Burnout and Vacations

Article Type
Changed
Thu, 09/26/2024 - 11:42

How many weeks of vacation do you take each year? Does it feel like enough? What prevents you from taking more time off? Is it a contractual obligation to your employer? Or a concern about the lack of income while your are away? Is it the difficulty of finding coverage for your patient care responsibilities? How much of it is the dread of facing your unattended or poorly attended EHR box when you return?

A recent survey of more than 3000 US physicians found that almost 60% took 3 weeks or less vacation per year? The investigators also learned that 70% of the respondents did patient-related tasks while they were on vacation and less than half had full EHR coverage while they were away. Not surprisingly, providers who expressed concerns about finding someone to cover clinical responsibilities and financial concerns were less likely to take more than 3 weeks’ vacation.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

As one might hope, taking more than 3 weeks’ vacation and having full EHR coverage were associated with decreased rates of burnout. On the other hand, spending more than 30 minutes per day doing patient-related work while on vacation was associated with higher rates of burnout.

In their conclusion, the authors suggest that if we hope to reduce physician burnout, employers should introduce system-level initiatives to ensure that physicians take adequate vacation and have adequate coverage for their clinical responsibilities — including EHR inbox management.

I will readily admit that I was one of those physicians who took less than 3 weeks of vacation and can’t recall ever taking more than 2 weeks. Since most of our vacations were staycations, I would usually round on the newborns first thing in the morning when I was in town to keep the flow of new patients coming into the practice.

I’m sure there was some collateral damage to my family, but our children continue to reassure me that they weren’t envious of their peers who went away on “real” vacations. As adults two of them take their families on the kind of vacations that make me envious. The third has married someone who shares, what I might call, a “robust commitment” to showing up in the office. But they seem to be a happy couple.

At the root of my vacation style was an egotistical delusion that there weren’t any clinicians in the community who could look after my patients as well as I did. Unfortunately, I had done little to discourage those patients who shared my distorted view.

I was lucky to have spent nearly all my career without the added burden of an EHR inbox. However, in the lead up to our infrequent vacations, the rush to tie up the loose ends of those patients for whom we had not achieved diagnostic closure was stressful and time consuming. Luckily, as a primary care pediatrician most of their problems were short lived. But, leaving the ship battened down could be exhausting.

I can fully understand why the physicians who are taking less than 3 weeks’ vacation and continue to be burdened by patient-related tasks while they are “away” are more likely to experience burnout. However, I wonder why I seemed to have been resistant considering my vacation style, which the authors of the above-mentioned article feel would have placed me at high risk.

I think the answer may lie in my commitment to making decisions that allowed me to maintain equilibrium in my life. In other words, if there were things in my day-to-day activities that were so taxing or distasteful that I am counting the hours and days until I can escape them, then I needed to make the necessary changes promptly and not count on a vacation to repair the accumulating damage. That may have required cutting back some responsibilities or it may have meant that I needed to be in better mental and physical shape to be able to maintain that equilibrium. Maybe it was more sleep, more exercise, less television, not investing as much in time-wasting meetings. This doesn’t mean that I didn’t have bad days. Stuff happens. But if I was putting together two or three bad days a week, something had to change. A vacation wasn’t going solve the inherent or systemic problems that are making day-to-day life so intolerable that I needed to escape for some respite.

In full disclosure, I will share that at age 55 I took a leave of 2 1/2 months and with my wife and another couple bicycled across America. This was a goal I had harbored since childhood and in anticipation over several decades had banked considerable coverage equity by doing extra coverage for other providers to minimize my guilt feelings at being away. This was not an escape from I job I didn’t enjoy going to everyday. It was an exercise in goal fulfillment.

I think the authors of this recent study should be applauded for providing some numbers to support the obvious. However, if we are looking for ways to minimize physician burnout, we should be giving more attention to the factors in clinical practice that are making it so intolerable. More vacation time is just one strategy.

Encouraging a clinician to take a bit more vacation may help. But, having someone to properly manage the EHR inbox would do a lot more. If your coverage is telling everyone to “Wait until Dr. Away has returned” it is only going to make things worse.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Topics
Sections

How many weeks of vacation do you take each year? Does it feel like enough? What prevents you from taking more time off? Is it a contractual obligation to your employer? Or a concern about the lack of income while your are away? Is it the difficulty of finding coverage for your patient care responsibilities? How much of it is the dread of facing your unattended or poorly attended EHR box when you return?

A recent survey of more than 3000 US physicians found that almost 60% took 3 weeks or less vacation per year? The investigators also learned that 70% of the respondents did patient-related tasks while they were on vacation and less than half had full EHR coverage while they were away. Not surprisingly, providers who expressed concerns about finding someone to cover clinical responsibilities and financial concerns were less likely to take more than 3 weeks’ vacation.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

As one might hope, taking more than 3 weeks’ vacation and having full EHR coverage were associated with decreased rates of burnout. On the other hand, spending more than 30 minutes per day doing patient-related work while on vacation was associated with higher rates of burnout.

In their conclusion, the authors suggest that if we hope to reduce physician burnout, employers should introduce system-level initiatives to ensure that physicians take adequate vacation and have adequate coverage for their clinical responsibilities — including EHR inbox management.

I will readily admit that I was one of those physicians who took less than 3 weeks of vacation and can’t recall ever taking more than 2 weeks. Since most of our vacations were staycations, I would usually round on the newborns first thing in the morning when I was in town to keep the flow of new patients coming into the practice.

I’m sure there was some collateral damage to my family, but our children continue to reassure me that they weren’t envious of their peers who went away on “real” vacations. As adults two of them take their families on the kind of vacations that make me envious. The third has married someone who shares, what I might call, a “robust commitment” to showing up in the office. But they seem to be a happy couple.

At the root of my vacation style was an egotistical delusion that there weren’t any clinicians in the community who could look after my patients as well as I did. Unfortunately, I had done little to discourage those patients who shared my distorted view.

I was lucky to have spent nearly all my career without the added burden of an EHR inbox. However, in the lead up to our infrequent vacations, the rush to tie up the loose ends of those patients for whom we had not achieved diagnostic closure was stressful and time consuming. Luckily, as a primary care pediatrician most of their problems were short lived. But, leaving the ship battened down could be exhausting.

I can fully understand why the physicians who are taking less than 3 weeks’ vacation and continue to be burdened by patient-related tasks while they are “away” are more likely to experience burnout. However, I wonder why I seemed to have been resistant considering my vacation style, which the authors of the above-mentioned article feel would have placed me at high risk.

I think the answer may lie in my commitment to making decisions that allowed me to maintain equilibrium in my life. In other words, if there were things in my day-to-day activities that were so taxing or distasteful that I am counting the hours and days until I can escape them, then I needed to make the necessary changes promptly and not count on a vacation to repair the accumulating damage. That may have required cutting back some responsibilities or it may have meant that I needed to be in better mental and physical shape to be able to maintain that equilibrium. Maybe it was more sleep, more exercise, less television, not investing as much in time-wasting meetings. This doesn’t mean that I didn’t have bad days. Stuff happens. But if I was putting together two or three bad days a week, something had to change. A vacation wasn’t going solve the inherent or systemic problems that are making day-to-day life so intolerable that I needed to escape for some respite.

In full disclosure, I will share that at age 55 I took a leave of 2 1/2 months and with my wife and another couple bicycled across America. This was a goal I had harbored since childhood and in anticipation over several decades had banked considerable coverage equity by doing extra coverage for other providers to minimize my guilt feelings at being away. This was not an escape from I job I didn’t enjoy going to everyday. It was an exercise in goal fulfillment.

I think the authors of this recent study should be applauded for providing some numbers to support the obvious. However, if we are looking for ways to minimize physician burnout, we should be giving more attention to the factors in clinical practice that are making it so intolerable. More vacation time is just one strategy.

Encouraging a clinician to take a bit more vacation may help. But, having someone to properly manage the EHR inbox would do a lot more. If your coverage is telling everyone to “Wait until Dr. Away has returned” it is only going to make things worse.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

How many weeks of vacation do you take each year? Does it feel like enough? What prevents you from taking more time off? Is it a contractual obligation to your employer? Or a concern about the lack of income while your are away? Is it the difficulty of finding coverage for your patient care responsibilities? How much of it is the dread of facing your unattended or poorly attended EHR box when you return?

A recent survey of more than 3000 US physicians found that almost 60% took 3 weeks or less vacation per year? The investigators also learned that 70% of the respondents did patient-related tasks while they were on vacation and less than half had full EHR coverage while they were away. Not surprisingly, providers who expressed concerns about finding someone to cover clinical responsibilities and financial concerns were less likely to take more than 3 weeks’ vacation.

Dr. William G. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years.
Dr. William G. Wilkoff

As one might hope, taking more than 3 weeks’ vacation and having full EHR coverage were associated with decreased rates of burnout. On the other hand, spending more than 30 minutes per day doing patient-related work while on vacation was associated with higher rates of burnout.

In their conclusion, the authors suggest that if we hope to reduce physician burnout, employers should introduce system-level initiatives to ensure that physicians take adequate vacation and have adequate coverage for their clinical responsibilities — including EHR inbox management.

I will readily admit that I was one of those physicians who took less than 3 weeks of vacation and can’t recall ever taking more than 2 weeks. Since most of our vacations were staycations, I would usually round on the newborns first thing in the morning when I was in town to keep the flow of new patients coming into the practice.

I’m sure there was some collateral damage to my family, but our children continue to reassure me that they weren’t envious of their peers who went away on “real” vacations. As adults two of them take their families on the kind of vacations that make me envious. The third has married someone who shares, what I might call, a “robust commitment” to showing up in the office. But they seem to be a happy couple.

At the root of my vacation style was an egotistical delusion that there weren’t any clinicians in the community who could look after my patients as well as I did. Unfortunately, I had done little to discourage those patients who shared my distorted view.

I was lucky to have spent nearly all my career without the added burden of an EHR inbox. However, in the lead up to our infrequent vacations, the rush to tie up the loose ends of those patients for whom we had not achieved diagnostic closure was stressful and time consuming. Luckily, as a primary care pediatrician most of their problems were short lived. But, leaving the ship battened down could be exhausting.

I can fully understand why the physicians who are taking less than 3 weeks’ vacation and continue to be burdened by patient-related tasks while they are “away” are more likely to experience burnout. However, I wonder why I seemed to have been resistant considering my vacation style, which the authors of the above-mentioned article feel would have placed me at high risk.

I think the answer may lie in my commitment to making decisions that allowed me to maintain equilibrium in my life. In other words, if there were things in my day-to-day activities that were so taxing or distasteful that I am counting the hours and days until I can escape them, then I needed to make the necessary changes promptly and not count on a vacation to repair the accumulating damage. That may have required cutting back some responsibilities or it may have meant that I needed to be in better mental and physical shape to be able to maintain that equilibrium. Maybe it was more sleep, more exercise, less television, not investing as much in time-wasting meetings. This doesn’t mean that I didn’t have bad days. Stuff happens. But if I was putting together two or three bad days a week, something had to change. A vacation wasn’t going solve the inherent or systemic problems that are making day-to-day life so intolerable that I needed to escape for some respite.

In full disclosure, I will share that at age 55 I took a leave of 2 1/2 months and with my wife and another couple bicycled across America. This was a goal I had harbored since childhood and in anticipation over several decades had banked considerable coverage equity by doing extra coverage for other providers to minimize my guilt feelings at being away. This was not an escape from I job I didn’t enjoy going to everyday. It was an exercise in goal fulfillment.

I think the authors of this recent study should be applauded for providing some numbers to support the obvious. However, if we are looking for ways to minimize physician burnout, we should be giving more attention to the factors in clinical practice that are making it so intolerable. More vacation time is just one strategy.

Encouraging a clinician to take a bit more vacation may help. But, having someone to properly manage the EHR inbox would do a lot more. If your coverage is telling everyone to “Wait until Dr. Away has returned” it is only going to make things worse.

Dr. Wilkoff practiced primary care pediatrics in Brunswick, Maine, for nearly 40 years. He has authored several books on behavioral pediatrics, including “How to Say No to Your Toddler.” Other than a Littman stethoscope he accepted as a first-year medical student in 1966, Dr. Wilkoff reports having nothing to disclose. Email him at pdnews@mdedge.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

AI-Assisted Pathology Poised to Transform Liver Disease Care

Article Type
Changed
Thu, 09/26/2024 - 11:35

Digital pathology assisted by artificial intelligence (AI) has the potential to transform the diagnosis and treatment of fibrotic liver disease in the next few years and to reshape clinical trials, clearing the way for new therapies.

Although the technology is not yet approved for routine clinical use, it’s constantly improving and aims to address the limitations inherent in today’s pathology processes.

“You do a biopsy, but instead of having a pathologist read it with their very rough scores of stage 1, 2, or 3, you read it by an AI-driven machine that can quantify it with a score of 1.5 or 1.75 instead of 1 or 2,” Vlad Ratziu, MD, PhD, professor of hepatology at the Sorbonne Université and Hôpital Pitié-Salpêtrière Medical School in Paris, France, and coeditor of The Journal of Hepatology, said in an interview.

“The technology is automated, more sensitive to change, and more highly quantitative. It has implications for liver disease diagnoses, clinical trials, and treatments,” added Dr. Ratziu, who has written about the promise and challenges inherent in developing treatments for metabolic dysfunction–associated steatotic liver disease (MASLD).

To explore the potential impact of AI-powered technologies for the clinic, this news organization spoke with representatives from three companies identified by Dr. Ratziu as leaders in the field: HistoIndexPathAI, and PharmaNest. Each company uses proprietary technology augmented by AI, and their tools have been used in published trials.
 

Moving Toward Better Diagnoses and Disease Management

The traditional approach for staging liver fibrosis relies on trained pathologists manually evaluating stained tissue samples obtained from biopsies of the liver.

But this method, though still considered the gold standard, doesn’t always provide the granularity needed for an accurate diagnosis or a reliable assessment in clinical trials, said Dean Tai, PhD, HistoIndex’s cofounder and chief scientific officer.

Although noninvasive tests (NITs), alone or with traditional histologic examination, are increasingly used during clinical management because they are less invasive and more repeatable for disease monitoring, they are limited in their precision and ability to provide comprehensive information, Dr. Tai said. That’s because “no single NIT or single-dimensional measurement of a biomarker offers a full assessment of disease activity, fibrogenic drive, and fibrosis load.”

In contrast, AI provides “a highly reproducible and objective assessment of liver fibrosis severity,” he said. “It eliminates the variability associated with staining methods, while revealing changes in the nano-architecture and morphology of collagen fibers not discernible by the human eye or current NITs, especially in the early stages of fibrosis or in cases of simultaneous progression and regression.”

Mathieu Petitjean, PhD, founder and CEO of PharmaNest, has a similar view. 

Although degree of liver fibrosis is associated with long-term outcomes of patients with MASLD, “poor detection thresholds due to their categorical nature mean that small and relevant changes are not reflected by changes in staging,” he said. “The reliable detection [with AI] of subtle changes in the phenotypes of fibrosis will significantly enrich the understanding of progression and regression of fibrosis severity.”

The ability of AI-based tools to see patterns the human eye cannot also means they could “help in predicting which patient may respond to a drug, in order to get the right treatments to the right patients as soon as possible,” said Katy Wack, PhD, vice president of clinical development at PathAI.

“Additionally, AI-based algorithms have been developed to provide more quantitative continuous scores to better capture change and discover new tissue-based biomarkers, which may be prognostic or predictive of clinical benefit,” she said. 

Such tools are currently undergoing testing and validation for use in trials and diagnostically.

The standardization and reproducibility offered by AI-driven technology could facilitate more consistent diagnoses across different healthcare settings, Dr. Tai suggested. “As the integration of the technology with other blood-, imaging-, and omics-based techniques evolves, it may enable earlier detection of liver diseases, more accurate monitoring of disease progression, and better evaluation of treatment responses, ultimately improving patient care and outcomes.”
 

 

 

More Effective Clinical Trials

The limitations of conventional pathology may be responsible, at least in part, for the repeated failure of novel compounds to move from phase 2 to phase 3 clinical trials, and from clinical trials to approval, the sources agreed.

“In clinical trials, patients are subject to enrollment criteria using liver biopsies, which are scored with a composite scoring system involving four different histologic components to grade and stage the disease,” Dr. Wack noted. 

However, there is wide variability between pathologists on biopsy scoring, and an individual pathologist presented with the same sample may give it a different score after some time has passed, she said.

That means “we are using a nonstandardized and inconsistent scoring system to determine whether a patient can be enrolled or not into a trial,” Dr. Wack said. 

The change in the composite score over a follow-up period, usually 1-2 years, determines whether a patient has responded to the candidate drug and, ultimately, whether that drug could be considered for approval, Dr. Wack said.

Because scores at the baseline and follow-up timepoints are not precise and inconsistent across pathologist readers, and even the same reader over time, there are often many “false-positive” and “false-negative” responses that can result in potential therapeutics either failing or succeeding in clinical trials, she said.

To address this variability in biopsy scoring as it relates to clinical trials, regulatory bodies have recommended a consensus approach, in which multiple pathologists read the same biopsy independently and a median score is used, or pathologists convene to come to an agreement, Dr. Wack said. 

“This is a very costly and burdensome approach and is still subject to interconsensus panel variation,” she said.

The introduction of digital pathology using validated digital viewers, where pathologists can view a glass slide digitally and pan and zoom over the image as they can with a microscope, means that many pathologists can read the same slide in parallel, she explained.

“If they need to discuss, they can do so efficiently over a phone call, each using their own computer screen and shared annotation tools to facilitate their discussion.”

Although this consensus approach can improve consistency, it still leads to variability in scoring across different groups of pathologists, Dr. Wack said.

This is where AI-assisted pathology comes into play.

“With this approach, a pathologist still views the image digitally, but an algorithm has predicted and highlighted key features and recommended quantitative scores,” she said.

This approach has been shown to increase precision for pathologists, thereby increasing reproducibility and standardizing scoring across timepoints and clinical trials.
 

What’s Ahead

These AI tools could address pathology’s lack of scalability, the result of a limited number of trained pathologists capable of doing liver biopsy assessments, Dr. Tai said. 

“Digital pathology workflows enable the transformation of conventional histologic glass slides into large digital images using scanners, allowing significant productivity gains in terms of workflow and collaboration,” he said.

Although AI-assisted pathology tools are still being validated, their promise for improving diagnoses and uncovering new treatments is clear, the interviewees agreed.

Extending its use to stage fibrosis in other liver diseases, such as primary biliary cholangitis, primary sclerosing cholangitis, and alcoholic liver disease, is also in progress on an experimental basis but will take time to validate.

“The landscape will evolve quickly in the coming 3-4 years,” Dr. Petitjean predicted. “To start, their intended use will likely be limited to a decision-support tool to enhance the performance of pathologists and perhaps stratify or triage cases sent for routine vs expert review.”

Dr. Petitjean even suggested that the increasing role of NITs and the amount of data being generated prospectively and retrospectively around liver biomarkers could mean that liver biopsies might not be needed one day.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Digital pathology assisted by artificial intelligence (AI) has the potential to transform the diagnosis and treatment of fibrotic liver disease in the next few years and to reshape clinical trials, clearing the way for new therapies.

Although the technology is not yet approved for routine clinical use, it’s constantly improving and aims to address the limitations inherent in today’s pathology processes.

“You do a biopsy, but instead of having a pathologist read it with their very rough scores of stage 1, 2, or 3, you read it by an AI-driven machine that can quantify it with a score of 1.5 or 1.75 instead of 1 or 2,” Vlad Ratziu, MD, PhD, professor of hepatology at the Sorbonne Université and Hôpital Pitié-Salpêtrière Medical School in Paris, France, and coeditor of The Journal of Hepatology, said in an interview.

“The technology is automated, more sensitive to change, and more highly quantitative. It has implications for liver disease diagnoses, clinical trials, and treatments,” added Dr. Ratziu, who has written about the promise and challenges inherent in developing treatments for metabolic dysfunction–associated steatotic liver disease (MASLD).

To explore the potential impact of AI-powered technologies for the clinic, this news organization spoke with representatives from three companies identified by Dr. Ratziu as leaders in the field: HistoIndexPathAI, and PharmaNest. Each company uses proprietary technology augmented by AI, and their tools have been used in published trials.
 

Moving Toward Better Diagnoses and Disease Management

The traditional approach for staging liver fibrosis relies on trained pathologists manually evaluating stained tissue samples obtained from biopsies of the liver.

But this method, though still considered the gold standard, doesn’t always provide the granularity needed for an accurate diagnosis or a reliable assessment in clinical trials, said Dean Tai, PhD, HistoIndex’s cofounder and chief scientific officer.

Although noninvasive tests (NITs), alone or with traditional histologic examination, are increasingly used during clinical management because they are less invasive and more repeatable for disease monitoring, they are limited in their precision and ability to provide comprehensive information, Dr. Tai said. That’s because “no single NIT or single-dimensional measurement of a biomarker offers a full assessment of disease activity, fibrogenic drive, and fibrosis load.”

In contrast, AI provides “a highly reproducible and objective assessment of liver fibrosis severity,” he said. “It eliminates the variability associated with staining methods, while revealing changes in the nano-architecture and morphology of collagen fibers not discernible by the human eye or current NITs, especially in the early stages of fibrosis or in cases of simultaneous progression and regression.”

Mathieu Petitjean, PhD, founder and CEO of PharmaNest, has a similar view. 

Although degree of liver fibrosis is associated with long-term outcomes of patients with MASLD, “poor detection thresholds due to their categorical nature mean that small and relevant changes are not reflected by changes in staging,” he said. “The reliable detection [with AI] of subtle changes in the phenotypes of fibrosis will significantly enrich the understanding of progression and regression of fibrosis severity.”

The ability of AI-based tools to see patterns the human eye cannot also means they could “help in predicting which patient may respond to a drug, in order to get the right treatments to the right patients as soon as possible,” said Katy Wack, PhD, vice president of clinical development at PathAI.

“Additionally, AI-based algorithms have been developed to provide more quantitative continuous scores to better capture change and discover new tissue-based biomarkers, which may be prognostic or predictive of clinical benefit,” she said. 

Such tools are currently undergoing testing and validation for use in trials and diagnostically.

The standardization and reproducibility offered by AI-driven technology could facilitate more consistent diagnoses across different healthcare settings, Dr. Tai suggested. “As the integration of the technology with other blood-, imaging-, and omics-based techniques evolves, it may enable earlier detection of liver diseases, more accurate monitoring of disease progression, and better evaluation of treatment responses, ultimately improving patient care and outcomes.”
 

 

 

More Effective Clinical Trials

The limitations of conventional pathology may be responsible, at least in part, for the repeated failure of novel compounds to move from phase 2 to phase 3 clinical trials, and from clinical trials to approval, the sources agreed.

“In clinical trials, patients are subject to enrollment criteria using liver biopsies, which are scored with a composite scoring system involving four different histologic components to grade and stage the disease,” Dr. Wack noted. 

However, there is wide variability between pathologists on biopsy scoring, and an individual pathologist presented with the same sample may give it a different score after some time has passed, she said.

That means “we are using a nonstandardized and inconsistent scoring system to determine whether a patient can be enrolled or not into a trial,” Dr. Wack said. 

The change in the composite score over a follow-up period, usually 1-2 years, determines whether a patient has responded to the candidate drug and, ultimately, whether that drug could be considered for approval, Dr. Wack said.

Because scores at the baseline and follow-up timepoints are not precise and inconsistent across pathologist readers, and even the same reader over time, there are often many “false-positive” and “false-negative” responses that can result in potential therapeutics either failing or succeeding in clinical trials, she said.

To address this variability in biopsy scoring as it relates to clinical trials, regulatory bodies have recommended a consensus approach, in which multiple pathologists read the same biopsy independently and a median score is used, or pathologists convene to come to an agreement, Dr. Wack said. 

“This is a very costly and burdensome approach and is still subject to interconsensus panel variation,” she said.

The introduction of digital pathology using validated digital viewers, where pathologists can view a glass slide digitally and pan and zoom over the image as they can with a microscope, means that many pathologists can read the same slide in parallel, she explained.

“If they need to discuss, they can do so efficiently over a phone call, each using their own computer screen and shared annotation tools to facilitate their discussion.”

Although this consensus approach can improve consistency, it still leads to variability in scoring across different groups of pathologists, Dr. Wack said.

This is where AI-assisted pathology comes into play.

“With this approach, a pathologist still views the image digitally, but an algorithm has predicted and highlighted key features and recommended quantitative scores,” she said.

This approach has been shown to increase precision for pathologists, thereby increasing reproducibility and standardizing scoring across timepoints and clinical trials.
 

What’s Ahead

These AI tools could address pathology’s lack of scalability, the result of a limited number of trained pathologists capable of doing liver biopsy assessments, Dr. Tai said. 

“Digital pathology workflows enable the transformation of conventional histologic glass slides into large digital images using scanners, allowing significant productivity gains in terms of workflow and collaboration,” he said.

Although AI-assisted pathology tools are still being validated, their promise for improving diagnoses and uncovering new treatments is clear, the interviewees agreed.

Extending its use to stage fibrosis in other liver diseases, such as primary biliary cholangitis, primary sclerosing cholangitis, and alcoholic liver disease, is also in progress on an experimental basis but will take time to validate.

“The landscape will evolve quickly in the coming 3-4 years,” Dr. Petitjean predicted. “To start, their intended use will likely be limited to a decision-support tool to enhance the performance of pathologists and perhaps stratify or triage cases sent for routine vs expert review.”

Dr. Petitjean even suggested that the increasing role of NITs and the amount of data being generated prospectively and retrospectively around liver biomarkers could mean that liver biopsies might not be needed one day.

A version of this article appeared on Medscape.com.

Digital pathology assisted by artificial intelligence (AI) has the potential to transform the diagnosis and treatment of fibrotic liver disease in the next few years and to reshape clinical trials, clearing the way for new therapies.

Although the technology is not yet approved for routine clinical use, it’s constantly improving and aims to address the limitations inherent in today’s pathology processes.

“You do a biopsy, but instead of having a pathologist read it with their very rough scores of stage 1, 2, or 3, you read it by an AI-driven machine that can quantify it with a score of 1.5 or 1.75 instead of 1 or 2,” Vlad Ratziu, MD, PhD, professor of hepatology at the Sorbonne Université and Hôpital Pitié-Salpêtrière Medical School in Paris, France, and coeditor of The Journal of Hepatology, said in an interview.

“The technology is automated, more sensitive to change, and more highly quantitative. It has implications for liver disease diagnoses, clinical trials, and treatments,” added Dr. Ratziu, who has written about the promise and challenges inherent in developing treatments for metabolic dysfunction–associated steatotic liver disease (MASLD).

To explore the potential impact of AI-powered technologies for the clinic, this news organization spoke with representatives from three companies identified by Dr. Ratziu as leaders in the field: HistoIndexPathAI, and PharmaNest. Each company uses proprietary technology augmented by AI, and their tools have been used in published trials.
 

Moving Toward Better Diagnoses and Disease Management

The traditional approach for staging liver fibrosis relies on trained pathologists manually evaluating stained tissue samples obtained from biopsies of the liver.

But this method, though still considered the gold standard, doesn’t always provide the granularity needed for an accurate diagnosis or a reliable assessment in clinical trials, said Dean Tai, PhD, HistoIndex’s cofounder and chief scientific officer.

Although noninvasive tests (NITs), alone or with traditional histologic examination, are increasingly used during clinical management because they are less invasive and more repeatable for disease monitoring, they are limited in their precision and ability to provide comprehensive information, Dr. Tai said. That’s because “no single NIT or single-dimensional measurement of a biomarker offers a full assessment of disease activity, fibrogenic drive, and fibrosis load.”

In contrast, AI provides “a highly reproducible and objective assessment of liver fibrosis severity,” he said. “It eliminates the variability associated with staining methods, while revealing changes in the nano-architecture and morphology of collagen fibers not discernible by the human eye or current NITs, especially in the early stages of fibrosis or in cases of simultaneous progression and regression.”

Mathieu Petitjean, PhD, founder and CEO of PharmaNest, has a similar view. 

Although degree of liver fibrosis is associated with long-term outcomes of patients with MASLD, “poor detection thresholds due to their categorical nature mean that small and relevant changes are not reflected by changes in staging,” he said. “The reliable detection [with AI] of subtle changes in the phenotypes of fibrosis will significantly enrich the understanding of progression and regression of fibrosis severity.”

The ability of AI-based tools to see patterns the human eye cannot also means they could “help in predicting which patient may respond to a drug, in order to get the right treatments to the right patients as soon as possible,” said Katy Wack, PhD, vice president of clinical development at PathAI.

“Additionally, AI-based algorithms have been developed to provide more quantitative continuous scores to better capture change and discover new tissue-based biomarkers, which may be prognostic or predictive of clinical benefit,” she said. 

Such tools are currently undergoing testing and validation for use in trials and diagnostically.

The standardization and reproducibility offered by AI-driven technology could facilitate more consistent diagnoses across different healthcare settings, Dr. Tai suggested. “As the integration of the technology with other blood-, imaging-, and omics-based techniques evolves, it may enable earlier detection of liver diseases, more accurate monitoring of disease progression, and better evaluation of treatment responses, ultimately improving patient care and outcomes.”
 

 

 

More Effective Clinical Trials

The limitations of conventional pathology may be responsible, at least in part, for the repeated failure of novel compounds to move from phase 2 to phase 3 clinical trials, and from clinical trials to approval, the sources agreed.

“In clinical trials, patients are subject to enrollment criteria using liver biopsies, which are scored with a composite scoring system involving four different histologic components to grade and stage the disease,” Dr. Wack noted. 

However, there is wide variability between pathologists on biopsy scoring, and an individual pathologist presented with the same sample may give it a different score after some time has passed, she said.

That means “we are using a nonstandardized and inconsistent scoring system to determine whether a patient can be enrolled or not into a trial,” Dr. Wack said. 

The change in the composite score over a follow-up period, usually 1-2 years, determines whether a patient has responded to the candidate drug and, ultimately, whether that drug could be considered for approval, Dr. Wack said.

Because scores at the baseline and follow-up timepoints are not precise and inconsistent across pathologist readers, and even the same reader over time, there are often many “false-positive” and “false-negative” responses that can result in potential therapeutics either failing or succeeding in clinical trials, she said.

To address this variability in biopsy scoring as it relates to clinical trials, regulatory bodies have recommended a consensus approach, in which multiple pathologists read the same biopsy independently and a median score is used, or pathologists convene to come to an agreement, Dr. Wack said. 

“This is a very costly and burdensome approach and is still subject to interconsensus panel variation,” she said.

The introduction of digital pathology using validated digital viewers, where pathologists can view a glass slide digitally and pan and zoom over the image as they can with a microscope, means that many pathologists can read the same slide in parallel, she explained.

“If they need to discuss, they can do so efficiently over a phone call, each using their own computer screen and shared annotation tools to facilitate their discussion.”

Although this consensus approach can improve consistency, it still leads to variability in scoring across different groups of pathologists, Dr. Wack said.

This is where AI-assisted pathology comes into play.

“With this approach, a pathologist still views the image digitally, but an algorithm has predicted and highlighted key features and recommended quantitative scores,” she said.

This approach has been shown to increase precision for pathologists, thereby increasing reproducibility and standardizing scoring across timepoints and clinical trials.
 

What’s Ahead

These AI tools could address pathology’s lack of scalability, the result of a limited number of trained pathologists capable of doing liver biopsy assessments, Dr. Tai said. 

“Digital pathology workflows enable the transformation of conventional histologic glass slides into large digital images using scanners, allowing significant productivity gains in terms of workflow and collaboration,” he said.

Although AI-assisted pathology tools are still being validated, their promise for improving diagnoses and uncovering new treatments is clear, the interviewees agreed.

Extending its use to stage fibrosis in other liver diseases, such as primary biliary cholangitis, primary sclerosing cholangitis, and alcoholic liver disease, is also in progress on an experimental basis but will take time to validate.

“The landscape will evolve quickly in the coming 3-4 years,” Dr. Petitjean predicted. “To start, their intended use will likely be limited to a decision-support tool to enhance the performance of pathologists and perhaps stratify or triage cases sent for routine vs expert review.”

Dr. Petitjean even suggested that the increasing role of NITs and the amount of data being generated prospectively and retrospectively around liver biomarkers could mean that liver biopsies might not be needed one day.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Not Keeping Up With the Joneses

Article Type
Changed
Thu, 09/26/2024 - 11:05

Dr. Jones and Dr. Joans are neurologists in town. I don’t know either one particularly well.

I don’t know their backstory, either, but they seem to have some intense competition going on.

Technically all of us neuros in the area compete with each other, but it’s pretty friendly. There are plenty of patients, and we all get along on the occasions we run into each other at the hospital or Costco or a meeting. Occasionally we call to bounce a case off each other. None of us advertise.

Dr. Allan M. Block, a neurologist in Scottsdale, Arizona.
Dr. Allan M. Block

But Jones and Joans have kicked it up a notch. One got an EEG machine, the other got an EEG machine. A few weeks later one got a balance testing gadget, then the other got the same thing. One invested in all kinds of fancy devices to detect concussions, and shortly afterward so did the other one. Within a few months each bought their own Doppler equipment and hired an ultrasound tech. One took out a glossy ad in a local magazine, the next month so had the other. Both point out that they’ve been named on different “best doctor” lists. I assume it’s only a matter of time before each invests in their own MRI.

This kind of thing requires a lot of money to support, so both have jumped into the world of medical liens and hired NPs and PAs to increase patient volume.

I’m sure they both make more money than I ever will, and they can have it.

I don’t need that kind of complexity in my life. I have my own EMG/NCV machine, and beyond that I send all the testing (and complicated EMG/NCVs) to other facilities. I don’t want to figure out how to make payments on all those new gadgets, or hire staff to run them, or learn all the new codes I’d need (I do all my own coding, anyway), or decide if the advertising will pay for itself, or deal with liens.

I’m not even sure I want to be that busy. Obviously, I don’t want to be empty, but I also like having some degree of sanity. Time to review tests, type up notes, return calls ... all the things you have to do on the fly between patients, because if you don’t get them done at the office then you have to do them when you get home. Believe me, I already have enough going on there.

I have no desire to advertise that I’m the best neurologist in town (though I believe I’m the best in my building, since there isn’t another one) or to be the busiest, or to be involved in a game of one-upmanship with the nice group down the street.

If Drs. Jones and Joans want to do that, fine. More power to them.

For me, I’ve chosen simplicity in my practice, and prefer it. Like everyone else I want to earn a living, but I also want to to enjoy my job, and non-job, time as best possible.

I’m willing to trade that for money.
 

Dr. Block has a solo neurology practice in Scottsdale, Arizona.

Publications
Topics
Sections

Dr. Jones and Dr. Joans are neurologists in town. I don’t know either one particularly well.

I don’t know their backstory, either, but they seem to have some intense competition going on.

Technically all of us neuros in the area compete with each other, but it’s pretty friendly. There are plenty of patients, and we all get along on the occasions we run into each other at the hospital or Costco or a meeting. Occasionally we call to bounce a case off each other. None of us advertise.

Dr. Allan M. Block, a neurologist in Scottsdale, Arizona.
Dr. Allan M. Block

But Jones and Joans have kicked it up a notch. One got an EEG machine, the other got an EEG machine. A few weeks later one got a balance testing gadget, then the other got the same thing. One invested in all kinds of fancy devices to detect concussions, and shortly afterward so did the other one. Within a few months each bought their own Doppler equipment and hired an ultrasound tech. One took out a glossy ad in a local magazine, the next month so had the other. Both point out that they’ve been named on different “best doctor” lists. I assume it’s only a matter of time before each invests in their own MRI.

This kind of thing requires a lot of money to support, so both have jumped into the world of medical liens and hired NPs and PAs to increase patient volume.

I’m sure they both make more money than I ever will, and they can have it.

I don’t need that kind of complexity in my life. I have my own EMG/NCV machine, and beyond that I send all the testing (and complicated EMG/NCVs) to other facilities. I don’t want to figure out how to make payments on all those new gadgets, or hire staff to run them, or learn all the new codes I’d need (I do all my own coding, anyway), or decide if the advertising will pay for itself, or deal with liens.

I’m not even sure I want to be that busy. Obviously, I don’t want to be empty, but I also like having some degree of sanity. Time to review tests, type up notes, return calls ... all the things you have to do on the fly between patients, because if you don’t get them done at the office then you have to do them when you get home. Believe me, I already have enough going on there.

I have no desire to advertise that I’m the best neurologist in town (though I believe I’m the best in my building, since there isn’t another one) or to be the busiest, or to be involved in a game of one-upmanship with the nice group down the street.

If Drs. Jones and Joans want to do that, fine. More power to them.

For me, I’ve chosen simplicity in my practice, and prefer it. Like everyone else I want to earn a living, but I also want to to enjoy my job, and non-job, time as best possible.

I’m willing to trade that for money.
 

Dr. Block has a solo neurology practice in Scottsdale, Arizona.

Dr. Jones and Dr. Joans are neurologists in town. I don’t know either one particularly well.

I don’t know their backstory, either, but they seem to have some intense competition going on.

Technically all of us neuros in the area compete with each other, but it’s pretty friendly. There are plenty of patients, and we all get along on the occasions we run into each other at the hospital or Costco or a meeting. Occasionally we call to bounce a case off each other. None of us advertise.

Dr. Allan M. Block, a neurologist in Scottsdale, Arizona.
Dr. Allan M. Block

But Jones and Joans have kicked it up a notch. One got an EEG machine, the other got an EEG machine. A few weeks later one got a balance testing gadget, then the other got the same thing. One invested in all kinds of fancy devices to detect concussions, and shortly afterward so did the other one. Within a few months each bought their own Doppler equipment and hired an ultrasound tech. One took out a glossy ad in a local magazine, the next month so had the other. Both point out that they’ve been named on different “best doctor” lists. I assume it’s only a matter of time before each invests in their own MRI.

This kind of thing requires a lot of money to support, so both have jumped into the world of medical liens and hired NPs and PAs to increase patient volume.

I’m sure they both make more money than I ever will, and they can have it.

I don’t need that kind of complexity in my life. I have my own EMG/NCV machine, and beyond that I send all the testing (and complicated EMG/NCVs) to other facilities. I don’t want to figure out how to make payments on all those new gadgets, or hire staff to run them, or learn all the new codes I’d need (I do all my own coding, anyway), or decide if the advertising will pay for itself, or deal with liens.

I’m not even sure I want to be that busy. Obviously, I don’t want to be empty, but I also like having some degree of sanity. Time to review tests, type up notes, return calls ... all the things you have to do on the fly between patients, because if you don’t get them done at the office then you have to do them when you get home. Believe me, I already have enough going on there.

I have no desire to advertise that I’m the best neurologist in town (though I believe I’m the best in my building, since there isn’t another one) or to be the busiest, or to be involved in a game of one-upmanship with the nice group down the street.

If Drs. Jones and Joans want to do that, fine. More power to them.

For me, I’ve chosen simplicity in my practice, and prefer it. Like everyone else I want to earn a living, but I also want to to enjoy my job, and non-job, time as best possible.

I’m willing to trade that for money.
 

Dr. Block has a solo neurology practice in Scottsdale, Arizona.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Phase3 Data: Atopic Dermatitis Symptoms Improved with Topical Roflumilast

Article Type
Changed
Thu, 09/26/2024 - 10:36

 

TOPLINE:

Roflumilast cream 0.15% was well tolerated and significantly improved symptoms in adults and children with mild to moderate atopic dermatitis (AD) in two phase 3 trials.

METHODOLOGY:

  • Two randomized, parallel-group, double-blind, vehicle-controlled phase 3 trials, INTEGUMENT-1 (n = 654) and INTEGUMENT-2 (n = 683), enrolled patients aged ≥ 6 years with mild to moderate AD who were randomly assigned in a 2:1 ratio to roflumilast cream 0.15%, a phosphodiesterase 4 inhibitor, or vehicle cream once daily for 4 weeks.
  • The primary efficacy endpoint was the Validated Investigator Global Assessment for AD (vIGA-AD) success at week 4, defined as a score of 0 (clear) or 1 (almost clear) plus improvement of at least two grades from baseline.
  • Secondary endpoints included vIGA-AD success at week 4 in patients with a baseline score of 3, at least a four-point reduction in the Worst Itch Numeric Rating Scale (WI-NRS), and at least a 75% reduction in the Eczema Area and Severity Index (EASI-75) at weeks 1, 2, and 4.

TAKEAWAY:

  • Significantly more patients receiving roflumilast achieved vIGA-AD success at week 4 vs those in the vehicle group in INTEGUMENT-1 (32.0% vs 15.2%; P < .001) and INTEGUMENT-2 (28.9% vs 12.0%; P < .001), which was consistent across all age groups and in those with a baseline score of 3.
  • Similarly, a greater proportion of patients treated with roflumilast vs vehicle achieved at least a four-point reduction in WI-NRS at weeks 1, 2, and 4, with improvements noted as early as 24 hours after the first application (P < .05 at all subsequent timepoints).
  • The number of patients achieving EASI-75 and vIGA-AD scores of 0 or 1 was significantly higher with roflumilast than with vehicle at weeks 1, 2, and 4.
  • Most treatment-emergent adverse events (TEAEs) were mild to moderate, with only 0.9% of the patients experiencing serious TEAEs in each trial. More than 95% of the patients showed no signs of irritation, and over 90% reported no or mild sensation at the application site.

IN PRACTICE:

The two phase 3 randomized clinical trials of patients with AD treated with roflumilast cream 0.15% “demonstrated improvement across multiple efficacy endpoints, including reducing pruritus within 24 hours after application, with favorable safety and tolerability,” the authors wrote. “Additional research, including subgroup analyses, will provide more data regarding the efficacy and safety of roflumilast cream 0.15%, in patients with AD,” they added.

SOURCE:

The study was led by Eric L. Simpson, MD, of the Department of Dermatology, Oregon Health & Science University, Portland, Oregon, and was published online on September 18 in JAMA Dermatology.

LIMITATIONS:

A short duration, a minimum age limit of 6 years, and the lack of an active comparator may influence the interpretation and generalizability of the results.

DISCLOSURES:

The study was sponsored by Arcutis Biotherapeutics. Simpson received grants and personal fees from Arcutis during this study. Three authors reported being employees and/or stockholders of Arcutis, two other authors reported patents for Arcutis, and several authors declared having various ties with various sources, including Arcutis.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Roflumilast cream 0.15% was well tolerated and significantly improved symptoms in adults and children with mild to moderate atopic dermatitis (AD) in two phase 3 trials.

METHODOLOGY:

  • Two randomized, parallel-group, double-blind, vehicle-controlled phase 3 trials, INTEGUMENT-1 (n = 654) and INTEGUMENT-2 (n = 683), enrolled patients aged ≥ 6 years with mild to moderate AD who were randomly assigned in a 2:1 ratio to roflumilast cream 0.15%, a phosphodiesterase 4 inhibitor, or vehicle cream once daily for 4 weeks.
  • The primary efficacy endpoint was the Validated Investigator Global Assessment for AD (vIGA-AD) success at week 4, defined as a score of 0 (clear) or 1 (almost clear) plus improvement of at least two grades from baseline.
  • Secondary endpoints included vIGA-AD success at week 4 in patients with a baseline score of 3, at least a four-point reduction in the Worst Itch Numeric Rating Scale (WI-NRS), and at least a 75% reduction in the Eczema Area and Severity Index (EASI-75) at weeks 1, 2, and 4.

TAKEAWAY:

  • Significantly more patients receiving roflumilast achieved vIGA-AD success at week 4 vs those in the vehicle group in INTEGUMENT-1 (32.0% vs 15.2%; P < .001) and INTEGUMENT-2 (28.9% vs 12.0%; P < .001), which was consistent across all age groups and in those with a baseline score of 3.
  • Similarly, a greater proportion of patients treated with roflumilast vs vehicle achieved at least a four-point reduction in WI-NRS at weeks 1, 2, and 4, with improvements noted as early as 24 hours after the first application (P < .05 at all subsequent timepoints).
  • The number of patients achieving EASI-75 and vIGA-AD scores of 0 or 1 was significantly higher with roflumilast than with vehicle at weeks 1, 2, and 4.
  • Most treatment-emergent adverse events (TEAEs) were mild to moderate, with only 0.9% of the patients experiencing serious TEAEs in each trial. More than 95% of the patients showed no signs of irritation, and over 90% reported no or mild sensation at the application site.

IN PRACTICE:

The two phase 3 randomized clinical trials of patients with AD treated with roflumilast cream 0.15% “demonstrated improvement across multiple efficacy endpoints, including reducing pruritus within 24 hours after application, with favorable safety and tolerability,” the authors wrote. “Additional research, including subgroup analyses, will provide more data regarding the efficacy and safety of roflumilast cream 0.15%, in patients with AD,” they added.

SOURCE:

The study was led by Eric L. Simpson, MD, of the Department of Dermatology, Oregon Health & Science University, Portland, Oregon, and was published online on September 18 in JAMA Dermatology.

LIMITATIONS:

A short duration, a minimum age limit of 6 years, and the lack of an active comparator may influence the interpretation and generalizability of the results.

DISCLOSURES:

The study was sponsored by Arcutis Biotherapeutics. Simpson received grants and personal fees from Arcutis during this study. Three authors reported being employees and/or stockholders of Arcutis, two other authors reported patents for Arcutis, and several authors declared having various ties with various sources, including Arcutis.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Roflumilast cream 0.15% was well tolerated and significantly improved symptoms in adults and children with mild to moderate atopic dermatitis (AD) in two phase 3 trials.

METHODOLOGY:

  • Two randomized, parallel-group, double-blind, vehicle-controlled phase 3 trials, INTEGUMENT-1 (n = 654) and INTEGUMENT-2 (n = 683), enrolled patients aged ≥ 6 years with mild to moderate AD who were randomly assigned in a 2:1 ratio to roflumilast cream 0.15%, a phosphodiesterase 4 inhibitor, or vehicle cream once daily for 4 weeks.
  • The primary efficacy endpoint was the Validated Investigator Global Assessment for AD (vIGA-AD) success at week 4, defined as a score of 0 (clear) or 1 (almost clear) plus improvement of at least two grades from baseline.
  • Secondary endpoints included vIGA-AD success at week 4 in patients with a baseline score of 3, at least a four-point reduction in the Worst Itch Numeric Rating Scale (WI-NRS), and at least a 75% reduction in the Eczema Area and Severity Index (EASI-75) at weeks 1, 2, and 4.

TAKEAWAY:

  • Significantly more patients receiving roflumilast achieved vIGA-AD success at week 4 vs those in the vehicle group in INTEGUMENT-1 (32.0% vs 15.2%; P < .001) and INTEGUMENT-2 (28.9% vs 12.0%; P < .001), which was consistent across all age groups and in those with a baseline score of 3.
  • Similarly, a greater proportion of patients treated with roflumilast vs vehicle achieved at least a four-point reduction in WI-NRS at weeks 1, 2, and 4, with improvements noted as early as 24 hours after the first application (P < .05 at all subsequent timepoints).
  • The number of patients achieving EASI-75 and vIGA-AD scores of 0 or 1 was significantly higher with roflumilast than with vehicle at weeks 1, 2, and 4.
  • Most treatment-emergent adverse events (TEAEs) were mild to moderate, with only 0.9% of the patients experiencing serious TEAEs in each trial. More than 95% of the patients showed no signs of irritation, and over 90% reported no or mild sensation at the application site.

IN PRACTICE:

The two phase 3 randomized clinical trials of patients with AD treated with roflumilast cream 0.15% “demonstrated improvement across multiple efficacy endpoints, including reducing pruritus within 24 hours after application, with favorable safety and tolerability,” the authors wrote. “Additional research, including subgroup analyses, will provide more data regarding the efficacy and safety of roflumilast cream 0.15%, in patients with AD,” they added.

SOURCE:

The study was led by Eric L. Simpson, MD, of the Department of Dermatology, Oregon Health & Science University, Portland, Oregon, and was published online on September 18 in JAMA Dermatology.

LIMITATIONS:

A short duration, a minimum age limit of 6 years, and the lack of an active comparator may influence the interpretation and generalizability of the results.

DISCLOSURES:

The study was sponsored by Arcutis Biotherapeutics. Simpson received grants and personal fees from Arcutis during this study. Three authors reported being employees and/or stockholders of Arcutis, two other authors reported patents for Arcutis, and several authors declared having various ties with various sources, including Arcutis.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Once-Weekly Insulin: A Game-Changer for Primary Care

Article Type
Changed
Thu, 09/26/2024 - 10:07

Presented at the European Association for the Study of Diabetes (EASD) 2024 congress in Madrid, the QWINT-2 study established that once-weekly dosing of insulin efsitora was as effective as once-daily dosing of insulin degludec for reducing A1c in patients with type 2 diabetes (T2D) who had not previously received insulin. Study participants were, however, receiving noninsulin glucose-lowering agents, including glucagon-like peptide 1 (GLP-1) receptor agonists. 

Slightly higher rates of mild to moderate hypoglycemia were noted with efsitora compared with degludec, but no significant differences in severe hypoglycemia were observed. Nor was there any difference in weight gain between groups, and adverse events were balanced between study arms. 

This study positions insulin efsitora alongside once-weekly insulin icodec as a novel long-acting insulin therapy. In the ONWARDS 3 trial, icodec was noninferior to once-daily degludec, in terms of A1c reduction. It also had an adverse effect profile like that of efsitora with respect to hypoglycemia and weight change.

So, what are the implications of a once-weekly insulin for primary care?

“Game-changer” is an overused term, but from the perspective of primary care, it applies to once-weekly insulin.

I initiate basal insulin much less frequently these days, given the multitude of noninsulin options now available to me in primary care, particularly the GLP-1 receptor agonists and the dual GLP-1/glucose-dependent insulinotropic polypeptide receptor agonists. The American Diabetes Association/EASD 2022 consensus report also reminds me that GLP-1 receptor agonists should be considered in all individuals with T2D before insulin, unless they are contraindicated. GLP-1 receptor agonists are insulin-sparing agents with a lower injection burden and a lower risk for hypoglycemia. They also promote significant weight loss compared with basal insulin.

But progressive beta-cell decline and insulin deficiency are among the key pathophysiologic abnormalities in T2D. Eventually, many patients with T2D, despite lifestyle interventions and medication adherence, do require insulin. 

Understandably, many of my patients have reservations about commencing insulin. Significant stigma about starting insulin persists, because others often perceive insulin use as a failure to manage T2D. Patients frequently fear injections, and many are worried about how insulin therapy, specifically the risk for hypoglycemia, will affect their daily activities such as driving. 

Clinicians often experience therapeutic inertia, hesitating to escalate therapy to insulin because of a lack of confidence and competence, which often results from inadequate education. Lengthy referral-to-treatment waiting times are common in the United Kingdom, and there is concern about the workload implications associated with insulin initiation.

Workload is a particular concern for my community nursing colleagues, who must visit some of my more frail and functionally dependent patients daily to administer their insulin. 

In addition, the delivery of high-quality diabetes care in nursing homes, particularly for patients requiring insulin, has been a perennial challenge in the UK, again because of a lack of confidence and competence due to an absence of education for nursing and ancillary staff. 

Moreover, it is not appropriate to switch many of these frail patients to noninsulin therapies because of their insulinopenia, as well as the significant weight (and sometimes muscle) loss associated with GLP-1 receptor agonists. Also, sodium-glucose cotransporter 2 inhibitors are associated with a risk for volume depletion and diabetic ketoacidosis.

I believe that the availability of a once-weekly insulin will help overcome many of the above barriers.

From a patient’s viewpoint, simplification of insulin therapy with once-weekly insulin will substantially reduce the number of injections required (from 365 to 52 over 1 year). This change will improve compliance and concordance even in patients with injection anxiety. These results will hopefully translate into improved glycemic control and a lower risk for the complications of T2D. Real-world evidence for these outcomes is not yet available, however. Also, the reduced amount of insulin consumables that once-weekly dosing requires will also help improve the environmental footprint of insulin therapy.

From a clinician’s viewpoint, once-weekly insulin may seem less daunting and could reduce therapeutic inertia, thus facilitating earlier initiation of insulin therapy and reducing the risk for complications of T2D. Although education remains pivotal, this ease of dosing may be more acceptable to many clinicians because it has less of an effect on workload. This dosing could even save time because it requires less intensive follow-up than daily basal insulin does.

My community nurse colleagues were ecstatic when I mentioned that once-weekly basal insulin was on the horizon. This formulation could reduce the number of weekly home visits from 7 to just 1, thus freeing up considerable healthcare resources. And if once-weekly insulin is coupled with continuous glucose monitoring, then remote review of glucose data can further streamline and optimize the management of T2D in frail older patients. I am sure that my nursing-home colleagues will be equally enthusiastic about simplifying insulin regimens and monitoring.

Finally, an unanswered question is how I manage “sick days” for patients on weekly insulin dosing. Of course, the golden rule of never stopping insulin during intercurrent illness must be followed, but is any dose titration required for once-weekly insulin? I suspect not, but do I need to consider adding a once-daily basal insulin or rapid-acting insulin to mitigate the glucose counterregulatory hormone response during acute illness? Initially, I will be asking specialist diabetes teams for further advice on managing sick days.

In conclusion, once-weekly dosing of insulin is a game-changer for primary care and could finally be the driver to quash therapeutic inertia and address common patient barriers when escalation to insulin is required.

Dr. Fernando, general practitioner partner, North Berwick Health Centre, North Berwick, Scotland, disclosed ties with Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Dexcom, Daiichi Sankyo, Lilly, Menarini, Novartis, Novo Nordisk, Roche Diagnostics, Embecta, Roche Diabetes Care, and Sanofi.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Presented at the European Association for the Study of Diabetes (EASD) 2024 congress in Madrid, the QWINT-2 study established that once-weekly dosing of insulin efsitora was as effective as once-daily dosing of insulin degludec for reducing A1c in patients with type 2 diabetes (T2D) who had not previously received insulin. Study participants were, however, receiving noninsulin glucose-lowering agents, including glucagon-like peptide 1 (GLP-1) receptor agonists. 

Slightly higher rates of mild to moderate hypoglycemia were noted with efsitora compared with degludec, but no significant differences in severe hypoglycemia were observed. Nor was there any difference in weight gain between groups, and adverse events were balanced between study arms. 

This study positions insulin efsitora alongside once-weekly insulin icodec as a novel long-acting insulin therapy. In the ONWARDS 3 trial, icodec was noninferior to once-daily degludec, in terms of A1c reduction. It also had an adverse effect profile like that of efsitora with respect to hypoglycemia and weight change.

So, what are the implications of a once-weekly insulin for primary care?

“Game-changer” is an overused term, but from the perspective of primary care, it applies to once-weekly insulin.

I initiate basal insulin much less frequently these days, given the multitude of noninsulin options now available to me in primary care, particularly the GLP-1 receptor agonists and the dual GLP-1/glucose-dependent insulinotropic polypeptide receptor agonists. The American Diabetes Association/EASD 2022 consensus report also reminds me that GLP-1 receptor agonists should be considered in all individuals with T2D before insulin, unless they are contraindicated. GLP-1 receptor agonists are insulin-sparing agents with a lower injection burden and a lower risk for hypoglycemia. They also promote significant weight loss compared with basal insulin.

But progressive beta-cell decline and insulin deficiency are among the key pathophysiologic abnormalities in T2D. Eventually, many patients with T2D, despite lifestyle interventions and medication adherence, do require insulin. 

Understandably, many of my patients have reservations about commencing insulin. Significant stigma about starting insulin persists, because others often perceive insulin use as a failure to manage T2D. Patients frequently fear injections, and many are worried about how insulin therapy, specifically the risk for hypoglycemia, will affect their daily activities such as driving. 

Clinicians often experience therapeutic inertia, hesitating to escalate therapy to insulin because of a lack of confidence and competence, which often results from inadequate education. Lengthy referral-to-treatment waiting times are common in the United Kingdom, and there is concern about the workload implications associated with insulin initiation.

Workload is a particular concern for my community nursing colleagues, who must visit some of my more frail and functionally dependent patients daily to administer their insulin. 

In addition, the delivery of high-quality diabetes care in nursing homes, particularly for patients requiring insulin, has been a perennial challenge in the UK, again because of a lack of confidence and competence due to an absence of education for nursing and ancillary staff. 

Moreover, it is not appropriate to switch many of these frail patients to noninsulin therapies because of their insulinopenia, as well as the significant weight (and sometimes muscle) loss associated with GLP-1 receptor agonists. Also, sodium-glucose cotransporter 2 inhibitors are associated with a risk for volume depletion and diabetic ketoacidosis.

I believe that the availability of a once-weekly insulin will help overcome many of the above barriers.

From a patient’s viewpoint, simplification of insulin therapy with once-weekly insulin will substantially reduce the number of injections required (from 365 to 52 over 1 year). This change will improve compliance and concordance even in patients with injection anxiety. These results will hopefully translate into improved glycemic control and a lower risk for the complications of T2D. Real-world evidence for these outcomes is not yet available, however. Also, the reduced amount of insulin consumables that once-weekly dosing requires will also help improve the environmental footprint of insulin therapy.

From a clinician’s viewpoint, once-weekly insulin may seem less daunting and could reduce therapeutic inertia, thus facilitating earlier initiation of insulin therapy and reducing the risk for complications of T2D. Although education remains pivotal, this ease of dosing may be more acceptable to many clinicians because it has less of an effect on workload. This dosing could even save time because it requires less intensive follow-up than daily basal insulin does.

My community nurse colleagues were ecstatic when I mentioned that once-weekly basal insulin was on the horizon. This formulation could reduce the number of weekly home visits from 7 to just 1, thus freeing up considerable healthcare resources. And if once-weekly insulin is coupled with continuous glucose monitoring, then remote review of glucose data can further streamline and optimize the management of T2D in frail older patients. I am sure that my nursing-home colleagues will be equally enthusiastic about simplifying insulin regimens and monitoring.

Finally, an unanswered question is how I manage “sick days” for patients on weekly insulin dosing. Of course, the golden rule of never stopping insulin during intercurrent illness must be followed, but is any dose titration required for once-weekly insulin? I suspect not, but do I need to consider adding a once-daily basal insulin or rapid-acting insulin to mitigate the glucose counterregulatory hormone response during acute illness? Initially, I will be asking specialist diabetes teams for further advice on managing sick days.

In conclusion, once-weekly dosing of insulin is a game-changer for primary care and could finally be the driver to quash therapeutic inertia and address common patient barriers when escalation to insulin is required.

Dr. Fernando, general practitioner partner, North Berwick Health Centre, North Berwick, Scotland, disclosed ties with Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Dexcom, Daiichi Sankyo, Lilly, Menarini, Novartis, Novo Nordisk, Roche Diagnostics, Embecta, Roche Diabetes Care, and Sanofi.

A version of this article appeared on Medscape.com.

Presented at the European Association for the Study of Diabetes (EASD) 2024 congress in Madrid, the QWINT-2 study established that once-weekly dosing of insulin efsitora was as effective as once-daily dosing of insulin degludec for reducing A1c in patients with type 2 diabetes (T2D) who had not previously received insulin. Study participants were, however, receiving noninsulin glucose-lowering agents, including glucagon-like peptide 1 (GLP-1) receptor agonists. 

Slightly higher rates of mild to moderate hypoglycemia were noted with efsitora compared with degludec, but no significant differences in severe hypoglycemia were observed. Nor was there any difference in weight gain between groups, and adverse events were balanced between study arms. 

This study positions insulin efsitora alongside once-weekly insulin icodec as a novel long-acting insulin therapy. In the ONWARDS 3 trial, icodec was noninferior to once-daily degludec, in terms of A1c reduction. It also had an adverse effect profile like that of efsitora with respect to hypoglycemia and weight change.

So, what are the implications of a once-weekly insulin for primary care?

“Game-changer” is an overused term, but from the perspective of primary care, it applies to once-weekly insulin.

I initiate basal insulin much less frequently these days, given the multitude of noninsulin options now available to me in primary care, particularly the GLP-1 receptor agonists and the dual GLP-1/glucose-dependent insulinotropic polypeptide receptor agonists. The American Diabetes Association/EASD 2022 consensus report also reminds me that GLP-1 receptor agonists should be considered in all individuals with T2D before insulin, unless they are contraindicated. GLP-1 receptor agonists are insulin-sparing agents with a lower injection burden and a lower risk for hypoglycemia. They also promote significant weight loss compared with basal insulin.

But progressive beta-cell decline and insulin deficiency are among the key pathophysiologic abnormalities in T2D. Eventually, many patients with T2D, despite lifestyle interventions and medication adherence, do require insulin. 

Understandably, many of my patients have reservations about commencing insulin. Significant stigma about starting insulin persists, because others often perceive insulin use as a failure to manage T2D. Patients frequently fear injections, and many are worried about how insulin therapy, specifically the risk for hypoglycemia, will affect their daily activities such as driving. 

Clinicians often experience therapeutic inertia, hesitating to escalate therapy to insulin because of a lack of confidence and competence, which often results from inadequate education. Lengthy referral-to-treatment waiting times are common in the United Kingdom, and there is concern about the workload implications associated with insulin initiation.

Workload is a particular concern for my community nursing colleagues, who must visit some of my more frail and functionally dependent patients daily to administer their insulin. 

In addition, the delivery of high-quality diabetes care in nursing homes, particularly for patients requiring insulin, has been a perennial challenge in the UK, again because of a lack of confidence and competence due to an absence of education for nursing and ancillary staff. 

Moreover, it is not appropriate to switch many of these frail patients to noninsulin therapies because of their insulinopenia, as well as the significant weight (and sometimes muscle) loss associated with GLP-1 receptor agonists. Also, sodium-glucose cotransporter 2 inhibitors are associated with a risk for volume depletion and diabetic ketoacidosis.

I believe that the availability of a once-weekly insulin will help overcome many of the above barriers.

From a patient’s viewpoint, simplification of insulin therapy with once-weekly insulin will substantially reduce the number of injections required (from 365 to 52 over 1 year). This change will improve compliance and concordance even in patients with injection anxiety. These results will hopefully translate into improved glycemic control and a lower risk for the complications of T2D. Real-world evidence for these outcomes is not yet available, however. Also, the reduced amount of insulin consumables that once-weekly dosing requires will also help improve the environmental footprint of insulin therapy.

From a clinician’s viewpoint, once-weekly insulin may seem less daunting and could reduce therapeutic inertia, thus facilitating earlier initiation of insulin therapy and reducing the risk for complications of T2D. Although education remains pivotal, this ease of dosing may be more acceptable to many clinicians because it has less of an effect on workload. This dosing could even save time because it requires less intensive follow-up than daily basal insulin does.

My community nurse colleagues were ecstatic when I mentioned that once-weekly basal insulin was on the horizon. This formulation could reduce the number of weekly home visits from 7 to just 1, thus freeing up considerable healthcare resources. And if once-weekly insulin is coupled with continuous glucose monitoring, then remote review of glucose data can further streamline and optimize the management of T2D in frail older patients. I am sure that my nursing-home colleagues will be equally enthusiastic about simplifying insulin regimens and monitoring.

Finally, an unanswered question is how I manage “sick days” for patients on weekly insulin dosing. Of course, the golden rule of never stopping insulin during intercurrent illness must be followed, but is any dose titration required for once-weekly insulin? I suspect not, but do I need to consider adding a once-daily basal insulin or rapid-acting insulin to mitigate the glucose counterregulatory hormone response during acute illness? Initially, I will be asking specialist diabetes teams for further advice on managing sick days.

In conclusion, once-weekly dosing of insulin is a game-changer for primary care and could finally be the driver to quash therapeutic inertia and address common patient barriers when escalation to insulin is required.

Dr. Fernando, general practitioner partner, North Berwick Health Centre, North Berwick, Scotland, disclosed ties with Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Dexcom, Daiichi Sankyo, Lilly, Menarini, Novartis, Novo Nordisk, Roche Diagnostics, Embecta, Roche Diabetes Care, and Sanofi.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

The Uneven Surge in Diabetes in the United States

Article Type
Changed
Wed, 09/25/2024 - 16:14

 

TOPLINE:

The prevalence of diabetes in the United States increased by 18.6% from 2012 to 2022, with notably higher rates among racial and ethnic minorities, men, older adults, and socioeconomically disadvantaged populations.

METHODOLOGY:

  • Over 37 million people in the United States have diabetes, and its prevalence is only expected to increase in the coming years, making identifying high-risk demographic groups particularly crucial.
  • To assess recent national trends and disparities in diabetes prevalence among US adults, researchers conducted an observational study using data from the Behavioral Risk Factor Surveillance System and included 5,312,827 observations from 2012 to 2022.
  • Diabetes was defined on the basis of a previous self-reported diagnosis using standardized questionnaires.
  • The sociodemographic factors of age, sex, race, education, physical activity, income, and body mass index were used to establish the risk indicators for diabetes diagnosis.
  • Age-standardized diabetes prevalence and the association between risk factors and diabetes were assessed both overall and across various sociodemographic groups.

TAKEAWAY:

  • The overall prevalence of diabetes increased by 18.6% (P < .001) from 2012 to 2022, with the highest prevalence observed among non-Hispanic Black individuals (15.8%) and people aged ≥ 65 years (23.86%).
  • The likelihood of being diagnosed with diabetes was 1.15 times higher in men than in women, 5.16 times higher in adults aged 45-64 years than in those aged 18-24 years, and 3.64 times higher in those with obesity than in those with normal weight.
  • The risk for being diagnosed with diabetes was 1.60 times higher among Hispanic individuals, 1.67 times higher among non-Hispanic Asian individuals, and 2.10 times higher among non-Hispanic Black individuals than among non-Hispanic White individuals.
  • Individuals with a college education and higher income level were 24% and 41% less likely, respectively, to be diagnosed with diabetes.

IN PRACTICE:

“Improving access to quality care, implementing diabetes prevention programs focusing on high-risk groups, and addressing social determinants through multilevel interventions may help curb the diabetes epidemic in the United States,” the authors wrote.

SOURCE:

The study, led by Sulakshan Neupane, MS, Department of Agricultural and Applied Economics, University of Georgia, Athens, Georgia, was published online in Diabetes, Obesity, and Metabolism.

LIMITATIONS:

The self-reported diagnoses and lack of clinical data may have introduced bias. Diabetes prevalence could not be analyzed in South-East Asian and South Asian populations owing to limitations in the data collection process.

DISCLOSURES:

The study was not supported by any funding, and no potential author disclosures or conflicts were identified.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The prevalence of diabetes in the United States increased by 18.6% from 2012 to 2022, with notably higher rates among racial and ethnic minorities, men, older adults, and socioeconomically disadvantaged populations.

METHODOLOGY:

  • Over 37 million people in the United States have diabetes, and its prevalence is only expected to increase in the coming years, making identifying high-risk demographic groups particularly crucial.
  • To assess recent national trends and disparities in diabetes prevalence among US adults, researchers conducted an observational study using data from the Behavioral Risk Factor Surveillance System and included 5,312,827 observations from 2012 to 2022.
  • Diabetes was defined on the basis of a previous self-reported diagnosis using standardized questionnaires.
  • The sociodemographic factors of age, sex, race, education, physical activity, income, and body mass index were used to establish the risk indicators for diabetes diagnosis.
  • Age-standardized diabetes prevalence and the association between risk factors and diabetes were assessed both overall and across various sociodemographic groups.

TAKEAWAY:

  • The overall prevalence of diabetes increased by 18.6% (P < .001) from 2012 to 2022, with the highest prevalence observed among non-Hispanic Black individuals (15.8%) and people aged ≥ 65 years (23.86%).
  • The likelihood of being diagnosed with diabetes was 1.15 times higher in men than in women, 5.16 times higher in adults aged 45-64 years than in those aged 18-24 years, and 3.64 times higher in those with obesity than in those with normal weight.
  • The risk for being diagnosed with diabetes was 1.60 times higher among Hispanic individuals, 1.67 times higher among non-Hispanic Asian individuals, and 2.10 times higher among non-Hispanic Black individuals than among non-Hispanic White individuals.
  • Individuals with a college education and higher income level were 24% and 41% less likely, respectively, to be diagnosed with diabetes.

IN PRACTICE:

“Improving access to quality care, implementing diabetes prevention programs focusing on high-risk groups, and addressing social determinants through multilevel interventions may help curb the diabetes epidemic in the United States,” the authors wrote.

SOURCE:

The study, led by Sulakshan Neupane, MS, Department of Agricultural and Applied Economics, University of Georgia, Athens, Georgia, was published online in Diabetes, Obesity, and Metabolism.

LIMITATIONS:

The self-reported diagnoses and lack of clinical data may have introduced bias. Diabetes prevalence could not be analyzed in South-East Asian and South Asian populations owing to limitations in the data collection process.

DISCLOSURES:

The study was not supported by any funding, and no potential author disclosures or conflicts were identified.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

The prevalence of diabetes in the United States increased by 18.6% from 2012 to 2022, with notably higher rates among racial and ethnic minorities, men, older adults, and socioeconomically disadvantaged populations.

METHODOLOGY:

  • Over 37 million people in the United States have diabetes, and its prevalence is only expected to increase in the coming years, making identifying high-risk demographic groups particularly crucial.
  • To assess recent national trends and disparities in diabetes prevalence among US adults, researchers conducted an observational study using data from the Behavioral Risk Factor Surveillance System and included 5,312,827 observations from 2012 to 2022.
  • Diabetes was defined on the basis of a previous self-reported diagnosis using standardized questionnaires.
  • The sociodemographic factors of age, sex, race, education, physical activity, income, and body mass index were used to establish the risk indicators for diabetes diagnosis.
  • Age-standardized diabetes prevalence and the association between risk factors and diabetes were assessed both overall and across various sociodemographic groups.

TAKEAWAY:

  • The overall prevalence of diabetes increased by 18.6% (P < .001) from 2012 to 2022, with the highest prevalence observed among non-Hispanic Black individuals (15.8%) and people aged ≥ 65 years (23.86%).
  • The likelihood of being diagnosed with diabetes was 1.15 times higher in men than in women, 5.16 times higher in adults aged 45-64 years than in those aged 18-24 years, and 3.64 times higher in those with obesity than in those with normal weight.
  • The risk for being diagnosed with diabetes was 1.60 times higher among Hispanic individuals, 1.67 times higher among non-Hispanic Asian individuals, and 2.10 times higher among non-Hispanic Black individuals than among non-Hispanic White individuals.
  • Individuals with a college education and higher income level were 24% and 41% less likely, respectively, to be diagnosed with diabetes.

IN PRACTICE:

“Improving access to quality care, implementing diabetes prevention programs focusing on high-risk groups, and addressing social determinants through multilevel interventions may help curb the diabetes epidemic in the United States,” the authors wrote.

SOURCE:

The study, led by Sulakshan Neupane, MS, Department of Agricultural and Applied Economics, University of Georgia, Athens, Georgia, was published online in Diabetes, Obesity, and Metabolism.

LIMITATIONS:

The self-reported diagnoses and lack of clinical data may have introduced bias. Diabetes prevalence could not be analyzed in South-East Asian and South Asian populations owing to limitations in the data collection process.

DISCLOSURES:

The study was not supported by any funding, and no potential author disclosures or conflicts were identified.
 

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Abnormal TSH: Forget it or Fret it?

Article Type
Changed
Wed, 09/25/2024 - 15:36

If you’re like most primary care clinicians, your email inbox is flooded with messages from patients with questions about lab results. A common query: Should I be worried about an abnormal value on a test of thyroid-stimulating hormone (TSH)?

For guidance, this news organization spoke with Angela Leung, MD, associate professor of medicine in the Division of Endocrinology, Diabetes & Metabolism at the UCLA David Geffen School of Medicine and an endocrinologist at UCLA and the VA Greater Los Angeles Healthcare System, and Karen Tsai, MD, assistant clinical professor of endocrinology at City of Hope Comprehensive Cancer Center in Duarte, California. The following interview has been edited for length and clarity.

Question: Why do you usually start by measuring TSH levels?

Dr. Leung: We need to measure the thyroid status in a way that integrates more information about the long-term thyroid status and not small changes in thyroid hormone levels. TSH is made by the pituitary gland in the brain, which integrates information about the signals of high and low levels from each of the different thyroid hormones.

Now we can measure the actual thyroid hormones — primarily we’re talking about T3 and T4 — but if we do that, we are relying on a single snapshot in the bloodstream at that moment. The levels might change throughout the day in response to ongoing metabolism and outside stresses. So we usually start by measuring the TSH level, which is a good representation of the compilation of all those things over the past 30 days or so.

Question: How do you describe a low TSH result to patients?

Dr. Leung: Whenever we encounter a low TSH level, we want to repeat the test because it is a dynamic test, and it can change in response to several factors. If it is indeed low, we’re thinking that perhaps there’s a little bit of extra thyroid hormone in the body. It can be either temporary or more chronic, but that higher amount of thyroid hormone is telling the pituitary gland in the brain to start making less. So TSH levels go low when we need less thyroid hormone.

Question: What are some of the reasons for a low TSH level?

Dr. Leung: One of the most common situations for a temporarily low TSH level I see is what we call nonthyroidal illness, like a common cold or just being under the weather. Other things that can artifactually lower the TSH level could be the use of steroids, such as prednisone for asthma or some sort of a rheumatologic condition. Also, the TSH level could be low if a person has been recently exposed to very high amounts of iodine, such as iodinated contrast needed for a CT scan.

If the TSH level remains persistently low, usually in the presence of high thyroid hormone (T3 and/or T4) levels, the most common reason for hyperthyroidism is Graves disease, in which there are autoantibodies — measurable in the blood — that can stimulate the thyroid gland in the neck to make extra thyroid hormone.

Question: And what does an elevated TSH level mean?

Dr. Leung: Again, we want to confirm that it is elevated. We need at least two tests to confirm a high TSH level. A persistently elevated TSH level is a signal there might be low thyroid hormone levels in the body, which could be transient or more longer lasting.

Question: What are some of the most common causes of an elevated TSH level?

Dr. Leung: If the TSH level is confirmed high and the thyroid hormone levels are low, the most common cause of hypothyroidism here in the United States is Hashimoto thyroiditis.

Globally, iodine deficiency is the most common reason for hypothyroidism and may be a problem in parts of the globe where there are endemically low iodine levels in soil, crops, and the food supply like not having enough iodized salt. The thyroid is reliant on having enough iodine as a micronutrient to make thyroid hormone. If it doesn’t, the thyroid really can’t make thyroid hormone. It’s important to also remember, though, that having too much iodine can result in hypo- or hyperthyroidism.

Dr. Tsai: I take a glance at their medication list. Some of the patients are on methimazole or levothyroxine, and those medications should be adjusted first to normalize the TSH level. Other medications like lithium and amiodarone can also cause elevated TSH levels. We are also seeing a lot of patients on cancer therapies, such as tyrosine kinase inhibitors or immunotherapy, that can cause an elevated TSH level.

Question: If the repeat TSH test shows that TSH levels are still elevated, what comes next in your workup?

Dr. Tsai: If there’s not a real clear-cut diagnosis, I’ll order the thyroid peroxidase antibody and the thyroglobulin antibody, although thyroid peroxidase antibody, which is indicative of autoimmune thyroid disease, alone is usually sufficient to make that diagnosis.

Question: Should clinicians follow thyroid antibodies over time?

Dr. Tsai: I usually don’t repeat the antibody tests. In those circumstances where patients who were diagnosed 50-60 years ago and perhaps it is unknown if they had the thyroid antibodies measured at the time and now they’re saying, “Do I actually have Hashimoto’s?” or “Do I really need to continue this for the rest of my life?” I do repeat antibody tests to help gauge if the patient’s levothyroxine can be stopped.

Question: How important is it to follow T4 or T3 levels?

Dr. Tsai: T4 and T3 levels can help differentiate overt thyroid dysfunction — where T3 and/or T4 levels will be abnormal — from subclinical thyroid dysfunction — where T3 and T4 levels would be normal. In general, although we do not fully appreciate the best metric to monitor hypo- or hyperthyroidism, because some patients with a normal TSH level still may have symptoms of thyroid dysfunction, these peripheral thyroid hormone levels are usually the most helpful at the time of initial diagnosis.

Question: What are your criteria for initiating treatment for hypothyroidism?

Dr. Tsai: If the TSH level > 10 mIU/L, I recommend levothyroxine hormone replacement. A lot of published data support clinical benefit in this group.

There is a gray area in those patients who have a TSH level higher than the upper limit of the reference range but less than 10. If the patient doesn’t have overt hypothyroid symptoms, I discuss the findings with the patient but don’t really feel eager to treat. I recommend checking the levels again in 6 months to see where that TSH goes, and if it worsens or becomes greater than 10 mIU/L, I then recommend levothyroxine hormone replacement.

It is also important to note that a TSH level of 5-7 may be an acceptable range for older patients, and they do not require levothyroxine.

The other category is patients whose TSH level is greater than the upper limit of the normal reference range but less than 10 and with overt hypothyroid symptoms such as fatigue, unintentional weight gain, constipation, or cold intolerance. In these patients, it is worthwhile to try a low dose of levothyroxine (25-50 mcg/d) and repeat TSH and free T4 tests in 6-8 weeks and see if the TSH level normalizes.

Dr. Leung: When you look at subclinical hypothyroidism, the situation of an isolated high TSH level in the setting of normal T4 levels, if the TSH level is mildly elevated in the 5-7 mIU/L range, there’s a 60% chance that it will normalize within 6 months.

Going back to Karen’s point, a lot of people are started and maintained on low doses of thyroid hormone forever and ever. A recent study on levothyroxine use found half of the prescriptions were unnecessary.

Question: In an era where many patients obtain much of their health information from TikTok, what’s your approach with patients with a normal TSH level who feel that they should have more testing or start treatment?

Dr. Tsai: Fatigue is one of the common referrals we get into our endocrinology practice, and everyone is convinced that their thyroid is the culprit. It is important to note, however, that fatigue can be due to different diseases such as anemia, depression, sleep disorders, or a recent viral illness.

TSH tests are readily available and cheap. I don’t mind ordering the lab test again if it helps give the patient some reassurance. I also find that patients are relieved once they hear from their endocrinologist that their thyroid is unlikely to be the cause of their fatigue.

Some other endocrine causes we may consider additionally working up include adrenal insufficiency, vitamin D deficiency, and diabetes. A comprehensive metabolic panel and complete blood count is part of my workup to rule out any gross electrolyte abnormalities or any new diagnosis of anemia, liver disease, or chronic kidney disease.

Question: What are your criteria for recommending that someone see an endocrinologist?

Dr. Tsai: Our primary care colleagues can do a workup and interpretation of thyroid function tests in most cases. In the situations where the thyroid function test results are discordant (ie, elevated TSH and elevated free T4 levels or low TSH and low free T4 levels) or difficult to interpret, it would be appropriate to refer the patient to an endocrinologist.

One of the common referrals that we do get from the community is a patient’s thyroid function tests going from hyperthyroid to hypothyroid without a clear explanation or the patient is suboptimally controlled with levothyroxine or methimazole. In those circumstances, it would be worthwhile to send to an endocrinologist try to discern an underlying cause or for optimization of medication.

Dr. Leung and Dr. Tsai had no financial disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

If you’re like most primary care clinicians, your email inbox is flooded with messages from patients with questions about lab results. A common query: Should I be worried about an abnormal value on a test of thyroid-stimulating hormone (TSH)?

For guidance, this news organization spoke with Angela Leung, MD, associate professor of medicine in the Division of Endocrinology, Diabetes & Metabolism at the UCLA David Geffen School of Medicine and an endocrinologist at UCLA and the VA Greater Los Angeles Healthcare System, and Karen Tsai, MD, assistant clinical professor of endocrinology at City of Hope Comprehensive Cancer Center in Duarte, California. The following interview has been edited for length and clarity.

Question: Why do you usually start by measuring TSH levels?

Dr. Leung: We need to measure the thyroid status in a way that integrates more information about the long-term thyroid status and not small changes in thyroid hormone levels. TSH is made by the pituitary gland in the brain, which integrates information about the signals of high and low levels from each of the different thyroid hormones.

Now we can measure the actual thyroid hormones — primarily we’re talking about T3 and T4 — but if we do that, we are relying on a single snapshot in the bloodstream at that moment. The levels might change throughout the day in response to ongoing metabolism and outside stresses. So we usually start by measuring the TSH level, which is a good representation of the compilation of all those things over the past 30 days or so.

Question: How do you describe a low TSH result to patients?

Dr. Leung: Whenever we encounter a low TSH level, we want to repeat the test because it is a dynamic test, and it can change in response to several factors. If it is indeed low, we’re thinking that perhaps there’s a little bit of extra thyroid hormone in the body. It can be either temporary or more chronic, but that higher amount of thyroid hormone is telling the pituitary gland in the brain to start making less. So TSH levels go low when we need less thyroid hormone.

Question: What are some of the reasons for a low TSH level?

Dr. Leung: One of the most common situations for a temporarily low TSH level I see is what we call nonthyroidal illness, like a common cold or just being under the weather. Other things that can artifactually lower the TSH level could be the use of steroids, such as prednisone for asthma or some sort of a rheumatologic condition. Also, the TSH level could be low if a person has been recently exposed to very high amounts of iodine, such as iodinated contrast needed for a CT scan.

If the TSH level remains persistently low, usually in the presence of high thyroid hormone (T3 and/or T4) levels, the most common reason for hyperthyroidism is Graves disease, in which there are autoantibodies — measurable in the blood — that can stimulate the thyroid gland in the neck to make extra thyroid hormone.

Question: And what does an elevated TSH level mean?

Dr. Leung: Again, we want to confirm that it is elevated. We need at least two tests to confirm a high TSH level. A persistently elevated TSH level is a signal there might be low thyroid hormone levels in the body, which could be transient or more longer lasting.

Question: What are some of the most common causes of an elevated TSH level?

Dr. Leung: If the TSH level is confirmed high and the thyroid hormone levels are low, the most common cause of hypothyroidism here in the United States is Hashimoto thyroiditis.

Globally, iodine deficiency is the most common reason for hypothyroidism and may be a problem in parts of the globe where there are endemically low iodine levels in soil, crops, and the food supply like not having enough iodized salt. The thyroid is reliant on having enough iodine as a micronutrient to make thyroid hormone. If it doesn’t, the thyroid really can’t make thyroid hormone. It’s important to also remember, though, that having too much iodine can result in hypo- or hyperthyroidism.

Dr. Tsai: I take a glance at their medication list. Some of the patients are on methimazole or levothyroxine, and those medications should be adjusted first to normalize the TSH level. Other medications like lithium and amiodarone can also cause elevated TSH levels. We are also seeing a lot of patients on cancer therapies, such as tyrosine kinase inhibitors or immunotherapy, that can cause an elevated TSH level.

Question: If the repeat TSH test shows that TSH levels are still elevated, what comes next in your workup?

Dr. Tsai: If there’s not a real clear-cut diagnosis, I’ll order the thyroid peroxidase antibody and the thyroglobulin antibody, although thyroid peroxidase antibody, which is indicative of autoimmune thyroid disease, alone is usually sufficient to make that diagnosis.

Question: Should clinicians follow thyroid antibodies over time?

Dr. Tsai: I usually don’t repeat the antibody tests. In those circumstances where patients who were diagnosed 50-60 years ago and perhaps it is unknown if they had the thyroid antibodies measured at the time and now they’re saying, “Do I actually have Hashimoto’s?” or “Do I really need to continue this for the rest of my life?” I do repeat antibody tests to help gauge if the patient’s levothyroxine can be stopped.

Question: How important is it to follow T4 or T3 levels?

Dr. Tsai: T4 and T3 levels can help differentiate overt thyroid dysfunction — where T3 and/or T4 levels will be abnormal — from subclinical thyroid dysfunction — where T3 and T4 levels would be normal. In general, although we do not fully appreciate the best metric to monitor hypo- or hyperthyroidism, because some patients with a normal TSH level still may have symptoms of thyroid dysfunction, these peripheral thyroid hormone levels are usually the most helpful at the time of initial diagnosis.

Question: What are your criteria for initiating treatment for hypothyroidism?

Dr. Tsai: If the TSH level > 10 mIU/L, I recommend levothyroxine hormone replacement. A lot of published data support clinical benefit in this group.

There is a gray area in those patients who have a TSH level higher than the upper limit of the reference range but less than 10. If the patient doesn’t have overt hypothyroid symptoms, I discuss the findings with the patient but don’t really feel eager to treat. I recommend checking the levels again in 6 months to see where that TSH goes, and if it worsens or becomes greater than 10 mIU/L, I then recommend levothyroxine hormone replacement.

It is also important to note that a TSH level of 5-7 may be an acceptable range for older patients, and they do not require levothyroxine.

The other category is patients whose TSH level is greater than the upper limit of the normal reference range but less than 10 and with overt hypothyroid symptoms such as fatigue, unintentional weight gain, constipation, or cold intolerance. In these patients, it is worthwhile to try a low dose of levothyroxine (25-50 mcg/d) and repeat TSH and free T4 tests in 6-8 weeks and see if the TSH level normalizes.

Dr. Leung: When you look at subclinical hypothyroidism, the situation of an isolated high TSH level in the setting of normal T4 levels, if the TSH level is mildly elevated in the 5-7 mIU/L range, there’s a 60% chance that it will normalize within 6 months.

Going back to Karen’s point, a lot of people are started and maintained on low doses of thyroid hormone forever and ever. A recent study on levothyroxine use found half of the prescriptions were unnecessary.

Question: In an era where many patients obtain much of their health information from TikTok, what’s your approach with patients with a normal TSH level who feel that they should have more testing or start treatment?

Dr. Tsai: Fatigue is one of the common referrals we get into our endocrinology practice, and everyone is convinced that their thyroid is the culprit. It is important to note, however, that fatigue can be due to different diseases such as anemia, depression, sleep disorders, or a recent viral illness.

TSH tests are readily available and cheap. I don’t mind ordering the lab test again if it helps give the patient some reassurance. I also find that patients are relieved once they hear from their endocrinologist that their thyroid is unlikely to be the cause of their fatigue.

Some other endocrine causes we may consider additionally working up include adrenal insufficiency, vitamin D deficiency, and diabetes. A comprehensive metabolic panel and complete blood count is part of my workup to rule out any gross electrolyte abnormalities or any new diagnosis of anemia, liver disease, or chronic kidney disease.

Question: What are your criteria for recommending that someone see an endocrinologist?

Dr. Tsai: Our primary care colleagues can do a workup and interpretation of thyroid function tests in most cases. In the situations where the thyroid function test results are discordant (ie, elevated TSH and elevated free T4 levels or low TSH and low free T4 levels) or difficult to interpret, it would be appropriate to refer the patient to an endocrinologist.

One of the common referrals that we do get from the community is a patient’s thyroid function tests going from hyperthyroid to hypothyroid without a clear explanation or the patient is suboptimally controlled with levothyroxine or methimazole. In those circumstances, it would be worthwhile to send to an endocrinologist try to discern an underlying cause or for optimization of medication.

Dr. Leung and Dr. Tsai had no financial disclosures.
 

A version of this article appeared on Medscape.com.

If you’re like most primary care clinicians, your email inbox is flooded with messages from patients with questions about lab results. A common query: Should I be worried about an abnormal value on a test of thyroid-stimulating hormone (TSH)?

For guidance, this news organization spoke with Angela Leung, MD, associate professor of medicine in the Division of Endocrinology, Diabetes & Metabolism at the UCLA David Geffen School of Medicine and an endocrinologist at UCLA and the VA Greater Los Angeles Healthcare System, and Karen Tsai, MD, assistant clinical professor of endocrinology at City of Hope Comprehensive Cancer Center in Duarte, California. The following interview has been edited for length and clarity.

Question: Why do you usually start by measuring TSH levels?

Dr. Leung: We need to measure the thyroid status in a way that integrates more information about the long-term thyroid status and not small changes in thyroid hormone levels. TSH is made by the pituitary gland in the brain, which integrates information about the signals of high and low levels from each of the different thyroid hormones.

Now we can measure the actual thyroid hormones — primarily we’re talking about T3 and T4 — but if we do that, we are relying on a single snapshot in the bloodstream at that moment. The levels might change throughout the day in response to ongoing metabolism and outside stresses. So we usually start by measuring the TSH level, which is a good representation of the compilation of all those things over the past 30 days or so.

Question: How do you describe a low TSH result to patients?

Dr. Leung: Whenever we encounter a low TSH level, we want to repeat the test because it is a dynamic test, and it can change in response to several factors. If it is indeed low, we’re thinking that perhaps there’s a little bit of extra thyroid hormone in the body. It can be either temporary or more chronic, but that higher amount of thyroid hormone is telling the pituitary gland in the brain to start making less. So TSH levels go low when we need less thyroid hormone.

Question: What are some of the reasons for a low TSH level?

Dr. Leung: One of the most common situations for a temporarily low TSH level I see is what we call nonthyroidal illness, like a common cold or just being under the weather. Other things that can artifactually lower the TSH level could be the use of steroids, such as prednisone for asthma or some sort of a rheumatologic condition. Also, the TSH level could be low if a person has been recently exposed to very high amounts of iodine, such as iodinated contrast needed for a CT scan.

If the TSH level remains persistently low, usually in the presence of high thyroid hormone (T3 and/or T4) levels, the most common reason for hyperthyroidism is Graves disease, in which there are autoantibodies — measurable in the blood — that can stimulate the thyroid gland in the neck to make extra thyroid hormone.

Question: And what does an elevated TSH level mean?

Dr. Leung: Again, we want to confirm that it is elevated. We need at least two tests to confirm a high TSH level. A persistently elevated TSH level is a signal there might be low thyroid hormone levels in the body, which could be transient or more longer lasting.

Question: What are some of the most common causes of an elevated TSH level?

Dr. Leung: If the TSH level is confirmed high and the thyroid hormone levels are low, the most common cause of hypothyroidism here in the United States is Hashimoto thyroiditis.

Globally, iodine deficiency is the most common reason for hypothyroidism and may be a problem in parts of the globe where there are endemically low iodine levels in soil, crops, and the food supply like not having enough iodized salt. The thyroid is reliant on having enough iodine as a micronutrient to make thyroid hormone. If it doesn’t, the thyroid really can’t make thyroid hormone. It’s important to also remember, though, that having too much iodine can result in hypo- or hyperthyroidism.

Dr. Tsai: I take a glance at their medication list. Some of the patients are on methimazole or levothyroxine, and those medications should be adjusted first to normalize the TSH level. Other medications like lithium and amiodarone can also cause elevated TSH levels. We are also seeing a lot of patients on cancer therapies, such as tyrosine kinase inhibitors or immunotherapy, that can cause an elevated TSH level.

Question: If the repeat TSH test shows that TSH levels are still elevated, what comes next in your workup?

Dr. Tsai: If there’s not a real clear-cut diagnosis, I’ll order the thyroid peroxidase antibody and the thyroglobulin antibody, although thyroid peroxidase antibody, which is indicative of autoimmune thyroid disease, alone is usually sufficient to make that diagnosis.

Question: Should clinicians follow thyroid antibodies over time?

Dr. Tsai: I usually don’t repeat the antibody tests. In those circumstances where patients who were diagnosed 50-60 years ago and perhaps it is unknown if they had the thyroid antibodies measured at the time and now they’re saying, “Do I actually have Hashimoto’s?” or “Do I really need to continue this for the rest of my life?” I do repeat antibody tests to help gauge if the patient’s levothyroxine can be stopped.

Question: How important is it to follow T4 or T3 levels?

Dr. Tsai: T4 and T3 levels can help differentiate overt thyroid dysfunction — where T3 and/or T4 levels will be abnormal — from subclinical thyroid dysfunction — where T3 and T4 levels would be normal. In general, although we do not fully appreciate the best metric to monitor hypo- or hyperthyroidism, because some patients with a normal TSH level still may have symptoms of thyroid dysfunction, these peripheral thyroid hormone levels are usually the most helpful at the time of initial diagnosis.

Question: What are your criteria for initiating treatment for hypothyroidism?

Dr. Tsai: If the TSH level > 10 mIU/L, I recommend levothyroxine hormone replacement. A lot of published data support clinical benefit in this group.

There is a gray area in those patients who have a TSH level higher than the upper limit of the reference range but less than 10. If the patient doesn’t have overt hypothyroid symptoms, I discuss the findings with the patient but don’t really feel eager to treat. I recommend checking the levels again in 6 months to see where that TSH goes, and if it worsens or becomes greater than 10 mIU/L, I then recommend levothyroxine hormone replacement.

It is also important to note that a TSH level of 5-7 may be an acceptable range for older patients, and they do not require levothyroxine.

The other category is patients whose TSH level is greater than the upper limit of the normal reference range but less than 10 and with overt hypothyroid symptoms such as fatigue, unintentional weight gain, constipation, or cold intolerance. In these patients, it is worthwhile to try a low dose of levothyroxine (25-50 mcg/d) and repeat TSH and free T4 tests in 6-8 weeks and see if the TSH level normalizes.

Dr. Leung: When you look at subclinical hypothyroidism, the situation of an isolated high TSH level in the setting of normal T4 levels, if the TSH level is mildly elevated in the 5-7 mIU/L range, there’s a 60% chance that it will normalize within 6 months.

Going back to Karen’s point, a lot of people are started and maintained on low doses of thyroid hormone forever and ever. A recent study on levothyroxine use found half of the prescriptions were unnecessary.

Question: In an era where many patients obtain much of their health information from TikTok, what’s your approach with patients with a normal TSH level who feel that they should have more testing or start treatment?

Dr. Tsai: Fatigue is one of the common referrals we get into our endocrinology practice, and everyone is convinced that their thyroid is the culprit. It is important to note, however, that fatigue can be due to different diseases such as anemia, depression, sleep disorders, or a recent viral illness.

TSH tests are readily available and cheap. I don’t mind ordering the lab test again if it helps give the patient some reassurance. I also find that patients are relieved once they hear from their endocrinologist that their thyroid is unlikely to be the cause of their fatigue.

Some other endocrine causes we may consider additionally working up include adrenal insufficiency, vitamin D deficiency, and diabetes. A comprehensive metabolic panel and complete blood count is part of my workup to rule out any gross electrolyte abnormalities or any new diagnosis of anemia, liver disease, or chronic kidney disease.

Question: What are your criteria for recommending that someone see an endocrinologist?

Dr. Tsai: Our primary care colleagues can do a workup and interpretation of thyroid function tests in most cases. In the situations where the thyroid function test results are discordant (ie, elevated TSH and elevated free T4 levels or low TSH and low free T4 levels) or difficult to interpret, it would be appropriate to refer the patient to an endocrinologist.

One of the common referrals that we do get from the community is a patient’s thyroid function tests going from hyperthyroid to hypothyroid without a clear explanation or the patient is suboptimally controlled with levothyroxine or methimazole. In those circumstances, it would be worthwhile to send to an endocrinologist try to discern an underlying cause or for optimization of medication.

Dr. Leung and Dr. Tsai had no financial disclosures.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Genetic Testing for ALS, Now a Standard, Creates a Path Toward Individualized Care

Article Type
Changed
Mon, 09/30/2024 - 15:24

 

The first therapy targeted at modifying a mutant gene associated with amyotrophic lateral sclerosis (ALS), approved in early 2023, has offered reassurance that the biology of ALS, when known, is targetable. Historically, the disease has been considered a clinical diagnosis, but the progress in identifying molecular mechanisms is permitting ALS to be understood as a biological entity and suggests rationally targeted therapies will be the way forward following the inadequacy of nonselective drugs.

Despite a narrow indication, the only therapy targeted at an ALS-associated gene so far, SOD1 ALS, supports the premise that the biology of ALS can be modified, according to Christina N. Fournier, MD, an associate professor in the Department of Neurology, Emory University, Atlanta, Georgia.

Christina N. Fournier, MD, is an associate professor in the Department of Neurology, Emory University, Atlanta, Georgia.
Dr. Christina N. Fournier


Rather than a single pathological entity, ALS is best understood as the end result of many different pathological processes. Each might require its own targeted therapy in order to interrupt the upstream biological pathways that drive disease.
 

About 15% of ALS Has An Identifiable Genetic Cause

A family history of ALS is present in about 10% of cases. A genetic cause can be identified in approximately 15%. Cases without an identifiable genetic etiology are considered sporadic. So far, the only approved therapy that modifies the function of a gene associated with ALS is tofersen (Qalsody, Biogen), an antisense oligonucleotide. Tofersen inhibits RNA transcription of the superoxide dismutase 1 (SOD1) gene to decrease production of the SOD1 protein.

This first gene therapy for ALS is a breakthrough, but it is indicated for only a small proportion of ALS patients. Even though SOD1 gene mutations represent the second most common genetic cause of ALS after the C90rf72 gene, the proportion of patients who are candidates for tofersen is low. Efficacy is expected only in about 1% of those with familial ALS and 1% of those with sporadic ALS, or about 2% of all patients with ALS.

The evidence of benefit from a treatment with a specific target has provided the basis for concluding that “we are onto something,” Dr. Fournier said. An expert in ALS, she sees reason for excitement about the prospects in treatment with the growing focus on the underlying pathways of disease rather than the downstream consequences.

“The hope is that new gene-targeted therapies will be developed in the future to treat the broader ALS population,” said Dr. Fournier, explaining that the move toward rationally targeted treatments, whether related to gene mutations or independent molecular pathways of ALS progression, has created excitement in the field.

 

Numerous Disease Processes Are Potentially Targetable

As treatments are developed to address nongenetic molecular processes that contribute to the risk or progression of ALS, such as neuroinflammation or abnormal protein misfolding and aggregation, individualized treatment is likely to become key. Just as not all genetic cases share mutations in the same gene, the key molecular drivers of disease are likely to differ between patients. If so, it is hoped that biomarkers reflective of this underlying biology can be identified to appropriately target treatments.

“The excitement behind the newer targets in clinical trials is based on both basic science and early clinical data that support treatment based on specific drivers of disease,” Dr. Fournier said.

In 2023 and just prior to the FDA approval of tofersen, a set of expert consensus guidelines were published calling for genetic testing to be offered to all patients with ALS. These recommendations suggested that SOD1, C9orf72, FUS, and TARDBP should be included routinely into the panel of genes evaluated, calling for additional genes to be added as they emerge as potential therapeutic targets.

Even before these guidelines were released, genetic testing was already being offered at many centers with expertise in ALS. The rationale was to differentiate ALS with a genetic etiology from that with a nongenetic etiology, as well as to counsel family members when genetic risk was identified, but genetic testing has now assumed new urgency. In addition to the potential for offering a specific treatment for SOD1-related ALS, patients with other genetic forms of disease might be candidates for genetically focused clinical trials.

Genetic testing should be performed as soon as a diagnosis of ALS is made, according to Dr. Fournier. Although not all patients have accepted genetic testing, particularly in the past when there was no immediate clinical gain from establishing the presence of a genetic mutation, she said there is no longer any controversy about clinical relevance.
 

Genetic Testing Is Key to Genetic Therapies

“We do not want to miss the opportunity to treat patients when we have the chance,” said Dr. Fournier, referring to both the likely advantage of an early start of the approved gene therapy as well as the opportunity to participate in a clinical trial with other gene therapies in development.

Prior to the approval of tofersen, riluzole and edaravone had been the only disease-modifying agents in widespread use, but these drugs are nonspecific. There are no established biomarkers for establishing which patients are most likely to benefit.

In the case of riluzole, a pivotal trial conducted 30 years ago showed a survival benefit relative to placebo at 12 months (74% vs. 58%; P = 0.014). In a retrospective study published in 2022 that evaluated survival in a database of 4778 ALS patients of whom 3446 received riluzole, early diagnosis of ALS and prompt treatment with riluzole was associated with longer survival than delayed treatment. The benefit of edaravone has been validated with clinical measures, such as the revised Amyotrophic Lateral Sclerosis Functional Scale (ALSFRS-R).

The retrospective study of riluzole provides the basis for predicting better benefits from disease-modifying therapies if started earlier in the course of ALS. The same premise will be explored with newer therapies that target ALS-associated genes.

 

 

Early Treatment Presumed More Effective

“We think that earlier treatment in the course of ALS is probably better for gene therapies as well,” Dr. Fournier said. She cautioned that follow-up is not yet long enough to confirm a survival benefit with tofersen, but she said it is reasonable to anticipate better and longer response when neurologic damage is limited. Citing the effect of gene therapy in spinal muscular atrophy (SMA), where progression is halted if gene therapy is initiated early in life, Dr. Fourier suggested that the emphasis on early treatment stems from the low likelihood for treatments to reverse functional impairments.

“It is conceivable that future treatments might be developed to reverse symptoms, but current drug development is largely aimed at slowing progression,” she explained. Under some circumstances, halting progression has the potential to allow some function to be regained, but as the etiologies of ALS and the pathways of progression are better understood, she believes that all targeted therapy will be started as early as possible to prevent rather than treat neurological damage.

Tofersen, the gene therapy for SOD1-ALS, has provided an opportunity to test the idea that it may be possible to prevent ALS. In a phase 3 trial called ATLAS, unaffected carriers of SOD1 variants that are associated with aggressive disease and high or complete penetrance are enrolled for a run-in phase (Part A) during which participants are followed for a rise in neurofilament light chain (NfL) levels. Based on a previous natural history study called the Pre-Symptomatic Familial ALS (Pre-fALS) study, NfL rises in the serum of unaffected SOD1 carriers prior to phenoconversion. A low NfL is an entry criterion for ATLAS.

 

ATLAS End Point Is Reduction in Phenoconversion to Clinically Manifest ALS

People in whom NfL rises above a predefined threshold during the run-in stage will be eligible for randomization (Part B) to receive either tofersen or placebo. Efficacy will be measured by comparing the rates of phenoconversion to clinically manifest ALS between those who receive placebo and those who receive tofersen.

Two other groups enrolled in ATLAS will be followed on open-label tofersen. One comprises people who phenoconvert during Part B and the other comprises those who develop ALS during the run-in and therefore are not enrolled in Part B. These patients, forming Parts C and D of the study, provide another set of data to evaluate whether earlier rather than later introduction of therapy provides better outcomes.

“There is a lot of interest and optimism about the trial,” said Dr. Fournier, who praised the trial design and thinks the hypothesis being explored “makes sense.”

Michael Benatar, MD, PhD, professor of neurology and public health, University of Miami School of Medicine, Miami, Florida, is the principal investigator of ATLAS and also leads the Pre-Symptomatic Familial ALS study together with a colleague, Joanne Wuu, Associate Director of Research at the University of Miami ALS Center. The hope from these initiatives, according to Dr. Fournier, is that ATLAS will offer broader learnings beyond just the SOD1 population, providing critical information about the optimal timing of treatment initiation.

The benefit from targeting genes considered causative for ALS is not yet a sure thing. A clinical trial targeting C9orf72, for example, failed to support an approvable therapy. There is a trial of a gene therapy for the FUS variant that is ongoing. Yet, the introduction of a gene therapy for SOD1 variant ALS has already established that highly targeted therapies can be effective, an important step forward after so many failed treatment trials with nonspecific drugs.

“We are seeing more and more therapies being developed to address specific ALS biology,” said Dr. Fournier, who predicts a pivot toward conceptualizing ALS as an array of pathologies rather than one disorder driven by a single mechanism. More effort is being directed to recognizing phenotypes as well as genotypes. Hopefully, more biomarkers that distinguish between ALS variants will emerge and help in individualizing treatment.

“We are not there yet, but I think many of us in the field see this as a way forward,” she said.
 

Multidisciplinary Care, Symptomatic Management, and Palliative Care Are Still Essential for ALS

Disease-modifying therapies are the ultimate goal in ALS, but Dr. Fournier said that the other side of the equation is multidisciplinary and palliative care. To the extent that almost all ALS therapies only modify the course of disease modestly, palliative care remains the cornerstone of day-to-day care.

“Multidisciplinary and palliative care are not necessarily novel, but they are still critically important. There are clear data to show that multidisciplinary care improves functional status and quality of life, and that this is meaningful to patients,” Dr. Fournier said.

There have been numerous improvements in the areas of multidisciplinary and palliative care, some of which can be credited to advancing technology. In centers of excellence, the multidisciplinary approach has been focused on helping patients sustain a sense of independence and self-worth.

Now robotics, devices, and software are being increasingly employed to extend patient capabilities even in relatively advanced stages of disease, according to Dr. Fournier. As one example, she cited current work in brain-computer interfaces to record electrical activity in the central nervous system to allow patients to communicate even when speech is impaired.

A focus on patient-centered clinical care is appropriate because it is the best current opportunity to improve the lives of patients with ALS. Clinically, this work is very rewarding, according to Dr. Fournier, who described ALS patients overall as generally ”very invested in advocacy and research initiatives and motivated to help others,” Dr. Fournier said.

“The diagnosis can be tough, but there is satisfaction in helping these patients navigate toward an acceptable and meaningful quality of life. They typically give a lot back,” she added.

Overall, there is a sense of progress in ALS, even though it remains a uniformly fatal disease. Dr. Fournier expressed hope that clinical research is reaching a tipping point and an emphasis on targeted treatments after a long list of failed trials over the past 30 years. However, with only one approved therapy modifying an ALS-associated gene, this approach is still in its early stages.

Dr. Fournier has financial relationships with Amylyx, Biogen, Corcept, Denali, Mitsubishi QurAlis, and Tanabe.
 

Suggested Reading

Benatar M et al. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: the ATLAS Study. Neurotherapeutics. 2022 Jul;19(4):1248-1258. doi: 10.1007/s13311-022-01237-4.

Geronimo A et al. Ten Years of Riluzole Use in a Tertiary ALS Clinic. Muscle Nerve. 2022 Jun;65(6):659-666. doi: 10.1002/mus.27541.

Roggenbuck J et al. Evidence-Based Consensus Guidelines for ALS Genetic Testing and Counseling. Ann Clin Transl Neurol. 2023 Nov;10(11):2074-2091. doi: 10.1002/acn3.51895.

Publications
Topics
Sections

 

The first therapy targeted at modifying a mutant gene associated with amyotrophic lateral sclerosis (ALS), approved in early 2023, has offered reassurance that the biology of ALS, when known, is targetable. Historically, the disease has been considered a clinical diagnosis, but the progress in identifying molecular mechanisms is permitting ALS to be understood as a biological entity and suggests rationally targeted therapies will be the way forward following the inadequacy of nonselective drugs.

Despite a narrow indication, the only therapy targeted at an ALS-associated gene so far, SOD1 ALS, supports the premise that the biology of ALS can be modified, according to Christina N. Fournier, MD, an associate professor in the Department of Neurology, Emory University, Atlanta, Georgia.

Christina N. Fournier, MD, is an associate professor in the Department of Neurology, Emory University, Atlanta, Georgia.
Dr. Christina N. Fournier


Rather than a single pathological entity, ALS is best understood as the end result of many different pathological processes. Each might require its own targeted therapy in order to interrupt the upstream biological pathways that drive disease.
 

About 15% of ALS Has An Identifiable Genetic Cause

A family history of ALS is present in about 10% of cases. A genetic cause can be identified in approximately 15%. Cases without an identifiable genetic etiology are considered sporadic. So far, the only approved therapy that modifies the function of a gene associated with ALS is tofersen (Qalsody, Biogen), an antisense oligonucleotide. Tofersen inhibits RNA transcription of the superoxide dismutase 1 (SOD1) gene to decrease production of the SOD1 protein.

This first gene therapy for ALS is a breakthrough, but it is indicated for only a small proportion of ALS patients. Even though SOD1 gene mutations represent the second most common genetic cause of ALS after the C90rf72 gene, the proportion of patients who are candidates for tofersen is low. Efficacy is expected only in about 1% of those with familial ALS and 1% of those with sporadic ALS, or about 2% of all patients with ALS.

The evidence of benefit from a treatment with a specific target has provided the basis for concluding that “we are onto something,” Dr. Fournier said. An expert in ALS, she sees reason for excitement about the prospects in treatment with the growing focus on the underlying pathways of disease rather than the downstream consequences.

“The hope is that new gene-targeted therapies will be developed in the future to treat the broader ALS population,” said Dr. Fournier, explaining that the move toward rationally targeted treatments, whether related to gene mutations or independent molecular pathways of ALS progression, has created excitement in the field.

 

Numerous Disease Processes Are Potentially Targetable

As treatments are developed to address nongenetic molecular processes that contribute to the risk or progression of ALS, such as neuroinflammation or abnormal protein misfolding and aggregation, individualized treatment is likely to become key. Just as not all genetic cases share mutations in the same gene, the key molecular drivers of disease are likely to differ between patients. If so, it is hoped that biomarkers reflective of this underlying biology can be identified to appropriately target treatments.

“The excitement behind the newer targets in clinical trials is based on both basic science and early clinical data that support treatment based on specific drivers of disease,” Dr. Fournier said.

In 2023 and just prior to the FDA approval of tofersen, a set of expert consensus guidelines were published calling for genetic testing to be offered to all patients with ALS. These recommendations suggested that SOD1, C9orf72, FUS, and TARDBP should be included routinely into the panel of genes evaluated, calling for additional genes to be added as they emerge as potential therapeutic targets.

Even before these guidelines were released, genetic testing was already being offered at many centers with expertise in ALS. The rationale was to differentiate ALS with a genetic etiology from that with a nongenetic etiology, as well as to counsel family members when genetic risk was identified, but genetic testing has now assumed new urgency. In addition to the potential for offering a specific treatment for SOD1-related ALS, patients with other genetic forms of disease might be candidates for genetically focused clinical trials.

Genetic testing should be performed as soon as a diagnosis of ALS is made, according to Dr. Fournier. Although not all patients have accepted genetic testing, particularly in the past when there was no immediate clinical gain from establishing the presence of a genetic mutation, she said there is no longer any controversy about clinical relevance.
 

Genetic Testing Is Key to Genetic Therapies

“We do not want to miss the opportunity to treat patients when we have the chance,” said Dr. Fournier, referring to both the likely advantage of an early start of the approved gene therapy as well as the opportunity to participate in a clinical trial with other gene therapies in development.

Prior to the approval of tofersen, riluzole and edaravone had been the only disease-modifying agents in widespread use, but these drugs are nonspecific. There are no established biomarkers for establishing which patients are most likely to benefit.

In the case of riluzole, a pivotal trial conducted 30 years ago showed a survival benefit relative to placebo at 12 months (74% vs. 58%; P = 0.014). In a retrospective study published in 2022 that evaluated survival in a database of 4778 ALS patients of whom 3446 received riluzole, early diagnosis of ALS and prompt treatment with riluzole was associated with longer survival than delayed treatment. The benefit of edaravone has been validated with clinical measures, such as the revised Amyotrophic Lateral Sclerosis Functional Scale (ALSFRS-R).

The retrospective study of riluzole provides the basis for predicting better benefits from disease-modifying therapies if started earlier in the course of ALS. The same premise will be explored with newer therapies that target ALS-associated genes.

 

 

Early Treatment Presumed More Effective

“We think that earlier treatment in the course of ALS is probably better for gene therapies as well,” Dr. Fournier said. She cautioned that follow-up is not yet long enough to confirm a survival benefit with tofersen, but she said it is reasonable to anticipate better and longer response when neurologic damage is limited. Citing the effect of gene therapy in spinal muscular atrophy (SMA), where progression is halted if gene therapy is initiated early in life, Dr. Fourier suggested that the emphasis on early treatment stems from the low likelihood for treatments to reverse functional impairments.

“It is conceivable that future treatments might be developed to reverse symptoms, but current drug development is largely aimed at slowing progression,” she explained. Under some circumstances, halting progression has the potential to allow some function to be regained, but as the etiologies of ALS and the pathways of progression are better understood, she believes that all targeted therapy will be started as early as possible to prevent rather than treat neurological damage.

Tofersen, the gene therapy for SOD1-ALS, has provided an opportunity to test the idea that it may be possible to prevent ALS. In a phase 3 trial called ATLAS, unaffected carriers of SOD1 variants that are associated with aggressive disease and high or complete penetrance are enrolled for a run-in phase (Part A) during which participants are followed for a rise in neurofilament light chain (NfL) levels. Based on a previous natural history study called the Pre-Symptomatic Familial ALS (Pre-fALS) study, NfL rises in the serum of unaffected SOD1 carriers prior to phenoconversion. A low NfL is an entry criterion for ATLAS.

 

ATLAS End Point Is Reduction in Phenoconversion to Clinically Manifest ALS

People in whom NfL rises above a predefined threshold during the run-in stage will be eligible for randomization (Part B) to receive either tofersen or placebo. Efficacy will be measured by comparing the rates of phenoconversion to clinically manifest ALS between those who receive placebo and those who receive tofersen.

Two other groups enrolled in ATLAS will be followed on open-label tofersen. One comprises people who phenoconvert during Part B and the other comprises those who develop ALS during the run-in and therefore are not enrolled in Part B. These patients, forming Parts C and D of the study, provide another set of data to evaluate whether earlier rather than later introduction of therapy provides better outcomes.

“There is a lot of interest and optimism about the trial,” said Dr. Fournier, who praised the trial design and thinks the hypothesis being explored “makes sense.”

Michael Benatar, MD, PhD, professor of neurology and public health, University of Miami School of Medicine, Miami, Florida, is the principal investigator of ATLAS and also leads the Pre-Symptomatic Familial ALS study together with a colleague, Joanne Wuu, Associate Director of Research at the University of Miami ALS Center. The hope from these initiatives, according to Dr. Fournier, is that ATLAS will offer broader learnings beyond just the SOD1 population, providing critical information about the optimal timing of treatment initiation.

The benefit from targeting genes considered causative for ALS is not yet a sure thing. A clinical trial targeting C9orf72, for example, failed to support an approvable therapy. There is a trial of a gene therapy for the FUS variant that is ongoing. Yet, the introduction of a gene therapy for SOD1 variant ALS has already established that highly targeted therapies can be effective, an important step forward after so many failed treatment trials with nonspecific drugs.

“We are seeing more and more therapies being developed to address specific ALS biology,” said Dr. Fournier, who predicts a pivot toward conceptualizing ALS as an array of pathologies rather than one disorder driven by a single mechanism. More effort is being directed to recognizing phenotypes as well as genotypes. Hopefully, more biomarkers that distinguish between ALS variants will emerge and help in individualizing treatment.

“We are not there yet, but I think many of us in the field see this as a way forward,” she said.
 

Multidisciplinary Care, Symptomatic Management, and Palliative Care Are Still Essential for ALS

Disease-modifying therapies are the ultimate goal in ALS, but Dr. Fournier said that the other side of the equation is multidisciplinary and palliative care. To the extent that almost all ALS therapies only modify the course of disease modestly, palliative care remains the cornerstone of day-to-day care.

“Multidisciplinary and palliative care are not necessarily novel, but they are still critically important. There are clear data to show that multidisciplinary care improves functional status and quality of life, and that this is meaningful to patients,” Dr. Fournier said.

There have been numerous improvements in the areas of multidisciplinary and palliative care, some of which can be credited to advancing technology. In centers of excellence, the multidisciplinary approach has been focused on helping patients sustain a sense of independence and self-worth.

Now robotics, devices, and software are being increasingly employed to extend patient capabilities even in relatively advanced stages of disease, according to Dr. Fournier. As one example, she cited current work in brain-computer interfaces to record electrical activity in the central nervous system to allow patients to communicate even when speech is impaired.

A focus on patient-centered clinical care is appropriate because it is the best current opportunity to improve the lives of patients with ALS. Clinically, this work is very rewarding, according to Dr. Fournier, who described ALS patients overall as generally ”very invested in advocacy and research initiatives and motivated to help others,” Dr. Fournier said.

“The diagnosis can be tough, but there is satisfaction in helping these patients navigate toward an acceptable and meaningful quality of life. They typically give a lot back,” she added.

Overall, there is a sense of progress in ALS, even though it remains a uniformly fatal disease. Dr. Fournier expressed hope that clinical research is reaching a tipping point and an emphasis on targeted treatments after a long list of failed trials over the past 30 years. However, with only one approved therapy modifying an ALS-associated gene, this approach is still in its early stages.

Dr. Fournier has financial relationships with Amylyx, Biogen, Corcept, Denali, Mitsubishi QurAlis, and Tanabe.
 

Suggested Reading

Benatar M et al. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: the ATLAS Study. Neurotherapeutics. 2022 Jul;19(4):1248-1258. doi: 10.1007/s13311-022-01237-4.

Geronimo A et al. Ten Years of Riluzole Use in a Tertiary ALS Clinic. Muscle Nerve. 2022 Jun;65(6):659-666. doi: 10.1002/mus.27541.

Roggenbuck J et al. Evidence-Based Consensus Guidelines for ALS Genetic Testing and Counseling. Ann Clin Transl Neurol. 2023 Nov;10(11):2074-2091. doi: 10.1002/acn3.51895.

 

The first therapy targeted at modifying a mutant gene associated with amyotrophic lateral sclerosis (ALS), approved in early 2023, has offered reassurance that the biology of ALS, when known, is targetable. Historically, the disease has been considered a clinical diagnosis, but the progress in identifying molecular mechanisms is permitting ALS to be understood as a biological entity and suggests rationally targeted therapies will be the way forward following the inadequacy of nonselective drugs.

Despite a narrow indication, the only therapy targeted at an ALS-associated gene so far, SOD1 ALS, supports the premise that the biology of ALS can be modified, according to Christina N. Fournier, MD, an associate professor in the Department of Neurology, Emory University, Atlanta, Georgia.

Christina N. Fournier, MD, is an associate professor in the Department of Neurology, Emory University, Atlanta, Georgia.
Dr. Christina N. Fournier


Rather than a single pathological entity, ALS is best understood as the end result of many different pathological processes. Each might require its own targeted therapy in order to interrupt the upstream biological pathways that drive disease.
 

About 15% of ALS Has An Identifiable Genetic Cause

A family history of ALS is present in about 10% of cases. A genetic cause can be identified in approximately 15%. Cases without an identifiable genetic etiology are considered sporadic. So far, the only approved therapy that modifies the function of a gene associated with ALS is tofersen (Qalsody, Biogen), an antisense oligonucleotide. Tofersen inhibits RNA transcription of the superoxide dismutase 1 (SOD1) gene to decrease production of the SOD1 protein.

This first gene therapy for ALS is a breakthrough, but it is indicated for only a small proportion of ALS patients. Even though SOD1 gene mutations represent the second most common genetic cause of ALS after the C90rf72 gene, the proportion of patients who are candidates for tofersen is low. Efficacy is expected only in about 1% of those with familial ALS and 1% of those with sporadic ALS, or about 2% of all patients with ALS.

The evidence of benefit from a treatment with a specific target has provided the basis for concluding that “we are onto something,” Dr. Fournier said. An expert in ALS, she sees reason for excitement about the prospects in treatment with the growing focus on the underlying pathways of disease rather than the downstream consequences.

“The hope is that new gene-targeted therapies will be developed in the future to treat the broader ALS population,” said Dr. Fournier, explaining that the move toward rationally targeted treatments, whether related to gene mutations or independent molecular pathways of ALS progression, has created excitement in the field.

 

Numerous Disease Processes Are Potentially Targetable

As treatments are developed to address nongenetic molecular processes that contribute to the risk or progression of ALS, such as neuroinflammation or abnormal protein misfolding and aggregation, individualized treatment is likely to become key. Just as not all genetic cases share mutations in the same gene, the key molecular drivers of disease are likely to differ between patients. If so, it is hoped that biomarkers reflective of this underlying biology can be identified to appropriately target treatments.

“The excitement behind the newer targets in clinical trials is based on both basic science and early clinical data that support treatment based on specific drivers of disease,” Dr. Fournier said.

In 2023 and just prior to the FDA approval of tofersen, a set of expert consensus guidelines were published calling for genetic testing to be offered to all patients with ALS. These recommendations suggested that SOD1, C9orf72, FUS, and TARDBP should be included routinely into the panel of genes evaluated, calling for additional genes to be added as they emerge as potential therapeutic targets.

Even before these guidelines were released, genetic testing was already being offered at many centers with expertise in ALS. The rationale was to differentiate ALS with a genetic etiology from that with a nongenetic etiology, as well as to counsel family members when genetic risk was identified, but genetic testing has now assumed new urgency. In addition to the potential for offering a specific treatment for SOD1-related ALS, patients with other genetic forms of disease might be candidates for genetically focused clinical trials.

Genetic testing should be performed as soon as a diagnosis of ALS is made, according to Dr. Fournier. Although not all patients have accepted genetic testing, particularly in the past when there was no immediate clinical gain from establishing the presence of a genetic mutation, she said there is no longer any controversy about clinical relevance.
 

Genetic Testing Is Key to Genetic Therapies

“We do not want to miss the opportunity to treat patients when we have the chance,” said Dr. Fournier, referring to both the likely advantage of an early start of the approved gene therapy as well as the opportunity to participate in a clinical trial with other gene therapies in development.

Prior to the approval of tofersen, riluzole and edaravone had been the only disease-modifying agents in widespread use, but these drugs are nonspecific. There are no established biomarkers for establishing which patients are most likely to benefit.

In the case of riluzole, a pivotal trial conducted 30 years ago showed a survival benefit relative to placebo at 12 months (74% vs. 58%; P = 0.014). In a retrospective study published in 2022 that evaluated survival in a database of 4778 ALS patients of whom 3446 received riluzole, early diagnosis of ALS and prompt treatment with riluzole was associated with longer survival than delayed treatment. The benefit of edaravone has been validated with clinical measures, such as the revised Amyotrophic Lateral Sclerosis Functional Scale (ALSFRS-R).

The retrospective study of riluzole provides the basis for predicting better benefits from disease-modifying therapies if started earlier in the course of ALS. The same premise will be explored with newer therapies that target ALS-associated genes.

 

 

Early Treatment Presumed More Effective

“We think that earlier treatment in the course of ALS is probably better for gene therapies as well,” Dr. Fournier said. She cautioned that follow-up is not yet long enough to confirm a survival benefit with tofersen, but she said it is reasonable to anticipate better and longer response when neurologic damage is limited. Citing the effect of gene therapy in spinal muscular atrophy (SMA), where progression is halted if gene therapy is initiated early in life, Dr. Fourier suggested that the emphasis on early treatment stems from the low likelihood for treatments to reverse functional impairments.

“It is conceivable that future treatments might be developed to reverse symptoms, but current drug development is largely aimed at slowing progression,” she explained. Under some circumstances, halting progression has the potential to allow some function to be regained, but as the etiologies of ALS and the pathways of progression are better understood, she believes that all targeted therapy will be started as early as possible to prevent rather than treat neurological damage.

Tofersen, the gene therapy for SOD1-ALS, has provided an opportunity to test the idea that it may be possible to prevent ALS. In a phase 3 trial called ATLAS, unaffected carriers of SOD1 variants that are associated with aggressive disease and high or complete penetrance are enrolled for a run-in phase (Part A) during which participants are followed for a rise in neurofilament light chain (NfL) levels. Based on a previous natural history study called the Pre-Symptomatic Familial ALS (Pre-fALS) study, NfL rises in the serum of unaffected SOD1 carriers prior to phenoconversion. A low NfL is an entry criterion for ATLAS.

 

ATLAS End Point Is Reduction in Phenoconversion to Clinically Manifest ALS

People in whom NfL rises above a predefined threshold during the run-in stage will be eligible for randomization (Part B) to receive either tofersen or placebo. Efficacy will be measured by comparing the rates of phenoconversion to clinically manifest ALS between those who receive placebo and those who receive tofersen.

Two other groups enrolled in ATLAS will be followed on open-label tofersen. One comprises people who phenoconvert during Part B and the other comprises those who develop ALS during the run-in and therefore are not enrolled in Part B. These patients, forming Parts C and D of the study, provide another set of data to evaluate whether earlier rather than later introduction of therapy provides better outcomes.

“There is a lot of interest and optimism about the trial,” said Dr. Fournier, who praised the trial design and thinks the hypothesis being explored “makes sense.”

Michael Benatar, MD, PhD, professor of neurology and public health, University of Miami School of Medicine, Miami, Florida, is the principal investigator of ATLAS and also leads the Pre-Symptomatic Familial ALS study together with a colleague, Joanne Wuu, Associate Director of Research at the University of Miami ALS Center. The hope from these initiatives, according to Dr. Fournier, is that ATLAS will offer broader learnings beyond just the SOD1 population, providing critical information about the optimal timing of treatment initiation.

The benefit from targeting genes considered causative for ALS is not yet a sure thing. A clinical trial targeting C9orf72, for example, failed to support an approvable therapy. There is a trial of a gene therapy for the FUS variant that is ongoing. Yet, the introduction of a gene therapy for SOD1 variant ALS has already established that highly targeted therapies can be effective, an important step forward after so many failed treatment trials with nonspecific drugs.

“We are seeing more and more therapies being developed to address specific ALS biology,” said Dr. Fournier, who predicts a pivot toward conceptualizing ALS as an array of pathologies rather than one disorder driven by a single mechanism. More effort is being directed to recognizing phenotypes as well as genotypes. Hopefully, more biomarkers that distinguish between ALS variants will emerge and help in individualizing treatment.

“We are not there yet, but I think many of us in the field see this as a way forward,” she said.
 

Multidisciplinary Care, Symptomatic Management, and Palliative Care Are Still Essential for ALS

Disease-modifying therapies are the ultimate goal in ALS, but Dr. Fournier said that the other side of the equation is multidisciplinary and palliative care. To the extent that almost all ALS therapies only modify the course of disease modestly, palliative care remains the cornerstone of day-to-day care.

“Multidisciplinary and palliative care are not necessarily novel, but they are still critically important. There are clear data to show that multidisciplinary care improves functional status and quality of life, and that this is meaningful to patients,” Dr. Fournier said.

There have been numerous improvements in the areas of multidisciplinary and palliative care, some of which can be credited to advancing technology. In centers of excellence, the multidisciplinary approach has been focused on helping patients sustain a sense of independence and self-worth.

Now robotics, devices, and software are being increasingly employed to extend patient capabilities even in relatively advanced stages of disease, according to Dr. Fournier. As one example, she cited current work in brain-computer interfaces to record electrical activity in the central nervous system to allow patients to communicate even when speech is impaired.

A focus on patient-centered clinical care is appropriate because it is the best current opportunity to improve the lives of patients with ALS. Clinically, this work is very rewarding, according to Dr. Fournier, who described ALS patients overall as generally ”very invested in advocacy and research initiatives and motivated to help others,” Dr. Fournier said.

“The diagnosis can be tough, but there is satisfaction in helping these patients navigate toward an acceptable and meaningful quality of life. They typically give a lot back,” she added.

Overall, there is a sense of progress in ALS, even though it remains a uniformly fatal disease. Dr. Fournier expressed hope that clinical research is reaching a tipping point and an emphasis on targeted treatments after a long list of failed trials over the past 30 years. However, with only one approved therapy modifying an ALS-associated gene, this approach is still in its early stages.

Dr. Fournier has financial relationships with Amylyx, Biogen, Corcept, Denali, Mitsubishi QurAlis, and Tanabe.
 

Suggested Reading

Benatar M et al. Design of a Randomized, Placebo-Controlled, Phase 3 Trial of Tofersen Initiated in Clinically Presymptomatic SOD1 Variant Carriers: the ATLAS Study. Neurotherapeutics. 2022 Jul;19(4):1248-1258. doi: 10.1007/s13311-022-01237-4.

Geronimo A et al. Ten Years of Riluzole Use in a Tertiary ALS Clinic. Muscle Nerve. 2022 Jun;65(6):659-666. doi: 10.1002/mus.27541.

Roggenbuck J et al. Evidence-Based Consensus Guidelines for ALS Genetic Testing and Counseling. Ann Clin Transl Neurol. 2023 Nov;10(11):2074-2091. doi: 10.1002/acn3.51895.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

McDonald Criteria Update Aims to Simplify, Speed MS Diagnosis

Article Type
Changed
Wed, 09/25/2024 - 13:35

Multiple Sclerosis (MS) experts are recommending updates to the 2017 McDonald diagnostic criteria in order to make diagnosis easier, faster, and more accurate.

Among its recommendations, the expert panel advises incorporating optic nerve imaging for diagnosis and applying stricter criteria for older patients. In addition, it proposes that radiologically isolated syndrome (RIS) may be diagnosed as MS in certain cases and that disease dissemination in time (DIT) should no longer be required. 

The proposed criteria changes were presented at the 2024 ECTRIMS annual meeting.

Committee member Xavier Montalban, MD, PhD, from the Department of Neurology and the MS Centre of Catalonia at Vall d’Hebron University Hospital in Barcelona, Spain, told conference attendees that MS is a diagnosis of exclusion.

Brain and spinal cord MRI remains the most useful paraclinical test to diagnose the disease, he said, and an abnormal MRI showing typical lesions is required.

Dr. Montalban noted that optic neuritis is the first manifestation of MS in 25%-35% of cases with clinically isolated syndrome (CIS) — one of the four MS disease courses.

Therefore, he said, the panel is recommending that the optic nerve serve as the “fifth topography” or a fifth anatomical location to demonstrate dissemination in space (DIS) if there’s no better explanation for optic nerve pathology, he said. 

Considerable evidence supports the minimal threshold of at least one lesion in at least two of the five topographies after including the optic nerve, he added.
 

DIS Alone Sufficient?

The panel also concluded that demonstrating DIS alone, without the need for DIT or positive cerebrospinal fluid (CSF), may be sufficient for an MS diagnosis. Currently, both DIS and DIT are required.

The committee broached the topic of RIS, which is identified by the incidental discovery of central nervous system (CNS) white matter T2-weighted hyperintense foci on MRI. These hyperintense foci demonstrate morphological and spatial characteristics highly typical of MS but without clinical symptomatology related to inflammatory demyelination.

Dr. Montalban noted that most patients with RIS will develop MS within 10 years. For these individuals, the panel concluded that the following criteria are sufficient for an MS diagnosis: fulfilling both DIS and DIT; fulfilling DIS and the presence of oligoclonal bands (OCBs) in the cerebrospinal fluid; or fulfilling DIS along with six or more central vein signs (CVS).

The panel proposes the addition of CVS and paramagnetic rim lesions, which are MRI markers of chronic active lesions, as optional tools for MS diagnosis in certain situations. Demonstration of CVS by MRI can increase specificity, said Dr. Montalban.

Evidence also suggests that kappa free light chains (KFLCs) could serve as a valid, simpler, and rater-independent alternative to detecting OCBs, he added. Because KFLCs are interchangeable with OCBs, they can be used in place of OCBs for diagnosing MS through CSF analysis.
 

Stricter Criteria

The panel is also calling for stricter criteria for confirming an MS diagnosis in those over age 50 or individuals with headache or vascular disorders. In such patients, they strongly recommend additional features such as a spinal cord lesion, positive CSF, and CVS select 6 (six positive lesions).

The panel is also recommending laboratory tests (MOG-IgG Ab) to confirm a diagnosis in children and adolescents. Dr. Montalban noted the presence of CVS in about 50% of T2 lesions strongly suggests MS in this population.

Primary progressive MS (PPMS) requires evidence of clinical progression over at least 12 months. The committee determined that the same criteria for relapsing-remitting MS could be used for PPMS. 

Having a single, unified framework of diagnostic criteria will be “very useful,” said Dr. Montalban.

During the same meeting session, Marcello Moccia, MD, PhD, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, London, England, presented examples of patients for whom the revised criteria could be beneficial. 

These examples help illustrate how using the new criteria, for example optic nerve imaging, could lead to earlier diagnoses, and, in some cases, easier diagnoses, possibly with less CSF, he said. It could also lead to fewer misdiagnoses, he added, thanks to high-specificity tools.

Implementing the new criteria could offer greater flexibility and reduce complexity, Dr. Moccia concluded, adding that not every patient with suspected MS requires exhaustive testing.

The committee’s next steps will include consulting with the wider MS community and preparing the information for publication, said Dr. Montalban.

Commenting on the proposals, Bruce Bebo, executive vice president of research, National MS Society, agreed the proposed changes to the McDonald Criteria will make diagnosing MS “faster and easier.”

“Importantly, we are providing guidance that is inclusive — how to confirm diagnoses in children, or in people over the age of 50,” said Dr. Bebo. “We’re bringing the latest research and imaging technology to the forefront, to help people with MS get treatment faster, so they can live their best lives.”

Dr. Montalban’s institution has received compensation for lecture honoraria and travel expenses, participation in scientific meetings, clinical trial steering committee membership, or clinical advisory board participation in recent years from AbbVie, Actelion, Alexion, Bial PD, Biogen, Bristol Myers Squibb/Celgene, EMD Serona, Genzyme, Hoffmann-La Roche, Immunic Therapeutics, Janssen Pharmaceuticals, MedDay, Merck, Mylan, Nervgen, Neuraxpharm, Novartis, PeerVoice, Samsung-Biosys Sandoz Sanofi-Genzyme, Teva Pharmaceuticals, TG Therapeutics, EXCEMED, ECTRIMS, MSIF, and NMSS or any of their affiliates. Dr. Moccia reports receiving a salary from University of Naples, Policlinico University Hospital (Naples) and Neurology (US); research grants from MUR PNRR Extended Partnership, ECTRIMS-MAGNIMS, UK MS Society, and Merck; honoraria from AbbVie, Biogen, BMS Celgene, Ipsen, Jansen, Merck, Novartis, Roche, and Sanofi-Genzyme. 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Multiple Sclerosis (MS) experts are recommending updates to the 2017 McDonald diagnostic criteria in order to make diagnosis easier, faster, and more accurate.

Among its recommendations, the expert panel advises incorporating optic nerve imaging for diagnosis and applying stricter criteria for older patients. In addition, it proposes that radiologically isolated syndrome (RIS) may be diagnosed as MS in certain cases and that disease dissemination in time (DIT) should no longer be required. 

The proposed criteria changes were presented at the 2024 ECTRIMS annual meeting.

Committee member Xavier Montalban, MD, PhD, from the Department of Neurology and the MS Centre of Catalonia at Vall d’Hebron University Hospital in Barcelona, Spain, told conference attendees that MS is a diagnosis of exclusion.

Brain and spinal cord MRI remains the most useful paraclinical test to diagnose the disease, he said, and an abnormal MRI showing typical lesions is required.

Dr. Montalban noted that optic neuritis is the first manifestation of MS in 25%-35% of cases with clinically isolated syndrome (CIS) — one of the four MS disease courses.

Therefore, he said, the panel is recommending that the optic nerve serve as the “fifth topography” or a fifth anatomical location to demonstrate dissemination in space (DIS) if there’s no better explanation for optic nerve pathology, he said. 

Considerable evidence supports the minimal threshold of at least one lesion in at least two of the five topographies after including the optic nerve, he added.
 

DIS Alone Sufficient?

The panel also concluded that demonstrating DIS alone, without the need for DIT or positive cerebrospinal fluid (CSF), may be sufficient for an MS diagnosis. Currently, both DIS and DIT are required.

The committee broached the topic of RIS, which is identified by the incidental discovery of central nervous system (CNS) white matter T2-weighted hyperintense foci on MRI. These hyperintense foci demonstrate morphological and spatial characteristics highly typical of MS but without clinical symptomatology related to inflammatory demyelination.

Dr. Montalban noted that most patients with RIS will develop MS within 10 years. For these individuals, the panel concluded that the following criteria are sufficient for an MS diagnosis: fulfilling both DIS and DIT; fulfilling DIS and the presence of oligoclonal bands (OCBs) in the cerebrospinal fluid; or fulfilling DIS along with six or more central vein signs (CVS).

The panel proposes the addition of CVS and paramagnetic rim lesions, which are MRI markers of chronic active lesions, as optional tools for MS diagnosis in certain situations. Demonstration of CVS by MRI can increase specificity, said Dr. Montalban.

Evidence also suggests that kappa free light chains (KFLCs) could serve as a valid, simpler, and rater-independent alternative to detecting OCBs, he added. Because KFLCs are interchangeable with OCBs, they can be used in place of OCBs for diagnosing MS through CSF analysis.
 

Stricter Criteria

The panel is also calling for stricter criteria for confirming an MS diagnosis in those over age 50 or individuals with headache or vascular disorders. In such patients, they strongly recommend additional features such as a spinal cord lesion, positive CSF, and CVS select 6 (six positive lesions).

The panel is also recommending laboratory tests (MOG-IgG Ab) to confirm a diagnosis in children and adolescents. Dr. Montalban noted the presence of CVS in about 50% of T2 lesions strongly suggests MS in this population.

Primary progressive MS (PPMS) requires evidence of clinical progression over at least 12 months. The committee determined that the same criteria for relapsing-remitting MS could be used for PPMS. 

Having a single, unified framework of diagnostic criteria will be “very useful,” said Dr. Montalban.

During the same meeting session, Marcello Moccia, MD, PhD, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, London, England, presented examples of patients for whom the revised criteria could be beneficial. 

These examples help illustrate how using the new criteria, for example optic nerve imaging, could lead to earlier diagnoses, and, in some cases, easier diagnoses, possibly with less CSF, he said. It could also lead to fewer misdiagnoses, he added, thanks to high-specificity tools.

Implementing the new criteria could offer greater flexibility and reduce complexity, Dr. Moccia concluded, adding that not every patient with suspected MS requires exhaustive testing.

The committee’s next steps will include consulting with the wider MS community and preparing the information for publication, said Dr. Montalban.

Commenting on the proposals, Bruce Bebo, executive vice president of research, National MS Society, agreed the proposed changes to the McDonald Criteria will make diagnosing MS “faster and easier.”

“Importantly, we are providing guidance that is inclusive — how to confirm diagnoses in children, or in people over the age of 50,” said Dr. Bebo. “We’re bringing the latest research and imaging technology to the forefront, to help people with MS get treatment faster, so they can live their best lives.”

Dr. Montalban’s institution has received compensation for lecture honoraria and travel expenses, participation in scientific meetings, clinical trial steering committee membership, or clinical advisory board participation in recent years from AbbVie, Actelion, Alexion, Bial PD, Biogen, Bristol Myers Squibb/Celgene, EMD Serona, Genzyme, Hoffmann-La Roche, Immunic Therapeutics, Janssen Pharmaceuticals, MedDay, Merck, Mylan, Nervgen, Neuraxpharm, Novartis, PeerVoice, Samsung-Biosys Sandoz Sanofi-Genzyme, Teva Pharmaceuticals, TG Therapeutics, EXCEMED, ECTRIMS, MSIF, and NMSS or any of their affiliates. Dr. Moccia reports receiving a salary from University of Naples, Policlinico University Hospital (Naples) and Neurology (US); research grants from MUR PNRR Extended Partnership, ECTRIMS-MAGNIMS, UK MS Society, and Merck; honoraria from AbbVie, Biogen, BMS Celgene, Ipsen, Jansen, Merck, Novartis, Roche, and Sanofi-Genzyme. 

A version of this article appeared on Medscape.com.

Multiple Sclerosis (MS) experts are recommending updates to the 2017 McDonald diagnostic criteria in order to make diagnosis easier, faster, and more accurate.

Among its recommendations, the expert panel advises incorporating optic nerve imaging for diagnosis and applying stricter criteria for older patients. In addition, it proposes that radiologically isolated syndrome (RIS) may be diagnosed as MS in certain cases and that disease dissemination in time (DIT) should no longer be required. 

The proposed criteria changes were presented at the 2024 ECTRIMS annual meeting.

Committee member Xavier Montalban, MD, PhD, from the Department of Neurology and the MS Centre of Catalonia at Vall d’Hebron University Hospital in Barcelona, Spain, told conference attendees that MS is a diagnosis of exclusion.

Brain and spinal cord MRI remains the most useful paraclinical test to diagnose the disease, he said, and an abnormal MRI showing typical lesions is required.

Dr. Montalban noted that optic neuritis is the first manifestation of MS in 25%-35% of cases with clinically isolated syndrome (CIS) — one of the four MS disease courses.

Therefore, he said, the panel is recommending that the optic nerve serve as the “fifth topography” or a fifth anatomical location to demonstrate dissemination in space (DIS) if there’s no better explanation for optic nerve pathology, he said. 

Considerable evidence supports the minimal threshold of at least one lesion in at least two of the five topographies after including the optic nerve, he added.
 

DIS Alone Sufficient?

The panel also concluded that demonstrating DIS alone, without the need for DIT or positive cerebrospinal fluid (CSF), may be sufficient for an MS diagnosis. Currently, both DIS and DIT are required.

The committee broached the topic of RIS, which is identified by the incidental discovery of central nervous system (CNS) white matter T2-weighted hyperintense foci on MRI. These hyperintense foci demonstrate morphological and spatial characteristics highly typical of MS but without clinical symptomatology related to inflammatory demyelination.

Dr. Montalban noted that most patients with RIS will develop MS within 10 years. For these individuals, the panel concluded that the following criteria are sufficient for an MS diagnosis: fulfilling both DIS and DIT; fulfilling DIS and the presence of oligoclonal bands (OCBs) in the cerebrospinal fluid; or fulfilling DIS along with six or more central vein signs (CVS).

The panel proposes the addition of CVS and paramagnetic rim lesions, which are MRI markers of chronic active lesions, as optional tools for MS diagnosis in certain situations. Demonstration of CVS by MRI can increase specificity, said Dr. Montalban.

Evidence also suggests that kappa free light chains (KFLCs) could serve as a valid, simpler, and rater-independent alternative to detecting OCBs, he added. Because KFLCs are interchangeable with OCBs, they can be used in place of OCBs for diagnosing MS through CSF analysis.
 

Stricter Criteria

The panel is also calling for stricter criteria for confirming an MS diagnosis in those over age 50 or individuals with headache or vascular disorders. In such patients, they strongly recommend additional features such as a spinal cord lesion, positive CSF, and CVS select 6 (six positive lesions).

The panel is also recommending laboratory tests (MOG-IgG Ab) to confirm a diagnosis in children and adolescents. Dr. Montalban noted the presence of CVS in about 50% of T2 lesions strongly suggests MS in this population.

Primary progressive MS (PPMS) requires evidence of clinical progression over at least 12 months. The committee determined that the same criteria for relapsing-remitting MS could be used for PPMS. 

Having a single, unified framework of diagnostic criteria will be “very useful,” said Dr. Montalban.

During the same meeting session, Marcello Moccia, MD, PhD, University College London (UCL) Queen Square Institute of Neurology, Faculty of Brain Sciences, London, England, presented examples of patients for whom the revised criteria could be beneficial. 

These examples help illustrate how using the new criteria, for example optic nerve imaging, could lead to earlier diagnoses, and, in some cases, easier diagnoses, possibly with less CSF, he said. It could also lead to fewer misdiagnoses, he added, thanks to high-specificity tools.

Implementing the new criteria could offer greater flexibility and reduce complexity, Dr. Moccia concluded, adding that not every patient with suspected MS requires exhaustive testing.

The committee’s next steps will include consulting with the wider MS community and preparing the information for publication, said Dr. Montalban.

Commenting on the proposals, Bruce Bebo, executive vice president of research, National MS Society, agreed the proposed changes to the McDonald Criteria will make diagnosing MS “faster and easier.”

“Importantly, we are providing guidance that is inclusive — how to confirm diagnoses in children, or in people over the age of 50,” said Dr. Bebo. “We’re bringing the latest research and imaging technology to the forefront, to help people with MS get treatment faster, so they can live their best lives.”

Dr. Montalban’s institution has received compensation for lecture honoraria and travel expenses, participation in scientific meetings, clinical trial steering committee membership, or clinical advisory board participation in recent years from AbbVie, Actelion, Alexion, Bial PD, Biogen, Bristol Myers Squibb/Celgene, EMD Serona, Genzyme, Hoffmann-La Roche, Immunic Therapeutics, Janssen Pharmaceuticals, MedDay, Merck, Mylan, Nervgen, Neuraxpharm, Novartis, PeerVoice, Samsung-Biosys Sandoz Sanofi-Genzyme, Teva Pharmaceuticals, TG Therapeutics, EXCEMED, ECTRIMS, MSIF, and NMSS or any of their affiliates. Dr. Moccia reports receiving a salary from University of Naples, Policlinico University Hospital (Naples) and Neurology (US); research grants from MUR PNRR Extended Partnership, ECTRIMS-MAGNIMS, UK MS Society, and Merck; honoraria from AbbVie, Biogen, BMS Celgene, Ipsen, Jansen, Merck, Novartis, Roche, and Sanofi-Genzyme. 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ECTRIMS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Genetically Driven Depression Tied to Increased MS Disease Activity

Article Type
Changed
Wed, 09/25/2024 - 12:35

A higher cumulative genetic burden for depression is associated with an increased risk for relapse and worsening disability in people with multiple sclerosis (MS), early results of a new study showed.

Unlike the previous research, the current analysis used polygenic risk scores for depression, which summarize the estimated effect of genetic variants to determine the potential association with MS disease activity, so results are less likely to be explained by reverse causality.

This study increases awareness of the link between depression and MS, said study investigator Kaarina Kowalec, PhD, assistant professor, College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. “We’re starting to understand how depression affects relapses and disability progression in MS,” she said.

The findings were presented at the 2024 ECTRIMS annual meeting.
 

Common Comorbidity

Depression is a common comorbidity in patients with MS and is associated with increased relapse and disability progression. Depression risk is partly polygenic in nature, involving numerous common genetic variants, said Dr. Kowalec.

The case-control study included 3420 relapsing-onset MS cases of European ancestry from four existing cohorts in three countries.

The Canadian cohort included those enrolled in a prospective longitudinal study of psychiatric comorbidity in chronic immune-mediated inflammatory disease (IMID), including MS; the Swedish cohort was an MS registry (SSReg) that encompasses 64 MS clinics (the cohort was split into two groups); and the US cohort was enrolled in a clinical trial of combined therapy with interferon and glatiramer acetate (CombiRx) in patients with MS.

The median follow-up in these cohorts ranged from 3 to 5 years.

Not surprisingly, most participants were women (from 71% in one of the Swedish cohorts to 83% in the Canadian cohort), and the age at MS onset ranged from 29 years in the Canadian cohort to 35 years in one of the Swedish cohorts.

The median baseline Expanded Disability Status Scale (EDSS) score was higher in the Canadian cohort (3.5) than in the Swedish (1.5) and US (2.0) cohorts, “reflective of the Canadian cohort being slightly more progressed,” said Dr. Kowalec.
 

Inherited Variants

To measure depression heritability, researchers generated a polygenic risk score in whole-genome imputed genotypes. The score reflects the number of inherited common genetic variants, weighted by effect sizes.

Researchers investigated the association between depression polygenic risk scores (top 20% vs. bottom 80%) with annualized relapse rate and worsening disability in MS measured by the rate of change in EDSS score. In the US cohort, they also explored the association between depression polygenic risk scores and time to relapse and confirmed EDSS worsening.

Covariates included use of disease-modifying therapy, age, sex, and the first five genetic ancestry principal components. The latter was done to capture residual stratification by genetic ancestry, although Dr. Kowalec stressed analyses were done only in those of European ancestry.

Investigators found a higher depression polygenic risk score was associated with relapse risk (incident rate ratio, 1.23; 95% CI, 1.01-1.49).

“Essentially, for every one standard deviation increase in the depression polygenic score, we found a significant increased hazard of 23% for experiencing a relapse over the follow-up period,” said Dr. Kowalec, who is also affiliated with the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

She noted the Canadian cohort did not have many relapses, while the US and Swedish cohorts “had an increased rate.”

Other analyses examined the risk of having a relapse or worsening disability. Every one SD increase in the depression polygenic risk score was significantly associated with a 2.2 greater risk of experiencing relapse (hazard ratio [HR], 2.20; 95% CI, 1.35-3.60) and a 51% increased risk for confirmed EDSS progression (HR, 1.51; 95% CI, 1.03-2.22).
 

 

 

‘An Ideal Marker’

Use of polygenetic risk scores reduces the possibility of reverse causation, noted Dr. Kowalec. “These markers are fixed at birth and don’t change over your lifespan, so they’re really an ideal marker.”

The results suggest polygenetic risk scores represent a potential biomarker for risk stratification in people with MS, said Dr. Kowalec. Although depression polygenic risk scores are not currently available in clinical practice, “I would hope this would change in the next 3-4 years,” she said.

Asked by a delegate if confounding by a third variable is possible, Dr. Kowalec said because genetic markers don’t change over time, there is a hint that the direction is causal and that depression is driving the outcome. However, she added, further confirmation is needed.

Dr. Kowalec noted that there were no data on antidepressant use but noted that about half of the Canadian and US cohorts — and likely the same number in the Swedish cohorts — self-reported depression.

A limitation of the study was that it included only participants of European ancestry.
 

Clinical Implications Unclear

Commenting on the research, Lauren Gluck, MD, program director, Montefiore Multiple Sclerosis Center, Bronx, New York, described the study as “fascinating” but noted that it’s unclear how to use this new information in clinical practice.

“Clinicians frequently ask people with MS about mood symptoms and offer interventions like antidepressants and referrals to therapists. However, genetic testing is not routine, so we don’t yet know who to target based on these data.”

Preexisting depression or more severe depression could be viewed as a “red flag” for risk for more disease activity in the future, she said.

“This could encourage clinicians to use more highly effective therapy in these patients, similar to our strategies for people with MS with frequent attacks and more disease burden on MRIs.”

The study received support from the Consortium of Multiple Sclerosis Centers and the Congressionally Directed Medical Research Programs, Department of Defense.

Dr. Kowalec reported no relevant conflicts of interest.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

A higher cumulative genetic burden for depression is associated with an increased risk for relapse and worsening disability in people with multiple sclerosis (MS), early results of a new study showed.

Unlike the previous research, the current analysis used polygenic risk scores for depression, which summarize the estimated effect of genetic variants to determine the potential association with MS disease activity, so results are less likely to be explained by reverse causality.

This study increases awareness of the link between depression and MS, said study investigator Kaarina Kowalec, PhD, assistant professor, College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. “We’re starting to understand how depression affects relapses and disability progression in MS,” she said.

The findings were presented at the 2024 ECTRIMS annual meeting.
 

Common Comorbidity

Depression is a common comorbidity in patients with MS and is associated with increased relapse and disability progression. Depression risk is partly polygenic in nature, involving numerous common genetic variants, said Dr. Kowalec.

The case-control study included 3420 relapsing-onset MS cases of European ancestry from four existing cohorts in three countries.

The Canadian cohort included those enrolled in a prospective longitudinal study of psychiatric comorbidity in chronic immune-mediated inflammatory disease (IMID), including MS; the Swedish cohort was an MS registry (SSReg) that encompasses 64 MS clinics (the cohort was split into two groups); and the US cohort was enrolled in a clinical trial of combined therapy with interferon and glatiramer acetate (CombiRx) in patients with MS.

The median follow-up in these cohorts ranged from 3 to 5 years.

Not surprisingly, most participants were women (from 71% in one of the Swedish cohorts to 83% in the Canadian cohort), and the age at MS onset ranged from 29 years in the Canadian cohort to 35 years in one of the Swedish cohorts.

The median baseline Expanded Disability Status Scale (EDSS) score was higher in the Canadian cohort (3.5) than in the Swedish (1.5) and US (2.0) cohorts, “reflective of the Canadian cohort being slightly more progressed,” said Dr. Kowalec.
 

Inherited Variants

To measure depression heritability, researchers generated a polygenic risk score in whole-genome imputed genotypes. The score reflects the number of inherited common genetic variants, weighted by effect sizes.

Researchers investigated the association between depression polygenic risk scores (top 20% vs. bottom 80%) with annualized relapse rate and worsening disability in MS measured by the rate of change in EDSS score. In the US cohort, they also explored the association between depression polygenic risk scores and time to relapse and confirmed EDSS worsening.

Covariates included use of disease-modifying therapy, age, sex, and the first five genetic ancestry principal components. The latter was done to capture residual stratification by genetic ancestry, although Dr. Kowalec stressed analyses were done only in those of European ancestry.

Investigators found a higher depression polygenic risk score was associated with relapse risk (incident rate ratio, 1.23; 95% CI, 1.01-1.49).

“Essentially, for every one standard deviation increase in the depression polygenic score, we found a significant increased hazard of 23% for experiencing a relapse over the follow-up period,” said Dr. Kowalec, who is also affiliated with the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

She noted the Canadian cohort did not have many relapses, while the US and Swedish cohorts “had an increased rate.”

Other analyses examined the risk of having a relapse or worsening disability. Every one SD increase in the depression polygenic risk score was significantly associated with a 2.2 greater risk of experiencing relapse (hazard ratio [HR], 2.20; 95% CI, 1.35-3.60) and a 51% increased risk for confirmed EDSS progression (HR, 1.51; 95% CI, 1.03-2.22).
 

 

 

‘An Ideal Marker’

Use of polygenetic risk scores reduces the possibility of reverse causation, noted Dr. Kowalec. “These markers are fixed at birth and don’t change over your lifespan, so they’re really an ideal marker.”

The results suggest polygenetic risk scores represent a potential biomarker for risk stratification in people with MS, said Dr. Kowalec. Although depression polygenic risk scores are not currently available in clinical practice, “I would hope this would change in the next 3-4 years,” she said.

Asked by a delegate if confounding by a third variable is possible, Dr. Kowalec said because genetic markers don’t change over time, there is a hint that the direction is causal and that depression is driving the outcome. However, she added, further confirmation is needed.

Dr. Kowalec noted that there were no data on antidepressant use but noted that about half of the Canadian and US cohorts — and likely the same number in the Swedish cohorts — self-reported depression.

A limitation of the study was that it included only participants of European ancestry.
 

Clinical Implications Unclear

Commenting on the research, Lauren Gluck, MD, program director, Montefiore Multiple Sclerosis Center, Bronx, New York, described the study as “fascinating” but noted that it’s unclear how to use this new information in clinical practice.

“Clinicians frequently ask people with MS about mood symptoms and offer interventions like antidepressants and referrals to therapists. However, genetic testing is not routine, so we don’t yet know who to target based on these data.”

Preexisting depression or more severe depression could be viewed as a “red flag” for risk for more disease activity in the future, she said.

“This could encourage clinicians to use more highly effective therapy in these patients, similar to our strategies for people with MS with frequent attacks and more disease burden on MRIs.”

The study received support from the Consortium of Multiple Sclerosis Centers and the Congressionally Directed Medical Research Programs, Department of Defense.

Dr. Kowalec reported no relevant conflicts of interest.
 

A version of this article appeared on Medscape.com.

A higher cumulative genetic burden for depression is associated with an increased risk for relapse and worsening disability in people with multiple sclerosis (MS), early results of a new study showed.

Unlike the previous research, the current analysis used polygenic risk scores for depression, which summarize the estimated effect of genetic variants to determine the potential association with MS disease activity, so results are less likely to be explained by reverse causality.

This study increases awareness of the link between depression and MS, said study investigator Kaarina Kowalec, PhD, assistant professor, College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada. “We’re starting to understand how depression affects relapses and disability progression in MS,” she said.

The findings were presented at the 2024 ECTRIMS annual meeting.
 

Common Comorbidity

Depression is a common comorbidity in patients with MS and is associated with increased relapse and disability progression. Depression risk is partly polygenic in nature, involving numerous common genetic variants, said Dr. Kowalec.

The case-control study included 3420 relapsing-onset MS cases of European ancestry from four existing cohorts in three countries.

The Canadian cohort included those enrolled in a prospective longitudinal study of psychiatric comorbidity in chronic immune-mediated inflammatory disease (IMID), including MS; the Swedish cohort was an MS registry (SSReg) that encompasses 64 MS clinics (the cohort was split into two groups); and the US cohort was enrolled in a clinical trial of combined therapy with interferon and glatiramer acetate (CombiRx) in patients with MS.

The median follow-up in these cohorts ranged from 3 to 5 years.

Not surprisingly, most participants were women (from 71% in one of the Swedish cohorts to 83% in the Canadian cohort), and the age at MS onset ranged from 29 years in the Canadian cohort to 35 years in one of the Swedish cohorts.

The median baseline Expanded Disability Status Scale (EDSS) score was higher in the Canadian cohort (3.5) than in the Swedish (1.5) and US (2.0) cohorts, “reflective of the Canadian cohort being slightly more progressed,” said Dr. Kowalec.
 

Inherited Variants

To measure depression heritability, researchers generated a polygenic risk score in whole-genome imputed genotypes. The score reflects the number of inherited common genetic variants, weighted by effect sizes.

Researchers investigated the association between depression polygenic risk scores (top 20% vs. bottom 80%) with annualized relapse rate and worsening disability in MS measured by the rate of change in EDSS score. In the US cohort, they also explored the association between depression polygenic risk scores and time to relapse and confirmed EDSS worsening.

Covariates included use of disease-modifying therapy, age, sex, and the first five genetic ancestry principal components. The latter was done to capture residual stratification by genetic ancestry, although Dr. Kowalec stressed analyses were done only in those of European ancestry.

Investigators found a higher depression polygenic risk score was associated with relapse risk (incident rate ratio, 1.23; 95% CI, 1.01-1.49).

“Essentially, for every one standard deviation increase in the depression polygenic score, we found a significant increased hazard of 23% for experiencing a relapse over the follow-up period,” said Dr. Kowalec, who is also affiliated with the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

She noted the Canadian cohort did not have many relapses, while the US and Swedish cohorts “had an increased rate.”

Other analyses examined the risk of having a relapse or worsening disability. Every one SD increase in the depression polygenic risk score was significantly associated with a 2.2 greater risk of experiencing relapse (hazard ratio [HR], 2.20; 95% CI, 1.35-3.60) and a 51% increased risk for confirmed EDSS progression (HR, 1.51; 95% CI, 1.03-2.22).
 

 

 

‘An Ideal Marker’

Use of polygenetic risk scores reduces the possibility of reverse causation, noted Dr. Kowalec. “These markers are fixed at birth and don’t change over your lifespan, so they’re really an ideal marker.”

The results suggest polygenetic risk scores represent a potential biomarker for risk stratification in people with MS, said Dr. Kowalec. Although depression polygenic risk scores are not currently available in clinical practice, “I would hope this would change in the next 3-4 years,” she said.

Asked by a delegate if confounding by a third variable is possible, Dr. Kowalec said because genetic markers don’t change over time, there is a hint that the direction is causal and that depression is driving the outcome. However, she added, further confirmation is needed.

Dr. Kowalec noted that there were no data on antidepressant use but noted that about half of the Canadian and US cohorts — and likely the same number in the Swedish cohorts — self-reported depression.

A limitation of the study was that it included only participants of European ancestry.
 

Clinical Implications Unclear

Commenting on the research, Lauren Gluck, MD, program director, Montefiore Multiple Sclerosis Center, Bronx, New York, described the study as “fascinating” but noted that it’s unclear how to use this new information in clinical practice.

“Clinicians frequently ask people with MS about mood symptoms and offer interventions like antidepressants and referrals to therapists. However, genetic testing is not routine, so we don’t yet know who to target based on these data.”

Preexisting depression or more severe depression could be viewed as a “red flag” for risk for more disease activity in the future, she said.

“This could encourage clinicians to use more highly effective therapy in these patients, similar to our strategies for people with MS with frequent attacks and more disease burden on MRIs.”

The study received support from the Consortium of Multiple Sclerosis Centers and the Congressionally Directed Medical Research Programs, Department of Defense.

Dr. Kowalec reported no relevant conflicts of interest.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ECTRIMS 2024

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article