin, clonidine, oxybutynin — do help the hot flashes, but they don’t work nearly as effectively as these new NK receptor antagonists, and having one that looks like it might have a broader use for hot flashes, night sweats, mood, and sleep is just really exciting.”
Dr. Pinkerton said approximately 80% of the women in the OASIS 1 and 2 studies had at least a 50% reduction in hot flashes. “It was a very strong, dramatic positive finding, but the improvements in sleep and mood have really encouraged us to go further,” she said.
Declining estrogen levels during and after menopause can cause hypertrophy and hyperactivity of the KNDy neurons, which has been linked to thermoregulation disruptions that may trigger hot flashes, James Simon, MD, a clinical professor of ob.gyn. at The George Washington University School of Medicine & Health Sciences and medical director of IntimMedicine in Washington, DC, told attendees. He presented pooled data from OASIS 1 and 2. The NK-1 receptor, targeted by elinzanetant but not fezolinetant, is also thought to play a role in insomnia and possibly in mood.
“Oftentimes the focus on a lot of these drugs is hot flashes, hot flashes, hot flashes, but we know hot flashes do not occur in isolation,” Chrisandra Shufelt, MD, professor and chair of general internal medicine and associate director of the Women’s Health Research Center at Mayo Clinic in Jacksonville, Florida, told this news organization. Elinzanetant is “an interesting compound because it actually works on sleep, and that was critical because sleep disturbance precedes” many other menopausal symptoms, said Dr. Shufelt, who was not involved in the study.
“I think it is an outstanding option for women who don’t have the opportunity to get hormones,” Dr. Shufelt said, and she was particularly pleased to see there were no safety concerns for the liver in the trial data. The FDA issued a warning on September 12 about the risk for rare liver injury with fezolinetant, but the early signals that had been seen in fezolinetant data were not seen in these elinzanetant data.
The OASIS 1 and 2 trials enrolled postmenopausal women, aged 40-65 years, who had at least 50 moderate to severe vasomotor occurrences per week.
“A moderate hot flash is a hot flash that is also associated with sweating, and a severe hot flash is a moderate hot flash that stops a woman in her tracks,” Dr. Simon said. “Namely, it’s severe enough with sweating and central nervous system effects that she is interrupted in whatever it is that she’s doing at the time.”
Exclusion criteria for the trials included a history of arrhythmias, heart block, or QT prolongation; abnormal lab results; history of malignancy within the past 5 years; uncontrolled or treatment-resistant hypertension, hypothyroidism, or hyperthyroidism; unexplained postmenopausal bleeding; clinically relevant abnormal mammogram findings; or disordered proliferative endometrium, endometrial hyperplasia, polyp, or endometrial cancer.
The predominantly White (80%) women were an average 54 years old, with an average body mass index (BMI) of 27.8, and were an average 3.5 years from their last period. For the first 12 weeks of the trials, 399 women were assigned to receive 120 mg once daily of oral elinzanetant and 397 were assigned to once daily placebo. Then the women taking placebo switched to elinzanetant for the final 14 weeks of the study.
The endpoints included mean change in frequency and severity of vasomotor symptoms at weeks 1, 4, and 12 as well as change in sleep disturbance and quality of life at week 12. Sleep was assessed with the Patient-Reported Outcomes Measurement Information System Sleep Disturbance–Short Form score, which ranges from 28.9 to 76.5, with a higher number denoting greater sleep disturbance. The Menopause-Specific Quality-of-Life score ranges from 1 to 8, with a higher score indicating poorer quality of life.
Daily frequency of vasomotor symptoms was 14 per day at baseline in the elinzanetant group, decreasing by 4.8 per day at week 1, 8 per day at week 4, and 9.4 per day at week 12. In the placebo group, women had an average 15.2 occurrences per day at baseline, which decreased by 3.2 at week 1, 5.2 at week 4, and 6.4 at week 12. Comparing the groups at 12 weeks, those receiving elinzanetant had 3.2 fewer daily vasomotor symptoms than those receiving placebo (P < .0001).
The severity of vasomotor symptoms also improved more in the elinzanetant group than in the placebo group over 12 weeks, after which severity improved further in those who switched from placebo to elinzanetant (P < .0001).
Sleep disturbance scores, starting at a mean 61.5 in the elinzanetant group and 60.5 in the placebo group, fell 10.7 points in the elinzanetant group and 5.3 points in the placebo group at 12 weeks, for a difference of 4.9 points (P < .0001). Sleep then further improved in those who switched from placebo to elinzanetant. Quality-of-life scores improved 1.37 points (from 4.52 at baseline) in the elinzanetant group and 0.96 points (from 4.49 at baseline) in the placebo group, for a mean difference at 12 weeks of 0.36 (P < .0001).
Though no head-to-head data exist comparing elinzanetant and fezolinetant, Dr. Simon told this news organization the side effects with fezolinetant “tend to be gastrointestinal, whereas the side effects for elinzanetant tend to be central nervous system,” such as drowsiness and lethargy.
The women who are the best candidates for elinzanetant, Dr. Pinkerton told this news organization, include those who have had an estrogen-sensitive cancer, such as breast or endometrial cancer, or who have fear of it, a family history, or are otherwise high risk. Other ideal candidates include those with a history of venous thromboembolism, people who have migraine with aura (due to concerns about increased risk for stroke), and those who have endometriosis or large fibroids.
“Then the last group might be women who took hormone therapy in their 50s and want to continue, but they’re trying to go off, and they have a recurrence of their hot flashes or night sweats or sleep issues,” Dr. Pinkerton said. “This might be a great group to switch over.”
OASIS 3 assessed the drug for 1 year and “supported the results of OASIS 1 and 2, demonstrating efficacy over a longer study duration and in a population with a vasomotor symptom profile representative of that seen in clinical practice,” Nick Panay, BSc, MBBS, director of the Menopause & PMS Centre at Queen Charlotte’s Hospital & Imperial College London, London, England, and his colleague reported.
Among 628 postmenopausal women aged 40-65, the predominantly White (78.5%) women were an average 54 years old, with an average BMI of 27.6, and were an average 5 years past their last period. Half received 120 mg elinzanetant and half received a placebo for 52 weeks.
At 12 weeks, the women receiving elinzanetant reported an average 1.6 moderate to severe vasomotor symptoms per day, down from 6.7 at baseline. Daily average symptoms in the placebo group fell from 6.8 at baseline to 3.4 at 12 weeks, for a difference of 1.6 fewer occurrences per day in the elinzanetant group (P < .0001).
Sleep disturbances also improved, falling 9.4 points from a baseline 57.4 in the elinzanetant group and 5.7 points from a baseline 58 in the placebo group. Quality-of-life scores improved from 4.1 to 2.8 (−1.3 change) in the elinzanetant group and from 4.4 to 3.3 (−1.1 change) in the placebo group.
In addition to looking at treatment-emergent adverse events, the safety assessments also included endometrial biopsies; bone mineral density in the femoral neck, hip, and lumbar spine; weight; and labs. Adverse events related to the study drug occurred in 30.4% of those in the elinzanetant group and 14.6% of those in the placebo group. The most commonly reported adverse events were headache (9.6% elinzanetant vs 7% placebo), fatigue (7% vs 10.2%), and sleepiness (5.1% vs 1.3%). A higher proportion of women taking elinzanetant (12.5%) than those taking placebo (4.1%) discontinued the study.
No serious adverse events deemed to be treatment-related occurred in either group, and no endometrial hyperplasia or malignant neoplasm occurred in either group. Bone mineral density changes in both groups were within the expected range for the women’s age, and their weight remained stable over the 52 weeks.
Six women taking elinzanetant and four taking placebo met predefined criteria for close liver observation, but none showed hepatotoxicity or evidence of possible drug-induced liver injury.
The research was funded by Bayer. Dr. Pinkerton has run a trial funded by Bayer and is a consultant for Bayer and Pfizer. Dr. Shufelt had no disclosures. Dr. Simon had grant/research support, consulting/advisory board participation, and/or speaking disclosures with AbbVie, Bayer Healthcare, Besins Healthcare, California Institute of Integral Studies, Camargo Pharmaceutical Services, Covance, Daré Bioscience, DEKA M.E.L.A S.r.l., Femasys, Ipsen, KaNDy/NeRRe Therapeutics, Khyria, Madorra, Mayne Pharma, Mitsubishi Tanabe Pharma Development America, Mylan/Viatris Inc, Myovant Sciences, ObsEva SA, Pfizer, Pharmavite, QUE Oncology, Scynexis, Sebela Pharmaceuticals, Sprout Pharmaceuticals, TherapeuticsMD, Vella Bioscience, and Viveve Medical, and he is a stockholder in Sermonix Pharmaceuticals.
A version of this article first appeared on Medscape.com.
FROM THE MENOPAUSE SOCIETY 2024
Epilepsy Drug May Reduce Symptoms of OSA
An epilepsy drug sold in Europe as Ospolot and also known as sulthiame showed promise in reducing sleep disordered breathing and other symptoms of obstructive sleep apnea (OSA), based on data from nearly 300 individuals presented in a late-breaking study at the annual congress of the European Respiratory Society.
“Current therapies are mechanical and based on the notion of an airway splint,” presenting author Jan Hedner, MD, professor of respiratory medicine at Sahlgrenska University Hospital and the University of Gothenburg, both in Sweden, said in an interview. “In other words, applying an airflow at elevated pressure [continuous positive airway pressure] or advancing the jaw with a dental device. Adherence to this type of therapy is limited. In the case of continuous positive airway pressure [CPAP], it is < 50% after 3-4 years of therapy.” Therefore, there is a need for a better-tolerated therapy, such as a drug, and possibly a combination of mechanical and pharmaceutical therapies.
The use of medication has emerged as a viable option for OSA, with a high rate of compliance and acceptable safety profile, Dr. Hedner said in his presentation.
“Modified carbonic anhydrase activity may be a pathophysiological mechanism in OSA,” said Dr. Hedner. Sulthiame, a carbonic anhydrase inhibitor, showed safety and effectiveness for improving OSA in a previous phase 2b trial.
In the current study, the researchers sought to determine the most effective dose of sulthiame for patients with OSA. They randomized 298 adults with OSA who could not accept or tolerate oral splints or CPAP to 100 mg, 200 mg, or 300 mg of sulthiame daily (74, 74, and 75 patients, respectively) or placebo (75 patients).
The mean age of the patients was 56 years, 26.2% were women, and the average apnea-hypopnea index (AHI3a) at baseline was 29 n/h. Patients were treated at centers in Spain, France, Belgium, Germany, and the Czech Republic. Baseline demographics and clinical characteristics were similar among the treatment groups.
The primary endpoint was the change in AHI3a from baseline to 15 weeks, and significant changes occurred in patients who received the 100-mg, 200-mg, and 300-mg doses, with decreases of 17.8%, 34.8%, and 39.9%, respectively.
Dr. Hedner said in his presentation.
Notably, in a post hoc analysis, apnea improved by 47.1% at a 300-mg dose when the AHI4 measure (apnea/hypopnea with ≥ 4% O2 desaturation) was used in a placebo-adjusted dose-dependent reduction, the researchers wrote. The changes in AHI4 from baseline in this analysis also were significant for 200 mg and 100 mg doses (36.8% and 26.2%, respectively).
Patients underwent polysomnography at baseline and at weeks 4 and 12.
Mean overnight oxygen saturation also improved significantly from baseline with doses of 200 mg and 300 mg, compared with placebo (P < .0001 for both).
In addition, scores on the Epworth Sleepiness Scale (ESS) improved from baseline to week 15 in all dosage groups, and the subgroup of patients with ESS scores of ≥ 11 at baseline showed even greater improvement in ESS, Dr. Hedner said in his presentation.
Total arousal index and sleep quality also improved from baseline compared with placebo, and no clinically relevant reduction in REM sleep was noted, Dr. Hedner added.
Treatment-emergent adverse events were in line with the known safety profile of sulthiame and included paresthesia, headache, fatigue, and nausea; these were mainly moderate and dose-dependent, with no evidence of cardiovascular safety issues, he said.
Although the study results were not surprising given previous research, the investigators were pleased with the potency of the therapy. “We are also happy about potential added values such as a blood pressure lowering effect, which is beneficial in this group of patients; however, we need to further study these mechanisms in detail,” Dr. Hedner noted.
The study findings were limited by the relatively small scale, and larger studies on long-term efficacy and tolerability are also needed, he said.
“The current study was a dose-finding study, and we now have useful information on most suitable dose,” he said.
However, the results support sulthiame as an effective, well-tolerated, and promising novel candidate for drug therapy in patients with OSA, worthy of phase 3 studies, Dr. Hedner said.
Oral Option Could Be Game-Changer, But Not Yet
The gold standard of treatment for OSA is a CPAP machine, but the effectiveness is limited by patient tolerance, Q. Afifa Shamim-Uzzaman, MD, an associate professor and a sleep medicine specialist at the University of Michigan, Ann Arbor, said in an interview.
“Presently, there are no effective pharmacological treatments for OSA — having a pill that treats OSA would be a total game changer and huge advance for the treatment of OSA and the field of sleep medicine,” said Dr. Shamim-Uzzaman, who was not involved in the study. “More patients may be able to obtain treatment for OSA and thereby reduce the potential complications of untreated OSA.
“Carbonic anhydrase inhibitors such as acetazolamide and sulthiame have been studied with limited success for the treatment of other forms of sleep disordered breathing such as central sleep apnea [CSA] but have shown less efficacy for OSA and are presently not recommended in the treatment of OSA by the American Academy of Sleep Medicine,” Dr. Shamim-Uzzaman said.
Recently, emerging evidence about different phenotypes of OSA suggests that nonanatomic features (such as high loop gain) may play a role in patients with OSA, not only in those with CSA, she said. Whether carbonic anhydrase inhibitors could play a greater role in treating sleep apnea in patients with predominantly nonanatomic pathophysiologic traits remains to be seen.
The sulthiame data are promising, but more research is needed, Dr. Shamim-Uzzaman said. Although patients in the highest dose group showed a reduction in AHI of nearly 40%, they still would have moderate OSA, and the OSA did not appear to decrease to a normal range in any of the treatment groups.
“More research is needed to identify which types of patients would be responders to this form of therapy, to understand if these effects are maintained long term (beyond 15 weeks), to evaluate patient-centered outcomes, especially in different sleep apnea subgroups (such as phenotypes with high loop gain vs those without), and to assess interactions with other therapies,” she said.
The study was supported by manufacturer Desitin. Dr. Hedner disclosed serving as a consultant to AstraZeneca, Bayer, CereusScience, Jazz Pharmaceuticals, MSD, Weinmann, Desitin, SomnoMed, and Itamar Medical; serving on the speakers’ bureau for Almirall, AstraZeneca, Jazz Pharmaceuticals, ResMed, Philips Respironics, and Weinmann; and receiving grants or research support from Bayer, ResMed, Philips Respironics, and SomnoMed. He also disclosed shared ownership of intellectual property related to sleep apnea therapy. Dr. Shamim-Uzzaman had no financial conflicts to disclose.
A version of this article appeared on Medscape.com.
An epilepsy drug sold in Europe as Ospolot and also known as sulthiame showed promise in reducing sleep disordered breathing and other symptoms of obstructive sleep apnea (OSA), based on data from nearly 300 individuals presented in a late-breaking study at the annual congress of the European Respiratory Society.
“Current therapies are mechanical and based on the notion of an airway splint,” presenting author Jan Hedner, MD, professor of respiratory medicine at Sahlgrenska University Hospital and the University of Gothenburg, both in Sweden, said in an interview. “In other words, applying an airflow at elevated pressure [continuous positive airway pressure] or advancing the jaw with a dental device. Adherence to this type of therapy is limited. In the case of continuous positive airway pressure [CPAP], it is < 50% after 3-4 years of therapy.” Therefore, there is a need for a better-tolerated therapy, such as a drug, and possibly a combination of mechanical and pharmaceutical therapies.
The use of medication has emerged as a viable option for OSA, with a high rate of compliance and acceptable safety profile, Dr. Hedner said in his presentation.
“Modified carbonic anhydrase activity may be a pathophysiological mechanism in OSA,” said Dr. Hedner. Sulthiame, a carbonic anhydrase inhibitor, showed safety and effectiveness for improving OSA in a previous phase 2b trial.
In the current study, the researchers sought to determine the most effective dose of sulthiame for patients with OSA. They randomized 298 adults with OSA who could not accept or tolerate oral splints or CPAP to 100 mg, 200 mg, or 300 mg of sulthiame daily (74, 74, and 75 patients, respectively) or placebo (75 patients).
The mean age of the patients was 56 years, 26.2% were women, and the average apnea-hypopnea index (AHI3a) at baseline was 29 n/h. Patients were treated at centers in Spain, France, Belgium, Germany, and the Czech Republic. Baseline demographics and clinical characteristics were similar among the treatment groups.
The primary endpoint was the change in AHI3a from baseline to 15 weeks, and significant changes occurred in patients who received the 100-mg, 200-mg, and 300-mg doses, with decreases of 17.8%, 34.8%, and 39.9%, respectively.
Dr. Hedner said in his presentation.
Notably, in a post hoc analysis, apnea improved by 47.1% at a 300-mg dose when the AHI4 measure (apnea/hypopnea with ≥ 4% O2 desaturation) was used in a placebo-adjusted dose-dependent reduction, the researchers wrote. The changes in AHI4 from baseline in this analysis also were significant for 200 mg and 100 mg doses (36.8% and 26.2%, respectively).
Patients underwent polysomnography at baseline and at weeks 4 and 12.
Mean overnight oxygen saturation also improved significantly from baseline with doses of 200 mg and 300 mg, compared with placebo (P < .0001 for both).
In addition, scores on the Epworth Sleepiness Scale (ESS) improved from baseline to week 15 in all dosage groups, and the subgroup of patients with ESS scores of ≥ 11 at baseline showed even greater improvement in ESS, Dr. Hedner said in his presentation.
Total arousal index and sleep quality also improved from baseline compared with placebo, and no clinically relevant reduction in REM sleep was noted, Dr. Hedner added.
Treatment-emergent adverse events were in line with the known safety profile of sulthiame and included paresthesia, headache, fatigue, and nausea; these were mainly moderate and dose-dependent, with no evidence of cardiovascular safety issues, he said.
Although the study results were not surprising given previous research, the investigators were pleased with the potency of the therapy. “We are also happy about potential added values such as a blood pressure lowering effect, which is beneficial in this group of patients; however, we need to further study these mechanisms in detail,” Dr. Hedner noted.
The study findings were limited by the relatively small scale, and larger studies on long-term efficacy and tolerability are also needed, he said.
“The current study was a dose-finding study, and we now have useful information on most suitable dose,” he said.
However, the results support sulthiame as an effective, well-tolerated, and promising novel candidate for drug therapy in patients with OSA, worthy of phase 3 studies, Dr. Hedner said.
Oral Option Could Be Game-Changer, But Not Yet
The gold standard of treatment for OSA is a CPAP machine, but the effectiveness is limited by patient tolerance, Q. Afifa Shamim-Uzzaman, MD, an associate professor and a sleep medicine specialist at the University of Michigan, Ann Arbor, said in an interview.
“Presently, there are no effective pharmacological treatments for OSA — having a pill that treats OSA would be a total game changer and huge advance for the treatment of OSA and the field of sleep medicine,” said Dr. Shamim-Uzzaman, who was not involved in the study. “More patients may be able to obtain treatment for OSA and thereby reduce the potential complications of untreated OSA.
“Carbonic anhydrase inhibitors such as acetazolamide and sulthiame have been studied with limited success for the treatment of other forms of sleep disordered breathing such as central sleep apnea [CSA] but have shown less efficacy for OSA and are presently not recommended in the treatment of OSA by the American Academy of Sleep Medicine,” Dr. Shamim-Uzzaman said.
Recently, emerging evidence about different phenotypes of OSA suggests that nonanatomic features (such as high loop gain) may play a role in patients with OSA, not only in those with CSA, she said. Whether carbonic anhydrase inhibitors could play a greater role in treating sleep apnea in patients with predominantly nonanatomic pathophysiologic traits remains to be seen.
The sulthiame data are promising, but more research is needed, Dr. Shamim-Uzzaman said. Although patients in the highest dose group showed a reduction in AHI of nearly 40%, they still would have moderate OSA, and the OSA did not appear to decrease to a normal range in any of the treatment groups.
“More research is needed to identify which types of patients would be responders to this form of therapy, to understand if these effects are maintained long term (beyond 15 weeks), to evaluate patient-centered outcomes, especially in different sleep apnea subgroups (such as phenotypes with high loop gain vs those without), and to assess interactions with other therapies,” she said.
The study was supported by manufacturer Desitin. Dr. Hedner disclosed serving as a consultant to AstraZeneca, Bayer, CereusScience, Jazz Pharmaceuticals, MSD, Weinmann, Desitin, SomnoMed, and Itamar Medical; serving on the speakers’ bureau for Almirall, AstraZeneca, Jazz Pharmaceuticals, ResMed, Philips Respironics, and Weinmann; and receiving grants or research support from Bayer, ResMed, Philips Respironics, and SomnoMed. He also disclosed shared ownership of intellectual property related to sleep apnea therapy. Dr. Shamim-Uzzaman had no financial conflicts to disclose.
A version of this article appeared on Medscape.com.
An epilepsy drug sold in Europe as Ospolot and also known as sulthiame showed promise in reducing sleep disordered breathing and other symptoms of obstructive sleep apnea (OSA), based on data from nearly 300 individuals presented in a late-breaking study at the annual congress of the European Respiratory Society.
“Current therapies are mechanical and based on the notion of an airway splint,” presenting author Jan Hedner, MD, professor of respiratory medicine at Sahlgrenska University Hospital and the University of Gothenburg, both in Sweden, said in an interview. “In other words, applying an airflow at elevated pressure [continuous positive airway pressure] or advancing the jaw with a dental device. Adherence to this type of therapy is limited. In the case of continuous positive airway pressure [CPAP], it is < 50% after 3-4 years of therapy.” Therefore, there is a need for a better-tolerated therapy, such as a drug, and possibly a combination of mechanical and pharmaceutical therapies.
The use of medication has emerged as a viable option for OSA, with a high rate of compliance and acceptable safety profile, Dr. Hedner said in his presentation.
“Modified carbonic anhydrase activity may be a pathophysiological mechanism in OSA,” said Dr. Hedner. Sulthiame, a carbonic anhydrase inhibitor, showed safety and effectiveness for improving OSA in a previous phase 2b trial.
In the current study, the researchers sought to determine the most effective dose of sulthiame for patients with OSA. They randomized 298 adults with OSA who could not accept or tolerate oral splints or CPAP to 100 mg, 200 mg, or 300 mg of sulthiame daily (74, 74, and 75 patients, respectively) or placebo (75 patients).
The mean age of the patients was 56 years, 26.2% were women, and the average apnea-hypopnea index (AHI3a) at baseline was 29 n/h. Patients were treated at centers in Spain, France, Belgium, Germany, and the Czech Republic. Baseline demographics and clinical characteristics were similar among the treatment groups.
The primary endpoint was the change in AHI3a from baseline to 15 weeks, and significant changes occurred in patients who received the 100-mg, 200-mg, and 300-mg doses, with decreases of 17.8%, 34.8%, and 39.9%, respectively.
Dr. Hedner said in his presentation.
Notably, in a post hoc analysis, apnea improved by 47.1% at a 300-mg dose when the AHI4 measure (apnea/hypopnea with ≥ 4% O2 desaturation) was used in a placebo-adjusted dose-dependent reduction, the researchers wrote. The changes in AHI4 from baseline in this analysis also were significant for 200 mg and 100 mg doses (36.8% and 26.2%, respectively).
Patients underwent polysomnography at baseline and at weeks 4 and 12.
Mean overnight oxygen saturation also improved significantly from baseline with doses of 200 mg and 300 mg, compared with placebo (P < .0001 for both).
In addition, scores on the Epworth Sleepiness Scale (ESS) improved from baseline to week 15 in all dosage groups, and the subgroup of patients with ESS scores of ≥ 11 at baseline showed even greater improvement in ESS, Dr. Hedner said in his presentation.
Total arousal index and sleep quality also improved from baseline compared with placebo, and no clinically relevant reduction in REM sleep was noted, Dr. Hedner added.
Treatment-emergent adverse events were in line with the known safety profile of sulthiame and included paresthesia, headache, fatigue, and nausea; these were mainly moderate and dose-dependent, with no evidence of cardiovascular safety issues, he said.
Although the study results were not surprising given previous research, the investigators were pleased with the potency of the therapy. “We are also happy about potential added values such as a blood pressure lowering effect, which is beneficial in this group of patients; however, we need to further study these mechanisms in detail,” Dr. Hedner noted.
The study findings were limited by the relatively small scale, and larger studies on long-term efficacy and tolerability are also needed, he said.
“The current study was a dose-finding study, and we now have useful information on most suitable dose,” he said.
However, the results support sulthiame as an effective, well-tolerated, and promising novel candidate for drug therapy in patients with OSA, worthy of phase 3 studies, Dr. Hedner said.
Oral Option Could Be Game-Changer, But Not Yet
The gold standard of treatment for OSA is a CPAP machine, but the effectiveness is limited by patient tolerance, Q. Afifa Shamim-Uzzaman, MD, an associate professor and a sleep medicine specialist at the University of Michigan, Ann Arbor, said in an interview.
“Presently, there are no effective pharmacological treatments for OSA — having a pill that treats OSA would be a total game changer and huge advance for the treatment of OSA and the field of sleep medicine,” said Dr. Shamim-Uzzaman, who was not involved in the study. “More patients may be able to obtain treatment for OSA and thereby reduce the potential complications of untreated OSA.
“Carbonic anhydrase inhibitors such as acetazolamide and sulthiame have been studied with limited success for the treatment of other forms of sleep disordered breathing such as central sleep apnea [CSA] but have shown less efficacy for OSA and are presently not recommended in the treatment of OSA by the American Academy of Sleep Medicine,” Dr. Shamim-Uzzaman said.
Recently, emerging evidence about different phenotypes of OSA suggests that nonanatomic features (such as high loop gain) may play a role in patients with OSA, not only in those with CSA, she said. Whether carbonic anhydrase inhibitors could play a greater role in treating sleep apnea in patients with predominantly nonanatomic pathophysiologic traits remains to be seen.
The sulthiame data are promising, but more research is needed, Dr. Shamim-Uzzaman said. Although patients in the highest dose group showed a reduction in AHI of nearly 40%, they still would have moderate OSA, and the OSA did not appear to decrease to a normal range in any of the treatment groups.
“More research is needed to identify which types of patients would be responders to this form of therapy, to understand if these effects are maintained long term (beyond 15 weeks), to evaluate patient-centered outcomes, especially in different sleep apnea subgroups (such as phenotypes with high loop gain vs those without), and to assess interactions with other therapies,” she said.
The study was supported by manufacturer Desitin. Dr. Hedner disclosed serving as a consultant to AstraZeneca, Bayer, CereusScience, Jazz Pharmaceuticals, MSD, Weinmann, Desitin, SomnoMed, and Itamar Medical; serving on the speakers’ bureau for Almirall, AstraZeneca, Jazz Pharmaceuticals, ResMed, Philips Respironics, and Weinmann; and receiving grants or research support from Bayer, ResMed, Philips Respironics, and SomnoMed. He also disclosed shared ownership of intellectual property related to sleep apnea therapy. Dr. Shamim-Uzzaman had no financial conflicts to disclose.
A version of this article appeared on Medscape.com.
FROM ERS CONGRESS 2024