User login
Heart Failure the Most Common Complication of Atrial Fibrillation, Not Stroke
FROM BMJ
The lifetime risk of atrial fibrillation (AF) increased from 2000 to 2022 from one in four to one in three, a Danish population-based study of temporal trends found.
Heart failure was the most frequent complication linked to this arrhythmia, with a lifetime risk of two in five, twice that of stroke, according to investigators led by Nicklas Vinter, MD, PhD, a postdoctoral researcher at the Danish Center for Health Service Research in the Department of Clinical Medicine at Aalborg University, Denmark.
Published in BMJ, the study found the lifetime risks of post-AF stroke, ischemic stroke, and myocardial infarction improved only modestly over time and remained high, with virtually no improvement in the lifetime risk of heart failure.
“Our work provides novel lifetime risk estimates that are instrumental in facilitating effective risk communication between patients and their physicians,” Dr. Vinter said in an interview. “The knowledge of risks from a lifelong perspective may serve as a motivator for patients to commence or intensify preventive efforts.” AF patients could, for example, adopt healthier lifestyles or adhere to prescribed medications, Dr. Vinter explained.
“The substantial lifetime risk of heart failure following atrial fibrillation necessitates heightened attention to its prevention and early detection,” Dr. Vinter said. “Furthermore, the high lifetime risk of stroke remains a critical complication, which highlights the importance of continuous attention to the initiation and maintenance of oral anticoagulation therapy.”
The Study
The cohort consisted of 3.5 million individuals (51.7% women) who did not have AF as of age 45 or older. These individuals were followed until incident AF, migration, death, or end of follow-up, whichever came first.
All 362,721 individuals with incident AF (53.6% men) but no prevalent complication were further followed over two time periods (2000-2010 and 2011-2020) until incident heart failure, stroke, or myocardial infarction.
Among the findings:
- Lifetime AF risk increased from 24.2% in 2000-2010 to 30.9% in 2011-2022, for a difference of 6.7% (95% confidence interval [CI], 6.5%-6.8%).
- Lifetime AF risk rose across all subgroups over time, with a larger increase in men and individuals with heart failure, myocardial infarction, stroke, diabetes, and chronic kidney disease.
- Lifetime risk of heart failure was 42.9% in 2000-2010 and 42.1% in 2011-2022, for a difference of −0.8% (95% CI, −3.8% to 2.2%).
- The lifetime risks of post-AF stroke and of myocardial infarction decreased slightly between the two periods, from 22.4% to 19.9% for stroke (difference −2.5%, 95% CI, −4.2% to −0.7%) and from 13.7% to 9.8% for myocardial infarction (−3.9%, 95% CI, −5.3% to −2.4%). No differential decrease between men and women emerged.
“Our novel quantification of the long-term downstream consequences of atrial fibrillation highlights the critical need for treatments to further decrease stroke risk as well as for heart failure prevention strategies among patients with atrial fibrillation,” the Danish researchers wrote.
Offering an outsider’s perspective, John P. Higgins, MD, MBA, MPhil, a sports cardiologist at McGovern Medical School at The University of Texas Health Science Center at Houston, said, “Think of atrial fibrillation as a barometer of underlying stress on the heart. When blood pressure is high, or a patient has underlying asymptomatic coronary artery disease or heart failure, they are more likely to have episodes of atrial fibrillation.”
According to Dr. Higgins, risk factors for AF are underappreciated in the United States and elsewhere, and primary care doctors need to be aware of them. “We should try to identify these risk factors and do primary prevention to improve risk factors to reduce the progression to heart failure and myocardial infarction and stroke. But lifelong prevention is even better, he added. “Doing things to prevent actually getting risk factors in the first place. So a healthy lifestyle including exercise, diet, hydration, sleep, relaxation, social contact, and a little sunlight might be the long-term keys and starting them at a young age, too.”
In an accompanying editorial, Jianhua Wu, PhD, a professor of biostatistics and health data science with the Wolfson Institute of Population Health at Queen Mary University of London, and a colleague, cited the study’s robust observational research and called the analysis noteworthy for its quantification of the long-term risks of post-AF sequelae. They cautioned, however, that its grouping into two 10-year periods (2000-2010 and 2011-2020) came at the cost of losing temporal resolution. They also called out the lack of reporting on the ethnic composition of the study population, a factor that influences lifetime AF risk, and the absence of subgroup analysis by socioeconomic status, which affects incidence and outcomes.
The editorialists noted that while interventions to prevent stroke dominated AF research and guidelines during the study time period, no evidence suggests these interventions can prevent incident heart failure. “Alignment of both randomised clinical trials and guidelines to better reflect the needs of the real-world population with atrial fibrillation is necessary because further improvements to patient prognosis are likely to require a broader perspective on atrial fibrillation management beyond prevention of stroke,” they wrote.
In the meantime this study “challenges research priorities and guideline design, and raises critical questions for the research and clinical communities about how the growing burden of atrial fibrillation can be stopped,” they wrote.
This work was supported by the Danish Cardiovascular Academy, which is funded by the Novo Nordisk Foundation, and The Danish Heart Foundation. Dr. Vinter has been an advisory board member and consultant for AstraZeneca and has an institutional research grant from BMS/Pfizer unrelated to the current study. He reported personal consulting fees from BMS and Pfizer. Other coauthors disclosed research support from and/or consulting work for private industry, as well as grants from not-for-profit research-funding organizations. Dr. Higgins had no competing interest to declare. The editorial writers had no relevant financial interests to declare. Dr. Wu is supported by Barts Charity.
FROM BMJ
The lifetime risk of atrial fibrillation (AF) increased from 2000 to 2022 from one in four to one in three, a Danish population-based study of temporal trends found.
Heart failure was the most frequent complication linked to this arrhythmia, with a lifetime risk of two in five, twice that of stroke, according to investigators led by Nicklas Vinter, MD, PhD, a postdoctoral researcher at the Danish Center for Health Service Research in the Department of Clinical Medicine at Aalborg University, Denmark.
Published in BMJ, the study found the lifetime risks of post-AF stroke, ischemic stroke, and myocardial infarction improved only modestly over time and remained high, with virtually no improvement in the lifetime risk of heart failure.
“Our work provides novel lifetime risk estimates that are instrumental in facilitating effective risk communication between patients and their physicians,” Dr. Vinter said in an interview. “The knowledge of risks from a lifelong perspective may serve as a motivator for patients to commence or intensify preventive efforts.” AF patients could, for example, adopt healthier lifestyles or adhere to prescribed medications, Dr. Vinter explained.
“The substantial lifetime risk of heart failure following atrial fibrillation necessitates heightened attention to its prevention and early detection,” Dr. Vinter said. “Furthermore, the high lifetime risk of stroke remains a critical complication, which highlights the importance of continuous attention to the initiation and maintenance of oral anticoagulation therapy.”
The Study
The cohort consisted of 3.5 million individuals (51.7% women) who did not have AF as of age 45 or older. These individuals were followed until incident AF, migration, death, or end of follow-up, whichever came first.
All 362,721 individuals with incident AF (53.6% men) but no prevalent complication were further followed over two time periods (2000-2010 and 2011-2020) until incident heart failure, stroke, or myocardial infarction.
Among the findings:
- Lifetime AF risk increased from 24.2% in 2000-2010 to 30.9% in 2011-2022, for a difference of 6.7% (95% confidence interval [CI], 6.5%-6.8%).
- Lifetime AF risk rose across all subgroups over time, with a larger increase in men and individuals with heart failure, myocardial infarction, stroke, diabetes, and chronic kidney disease.
- Lifetime risk of heart failure was 42.9% in 2000-2010 and 42.1% in 2011-2022, for a difference of −0.8% (95% CI, −3.8% to 2.2%).
- The lifetime risks of post-AF stroke and of myocardial infarction decreased slightly between the two periods, from 22.4% to 19.9% for stroke (difference −2.5%, 95% CI, −4.2% to −0.7%) and from 13.7% to 9.8% for myocardial infarction (−3.9%, 95% CI, −5.3% to −2.4%). No differential decrease between men and women emerged.
“Our novel quantification of the long-term downstream consequences of atrial fibrillation highlights the critical need for treatments to further decrease stroke risk as well as for heart failure prevention strategies among patients with atrial fibrillation,” the Danish researchers wrote.
Offering an outsider’s perspective, John P. Higgins, MD, MBA, MPhil, a sports cardiologist at McGovern Medical School at The University of Texas Health Science Center at Houston, said, “Think of atrial fibrillation as a barometer of underlying stress on the heart. When blood pressure is high, or a patient has underlying asymptomatic coronary artery disease or heart failure, they are more likely to have episodes of atrial fibrillation.”
According to Dr. Higgins, risk factors for AF are underappreciated in the United States and elsewhere, and primary care doctors need to be aware of them. “We should try to identify these risk factors and do primary prevention to improve risk factors to reduce the progression to heart failure and myocardial infarction and stroke. But lifelong prevention is even better, he added. “Doing things to prevent actually getting risk factors in the first place. So a healthy lifestyle including exercise, diet, hydration, sleep, relaxation, social contact, and a little sunlight might be the long-term keys and starting them at a young age, too.”
In an accompanying editorial, Jianhua Wu, PhD, a professor of biostatistics and health data science with the Wolfson Institute of Population Health at Queen Mary University of London, and a colleague, cited the study’s robust observational research and called the analysis noteworthy for its quantification of the long-term risks of post-AF sequelae. They cautioned, however, that its grouping into two 10-year periods (2000-2010 and 2011-2020) came at the cost of losing temporal resolution. They also called out the lack of reporting on the ethnic composition of the study population, a factor that influences lifetime AF risk, and the absence of subgroup analysis by socioeconomic status, which affects incidence and outcomes.
The editorialists noted that while interventions to prevent stroke dominated AF research and guidelines during the study time period, no evidence suggests these interventions can prevent incident heart failure. “Alignment of both randomised clinical trials and guidelines to better reflect the needs of the real-world population with atrial fibrillation is necessary because further improvements to patient prognosis are likely to require a broader perspective on atrial fibrillation management beyond prevention of stroke,” they wrote.
In the meantime this study “challenges research priorities and guideline design, and raises critical questions for the research and clinical communities about how the growing burden of atrial fibrillation can be stopped,” they wrote.
This work was supported by the Danish Cardiovascular Academy, which is funded by the Novo Nordisk Foundation, and The Danish Heart Foundation. Dr. Vinter has been an advisory board member and consultant for AstraZeneca and has an institutional research grant from BMS/Pfizer unrelated to the current study. He reported personal consulting fees from BMS and Pfizer. Other coauthors disclosed research support from and/or consulting work for private industry, as well as grants from not-for-profit research-funding organizations. Dr. Higgins had no competing interest to declare. The editorial writers had no relevant financial interests to declare. Dr. Wu is supported by Barts Charity.
FROM BMJ
The lifetime risk of atrial fibrillation (AF) increased from 2000 to 2022 from one in four to one in three, a Danish population-based study of temporal trends found.
Heart failure was the most frequent complication linked to this arrhythmia, with a lifetime risk of two in five, twice that of stroke, according to investigators led by Nicklas Vinter, MD, PhD, a postdoctoral researcher at the Danish Center for Health Service Research in the Department of Clinical Medicine at Aalborg University, Denmark.
Published in BMJ, the study found the lifetime risks of post-AF stroke, ischemic stroke, and myocardial infarction improved only modestly over time and remained high, with virtually no improvement in the lifetime risk of heart failure.
“Our work provides novel lifetime risk estimates that are instrumental in facilitating effective risk communication between patients and their physicians,” Dr. Vinter said in an interview. “The knowledge of risks from a lifelong perspective may serve as a motivator for patients to commence or intensify preventive efforts.” AF patients could, for example, adopt healthier lifestyles or adhere to prescribed medications, Dr. Vinter explained.
“The substantial lifetime risk of heart failure following atrial fibrillation necessitates heightened attention to its prevention and early detection,” Dr. Vinter said. “Furthermore, the high lifetime risk of stroke remains a critical complication, which highlights the importance of continuous attention to the initiation and maintenance of oral anticoagulation therapy.”
The Study
The cohort consisted of 3.5 million individuals (51.7% women) who did not have AF as of age 45 or older. These individuals were followed until incident AF, migration, death, or end of follow-up, whichever came first.
All 362,721 individuals with incident AF (53.6% men) but no prevalent complication were further followed over two time periods (2000-2010 and 2011-2020) until incident heart failure, stroke, or myocardial infarction.
Among the findings:
- Lifetime AF risk increased from 24.2% in 2000-2010 to 30.9% in 2011-2022, for a difference of 6.7% (95% confidence interval [CI], 6.5%-6.8%).
- Lifetime AF risk rose across all subgroups over time, with a larger increase in men and individuals with heart failure, myocardial infarction, stroke, diabetes, and chronic kidney disease.
- Lifetime risk of heart failure was 42.9% in 2000-2010 and 42.1% in 2011-2022, for a difference of −0.8% (95% CI, −3.8% to 2.2%).
- The lifetime risks of post-AF stroke and of myocardial infarction decreased slightly between the two periods, from 22.4% to 19.9% for stroke (difference −2.5%, 95% CI, −4.2% to −0.7%) and from 13.7% to 9.8% for myocardial infarction (−3.9%, 95% CI, −5.3% to −2.4%). No differential decrease between men and women emerged.
“Our novel quantification of the long-term downstream consequences of atrial fibrillation highlights the critical need for treatments to further decrease stroke risk as well as for heart failure prevention strategies among patients with atrial fibrillation,” the Danish researchers wrote.
Offering an outsider’s perspective, John P. Higgins, MD, MBA, MPhil, a sports cardiologist at McGovern Medical School at The University of Texas Health Science Center at Houston, said, “Think of atrial fibrillation as a barometer of underlying stress on the heart. When blood pressure is high, or a patient has underlying asymptomatic coronary artery disease or heart failure, they are more likely to have episodes of atrial fibrillation.”
According to Dr. Higgins, risk factors for AF are underappreciated in the United States and elsewhere, and primary care doctors need to be aware of them. “We should try to identify these risk factors and do primary prevention to improve risk factors to reduce the progression to heart failure and myocardial infarction and stroke. But lifelong prevention is even better, he added. “Doing things to prevent actually getting risk factors in the first place. So a healthy lifestyle including exercise, diet, hydration, sleep, relaxation, social contact, and a little sunlight might be the long-term keys and starting them at a young age, too.”
In an accompanying editorial, Jianhua Wu, PhD, a professor of biostatistics and health data science with the Wolfson Institute of Population Health at Queen Mary University of London, and a colleague, cited the study’s robust observational research and called the analysis noteworthy for its quantification of the long-term risks of post-AF sequelae. They cautioned, however, that its grouping into two 10-year periods (2000-2010 and 2011-2020) came at the cost of losing temporal resolution. They also called out the lack of reporting on the ethnic composition of the study population, a factor that influences lifetime AF risk, and the absence of subgroup analysis by socioeconomic status, which affects incidence and outcomes.
The editorialists noted that while interventions to prevent stroke dominated AF research and guidelines during the study time period, no evidence suggests these interventions can prevent incident heart failure. “Alignment of both randomised clinical trials and guidelines to better reflect the needs of the real-world population with atrial fibrillation is necessary because further improvements to patient prognosis are likely to require a broader perspective on atrial fibrillation management beyond prevention of stroke,” they wrote.
In the meantime this study “challenges research priorities and guideline design, and raises critical questions for the research and clinical communities about how the growing burden of atrial fibrillation can be stopped,” they wrote.
This work was supported by the Danish Cardiovascular Academy, which is funded by the Novo Nordisk Foundation, and The Danish Heart Foundation. Dr. Vinter has been an advisory board member and consultant for AstraZeneca and has an institutional research grant from BMS/Pfizer unrelated to the current study. He reported personal consulting fees from BMS and Pfizer. Other coauthors disclosed research support from and/or consulting work for private industry, as well as grants from not-for-profit research-funding organizations. Dr. Higgins had no competing interest to declare. The editorial writers had no relevant financial interests to declare. Dr. Wu is supported by Barts Charity.
Antidiabetic Drugs That Lower Stroke Risk Do So By Unclear Mechanisms
DENVER —
In patients with type 2 diabetes mellitus (T2DM), the evidence is strong that “they are not working through glycemic control per se,” according to Larry B. Goldstein, MD, chair of neurology, University of Kentucky School of Medicine, Louisville. “But it is not yet clear what the mechanism of benefit is.”
In the past, several large randomized studies, such as the ACCORD trial, provided compelling evidence that tighter glycemic control does not translate into meaningful protection across stroke. Performed before many of the modern therapies were available, this lack of protection was observed with essentially “no heterogeneity across specific drugs,” according to Dr. Goldstein.
In long-term results from ACCORD, published in 2011, the odds ratio for a fatal or nonfatal stroke was a nonsignificant 0.97 in favor of tight glycemic control relative to standard control. The wide confidence intervals ruled out any hint of statistical significance (95% CI, 0.77-1.33; P = .85). Dr. Goldstein provided data from numerous other studies and meta-analyses that drew the same conclusion.
Stroke Prevention With Antidiabetic Drugs
“What has changed is that we have new ways of glycemic control, and some of these do show protection against stroke,” Dr. Goldstein said. Yet, the newer drugs do not do a better job at sustained reductions of HbA1c or other measures of reaching lower blood glucose reductions when adherence is similar.
“The level of glucose control with the newer agents is really about the same,” Dr. Goldstein said at the annual meeting of the American Academy of Neurology, where he led a symposium called Controversies in Stroke Treatment and Prevention.
The newer agents, such as sodium glucose co-transport-2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA), have been associated with significant and clinically meaningful reductions in cardiovascular events. However, it is not clear that even these two medications perform similarly for stroke prevention specifically.
Of these two drug classes, Dr. Goldstein said the evidence most strongly supports GLP-1 receptor agonists. He cited one meta-analysis of eight randomized studies that calculated a risk reduction of about 15% whether calculated for fatal or nonfatal strokes. For each the protection was highly statistically significant (P = .0002 and P < .001, respectively).
In contrast, the effect of SGLT-2 inhibitors is weaker. In a study that distilled data from large cardiovascular trials with GLP-1RA, SGLT2i, dipeptidyl peptidase-4 inhibitors (DPP4i), and pioglitazone, a thiazolidinedione, only GLP-1RA drugs were associated with a highly significant (P < .001) reduction in risk of stroke. The risk reduction for pioglitazone reached significance (P = .025), but there was no signal of risk reduction for SGLT2i (P = .88) or for DPP4i (P = .5).
Weight Loss Is Potential Mechanism
Looking to explain the protection from stroke associated with some of the newer antidiabetic therapies, Gordon Kelley, MD, who leads the stroke program for AdventHealth Medical Group, Shawnee Mission, Kansas, suggested that weight loss is probably important.
“In our group, we work as a team to manage stroke risk in patients with diabetes, so I am not much involved in the choice of antidiabetic therapies, but it does seem that SGLT2 inhibitors and the GLP-1 receptor agonists share weight loss as an effect beyond glucose control,” he said.
Dr. Goldstein agreed that weight loss is a potential contributor to the cardiovascular benefits of GLP-1RA and SGLT2i, but he indicated that it might not help explain the reduction in stroke, an effect demonstrated repeatedly with GLP-1RA but inconsistently with SGLT2i.
The argument against weight loss as the critical mechanism of stroke prevention from newer antidiabetic drugs is strengthened by studies that suggest weight loss with SGLT2i appears to be even better than on GLP-1RA. In a study published in a pharmacy journal, weight loss was about twice as great among T2DM patients after 6 months of treatment managed with SGLT2i relative to those on a GLP-1RA (-2.8 vs 1.15 kg; P = .014).
Newer Antidiabetic Agents Guideline Recommended
In the 2019 American College of Cardiology/American Heart Association guidelines on the Primary Prevention of Cardiovascular Disease, stroke reduction is not discussed as an isolated risk, but these guidelines do recommend GLP-1RA or SGLT2i after metformin for glycemic control in T2DM patients with atherosclerotic cardiovascular disease (ASCVD) risk factors. This is based on evidence that drugs of both classes reduce risk for ASCVD events. The risk reduction has been particularly strong for heart failure.
For the risk of stroke specifically in patients with T2DM, Dr. Goldstein recommended calculating the ASCVD risk with the simple but well validated ACC risk calculator that is available online and is quickly completed when values for patient risk factors are readily available. For those with greater than 10% risk of an event in the next 10 years, he thinks GLP-1RA are a reasonable choice for prevention of stroke and other ASCVD events.
“GLP-1RA is mentioned in the guidelines, so this is supported,” said Dr. Goldstein, although adding that his choice of this class over SGLT2i is a personal if informed recommendation. He believes that the data favor GLP-1RA even if the exact mechanism of this protection is yet to be identified.
Dr. Goldstein and Dr. Kelley report no potential conflicts of interest.
DENVER —
In patients with type 2 diabetes mellitus (T2DM), the evidence is strong that “they are not working through glycemic control per se,” according to Larry B. Goldstein, MD, chair of neurology, University of Kentucky School of Medicine, Louisville. “But it is not yet clear what the mechanism of benefit is.”
In the past, several large randomized studies, such as the ACCORD trial, provided compelling evidence that tighter glycemic control does not translate into meaningful protection across stroke. Performed before many of the modern therapies were available, this lack of protection was observed with essentially “no heterogeneity across specific drugs,” according to Dr. Goldstein.
In long-term results from ACCORD, published in 2011, the odds ratio for a fatal or nonfatal stroke was a nonsignificant 0.97 in favor of tight glycemic control relative to standard control. The wide confidence intervals ruled out any hint of statistical significance (95% CI, 0.77-1.33; P = .85). Dr. Goldstein provided data from numerous other studies and meta-analyses that drew the same conclusion.
Stroke Prevention With Antidiabetic Drugs
“What has changed is that we have new ways of glycemic control, and some of these do show protection against stroke,” Dr. Goldstein said. Yet, the newer drugs do not do a better job at sustained reductions of HbA1c or other measures of reaching lower blood glucose reductions when adherence is similar.
“The level of glucose control with the newer agents is really about the same,” Dr. Goldstein said at the annual meeting of the American Academy of Neurology, where he led a symposium called Controversies in Stroke Treatment and Prevention.
The newer agents, such as sodium glucose co-transport-2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA), have been associated with significant and clinically meaningful reductions in cardiovascular events. However, it is not clear that even these two medications perform similarly for stroke prevention specifically.
Of these two drug classes, Dr. Goldstein said the evidence most strongly supports GLP-1 receptor agonists. He cited one meta-analysis of eight randomized studies that calculated a risk reduction of about 15% whether calculated for fatal or nonfatal strokes. For each the protection was highly statistically significant (P = .0002 and P < .001, respectively).
In contrast, the effect of SGLT-2 inhibitors is weaker. In a study that distilled data from large cardiovascular trials with GLP-1RA, SGLT2i, dipeptidyl peptidase-4 inhibitors (DPP4i), and pioglitazone, a thiazolidinedione, only GLP-1RA drugs were associated with a highly significant (P < .001) reduction in risk of stroke. The risk reduction for pioglitazone reached significance (P = .025), but there was no signal of risk reduction for SGLT2i (P = .88) or for DPP4i (P = .5).
Weight Loss Is Potential Mechanism
Looking to explain the protection from stroke associated with some of the newer antidiabetic therapies, Gordon Kelley, MD, who leads the stroke program for AdventHealth Medical Group, Shawnee Mission, Kansas, suggested that weight loss is probably important.
“In our group, we work as a team to manage stroke risk in patients with diabetes, so I am not much involved in the choice of antidiabetic therapies, but it does seem that SGLT2 inhibitors and the GLP-1 receptor agonists share weight loss as an effect beyond glucose control,” he said.
Dr. Goldstein agreed that weight loss is a potential contributor to the cardiovascular benefits of GLP-1RA and SGLT2i, but he indicated that it might not help explain the reduction in stroke, an effect demonstrated repeatedly with GLP-1RA but inconsistently with SGLT2i.
The argument against weight loss as the critical mechanism of stroke prevention from newer antidiabetic drugs is strengthened by studies that suggest weight loss with SGLT2i appears to be even better than on GLP-1RA. In a study published in a pharmacy journal, weight loss was about twice as great among T2DM patients after 6 months of treatment managed with SGLT2i relative to those on a GLP-1RA (-2.8 vs 1.15 kg; P = .014).
Newer Antidiabetic Agents Guideline Recommended
In the 2019 American College of Cardiology/American Heart Association guidelines on the Primary Prevention of Cardiovascular Disease, stroke reduction is not discussed as an isolated risk, but these guidelines do recommend GLP-1RA or SGLT2i after metformin for glycemic control in T2DM patients with atherosclerotic cardiovascular disease (ASCVD) risk factors. This is based on evidence that drugs of both classes reduce risk for ASCVD events. The risk reduction has been particularly strong for heart failure.
For the risk of stroke specifically in patients with T2DM, Dr. Goldstein recommended calculating the ASCVD risk with the simple but well validated ACC risk calculator that is available online and is quickly completed when values for patient risk factors are readily available. For those with greater than 10% risk of an event in the next 10 years, he thinks GLP-1RA are a reasonable choice for prevention of stroke and other ASCVD events.
“GLP-1RA is mentioned in the guidelines, so this is supported,” said Dr. Goldstein, although adding that his choice of this class over SGLT2i is a personal if informed recommendation. He believes that the data favor GLP-1RA even if the exact mechanism of this protection is yet to be identified.
Dr. Goldstein and Dr. Kelley report no potential conflicts of interest.
DENVER —
In patients with type 2 diabetes mellitus (T2DM), the evidence is strong that “they are not working through glycemic control per se,” according to Larry B. Goldstein, MD, chair of neurology, University of Kentucky School of Medicine, Louisville. “But it is not yet clear what the mechanism of benefit is.”
In the past, several large randomized studies, such as the ACCORD trial, provided compelling evidence that tighter glycemic control does not translate into meaningful protection across stroke. Performed before many of the modern therapies were available, this lack of protection was observed with essentially “no heterogeneity across specific drugs,” according to Dr. Goldstein.
In long-term results from ACCORD, published in 2011, the odds ratio for a fatal or nonfatal stroke was a nonsignificant 0.97 in favor of tight glycemic control relative to standard control. The wide confidence intervals ruled out any hint of statistical significance (95% CI, 0.77-1.33; P = .85). Dr. Goldstein provided data from numerous other studies and meta-analyses that drew the same conclusion.
Stroke Prevention With Antidiabetic Drugs
“What has changed is that we have new ways of glycemic control, and some of these do show protection against stroke,” Dr. Goldstein said. Yet, the newer drugs do not do a better job at sustained reductions of HbA1c or other measures of reaching lower blood glucose reductions when adherence is similar.
“The level of glucose control with the newer agents is really about the same,” Dr. Goldstein said at the annual meeting of the American Academy of Neurology, where he led a symposium called Controversies in Stroke Treatment and Prevention.
The newer agents, such as sodium glucose co-transport-2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA), have been associated with significant and clinically meaningful reductions in cardiovascular events. However, it is not clear that even these two medications perform similarly for stroke prevention specifically.
Of these two drug classes, Dr. Goldstein said the evidence most strongly supports GLP-1 receptor agonists. He cited one meta-analysis of eight randomized studies that calculated a risk reduction of about 15% whether calculated for fatal or nonfatal strokes. For each the protection was highly statistically significant (P = .0002 and P < .001, respectively).
In contrast, the effect of SGLT-2 inhibitors is weaker. In a study that distilled data from large cardiovascular trials with GLP-1RA, SGLT2i, dipeptidyl peptidase-4 inhibitors (DPP4i), and pioglitazone, a thiazolidinedione, only GLP-1RA drugs were associated with a highly significant (P < .001) reduction in risk of stroke. The risk reduction for pioglitazone reached significance (P = .025), but there was no signal of risk reduction for SGLT2i (P = .88) or for DPP4i (P = .5).
Weight Loss Is Potential Mechanism
Looking to explain the protection from stroke associated with some of the newer antidiabetic therapies, Gordon Kelley, MD, who leads the stroke program for AdventHealth Medical Group, Shawnee Mission, Kansas, suggested that weight loss is probably important.
“In our group, we work as a team to manage stroke risk in patients with diabetes, so I am not much involved in the choice of antidiabetic therapies, but it does seem that SGLT2 inhibitors and the GLP-1 receptor agonists share weight loss as an effect beyond glucose control,” he said.
Dr. Goldstein agreed that weight loss is a potential contributor to the cardiovascular benefits of GLP-1RA and SGLT2i, but he indicated that it might not help explain the reduction in stroke, an effect demonstrated repeatedly with GLP-1RA but inconsistently with SGLT2i.
The argument against weight loss as the critical mechanism of stroke prevention from newer antidiabetic drugs is strengthened by studies that suggest weight loss with SGLT2i appears to be even better than on GLP-1RA. In a study published in a pharmacy journal, weight loss was about twice as great among T2DM patients after 6 months of treatment managed with SGLT2i relative to those on a GLP-1RA (-2.8 vs 1.15 kg; P = .014).
Newer Antidiabetic Agents Guideline Recommended
In the 2019 American College of Cardiology/American Heart Association guidelines on the Primary Prevention of Cardiovascular Disease, stroke reduction is not discussed as an isolated risk, but these guidelines do recommend GLP-1RA or SGLT2i after metformin for glycemic control in T2DM patients with atherosclerotic cardiovascular disease (ASCVD) risk factors. This is based on evidence that drugs of both classes reduce risk for ASCVD events. The risk reduction has been particularly strong for heart failure.
For the risk of stroke specifically in patients with T2DM, Dr. Goldstein recommended calculating the ASCVD risk with the simple but well validated ACC risk calculator that is available online and is quickly completed when values for patient risk factors are readily available. For those with greater than 10% risk of an event in the next 10 years, he thinks GLP-1RA are a reasonable choice for prevention of stroke and other ASCVD events.
“GLP-1RA is mentioned in the guidelines, so this is supported,” said Dr. Goldstein, although adding that his choice of this class over SGLT2i is a personal if informed recommendation. He believes that the data favor GLP-1RA even if the exact mechanism of this protection is yet to be identified.
Dr. Goldstein and Dr. Kelley report no potential conflicts of interest.
FROM AAN 2024
Telestroke Outcomes Rival Traditional Care
These studies set the stage for larger studies comparing outcomes and efficiency of various telemedicine and transport models and gauging stakeholder satisfaction, authors said.
Surprising Results
In a single-site retrospective comparison of 252 patients with acute stroke assessed under an in-house telestroke protocol and 2437 assessed in person, telestroke provided statistically significant advantages in the following areas:
- Door-to-imaging times (median: 38 minutes vs 44)
- Rates of intravenous (18.2% vs 8.6%) and mechanical (10.4% vs 5.1%) treatment
- Length of stay (median: 6 days vs 8)
- Symptomatic hemorrhagic transformation rate (1.1% vs 5.1%)
- Mortality (6.7% vs 11.1%)
The better metrics observed in the telestroke group were especially surprising, said lead author Rodrigo Meirelles Massaud, MD, because the same team of neurologists conducted both types of evaluations. “This consistency ensures that the quality and expertise of medical care were maintained across both groups,” said Dr. Massaud, a neurologist at the Hospital Israelita Albert Einstein in São Paulo, Brazil. The study appeared online in Frontiers in Neurology.
The findings also counter the preconceived notion that distance medicine could be inferior because of the inability to conduct direct physical examinations and the potential for communication failures, he said. The telestroke group’s younger average age (63.5 years vs 69.5 years) and lower initial National Institutes of Health Stroke Scale (NIHSS) scores — 2 versus 3 — might explain the disparity, Dr. Massaud added, because both factors augur improved outcomes.
Conversely, the authors wrote that the in-person group’s lower median door-to-groin puncture time in ischemic stroke (103.5 minutes vs 151.5 for telemedicine) likely resulted from the need to transport patients from satellite facilities to a hub hospital with neurologists on continuous standby. After adjustment for initial NIHSS score and age, both groups achieved similar percentages of patients with modified Rankin Scale (mRS) scores of 0-2 at discharge: 58.5% for in-person evaluation versus 61.9% for telemedicine (P = .028).
Acute Ischemic Stroke
In another study, a systematic review that included 7396 thrombolysed patients with acute ischemic stroke, odds ratios (ORs) revealed no significant differences between telestroke and in-person care for the percentage of mRS scores 0-2 at discharge (1.06; P = .5), 90-day mortality (OR, 1.16; P = .17), and symptomatic intracranial hemorrhage (OR, 0.99; P = .93). The study appeared in the March International Journal of Stroke.
The lack of significant differences between telestroke and in-person care regarding mortality and mRS scores of 0-2 (which defines a good outcome) surprised researchers, said lead author Ahmed Mohamed, who is completing a master of health sciences degree in medical physiology at the University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada.
“When we were starting this project,” he said, “we thought that telemedicine would probably take longer than conventional treatment.” And waiting longer for treatment — especially for patients with acute ischemic stroke — leads to worse outcomes. “However,” Mr. Mohamed said, “that wasn’t the case.” Additional measures that showed no significant differences included rates of intravenous tissue plasminogen activator (ivtPA) use and endovascular mechanical thrombectomy.
Telestroke Expansion
Authors of a study that analyzed the impact of expanding telestroke coverage beyond community ERs credited many postexpansion improvements to the addition of advanced practice providers (APPs). ProMedica Stroke Network, Toledo, Ohio, added seven APPs in June 2020 to provide two-way audiovisual inpatient stroke and TIA consultations and follow-ups at 19 spoke facilities supported by vascular neurologists at the hub comprehensive stroke center (CSC).
Revamping the TS workflow resulted in a threefold increase in TS cart utilization, a 31% decrease in transfers to the CSC, and a higher home discharge rate from spoke hospitals than from the CSC (57.38% versus 52.8%, respectively). Diagnostic sensitivity also improved, with overall decreases in stroke and TIA diagnosis of 11.5% and 39.8%, respectively, and a 12.9% increase in identification of stroke mimics. The study was published in the March Annals of Neurology.
Future Directions
All three author groups called for larger, more granular follow-up studies. Mr. Mohamed said that the 7396-patient review of 33 studies does not show whether video consultations with neurologists produce better outcomes than phone calls, for example, or whether utilizing different telestroke modalities such as a third-party telemedicine service provides better outcomes than other methods. Additionally, authors wrote, future research should compare telestroke versus non-telestroke patient transport models to optimize treatment plans and outcomes and validate potential advantages and disadvantages of telemedicine for patients with acute ischemic stroke.
“There is also a need to understand the long-term outcomes of patients treated via telestroke versus in-person care,” said Dr. Massaud. Future studies could include randomized, controlled trials comparing telestroke to traditional care in various settings with larger sample sizes, he said. “Additionally, research into the cost-effectiveness of telestroke services, patient satisfaction, and the impact of telestroke on different subtypes of stroke could provide a more comprehensive understanding of its benefits and limitations.”
Dr. Massaud and Mr. Mohamed reported no relevant financial interests. Authors of all three studies reported no funding sources or potential conflicts of interest.
These studies set the stage for larger studies comparing outcomes and efficiency of various telemedicine and transport models and gauging stakeholder satisfaction, authors said.
Surprising Results
In a single-site retrospective comparison of 252 patients with acute stroke assessed under an in-house telestroke protocol and 2437 assessed in person, telestroke provided statistically significant advantages in the following areas:
- Door-to-imaging times (median: 38 minutes vs 44)
- Rates of intravenous (18.2% vs 8.6%) and mechanical (10.4% vs 5.1%) treatment
- Length of stay (median: 6 days vs 8)
- Symptomatic hemorrhagic transformation rate (1.1% vs 5.1%)
- Mortality (6.7% vs 11.1%)
The better metrics observed in the telestroke group were especially surprising, said lead author Rodrigo Meirelles Massaud, MD, because the same team of neurologists conducted both types of evaluations. “This consistency ensures that the quality and expertise of medical care were maintained across both groups,” said Dr. Massaud, a neurologist at the Hospital Israelita Albert Einstein in São Paulo, Brazil. The study appeared online in Frontiers in Neurology.
The findings also counter the preconceived notion that distance medicine could be inferior because of the inability to conduct direct physical examinations and the potential for communication failures, he said. The telestroke group’s younger average age (63.5 years vs 69.5 years) and lower initial National Institutes of Health Stroke Scale (NIHSS) scores — 2 versus 3 — might explain the disparity, Dr. Massaud added, because both factors augur improved outcomes.
Conversely, the authors wrote that the in-person group’s lower median door-to-groin puncture time in ischemic stroke (103.5 minutes vs 151.5 for telemedicine) likely resulted from the need to transport patients from satellite facilities to a hub hospital with neurologists on continuous standby. After adjustment for initial NIHSS score and age, both groups achieved similar percentages of patients with modified Rankin Scale (mRS) scores of 0-2 at discharge: 58.5% for in-person evaluation versus 61.9% for telemedicine (P = .028).
Acute Ischemic Stroke
In another study, a systematic review that included 7396 thrombolysed patients with acute ischemic stroke, odds ratios (ORs) revealed no significant differences between telestroke and in-person care for the percentage of mRS scores 0-2 at discharge (1.06; P = .5), 90-day mortality (OR, 1.16; P = .17), and symptomatic intracranial hemorrhage (OR, 0.99; P = .93). The study appeared in the March International Journal of Stroke.
The lack of significant differences between telestroke and in-person care regarding mortality and mRS scores of 0-2 (which defines a good outcome) surprised researchers, said lead author Ahmed Mohamed, who is completing a master of health sciences degree in medical physiology at the University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada.
“When we were starting this project,” he said, “we thought that telemedicine would probably take longer than conventional treatment.” And waiting longer for treatment — especially for patients with acute ischemic stroke — leads to worse outcomes. “However,” Mr. Mohamed said, “that wasn’t the case.” Additional measures that showed no significant differences included rates of intravenous tissue plasminogen activator (ivtPA) use and endovascular mechanical thrombectomy.
Telestroke Expansion
Authors of a study that analyzed the impact of expanding telestroke coverage beyond community ERs credited many postexpansion improvements to the addition of advanced practice providers (APPs). ProMedica Stroke Network, Toledo, Ohio, added seven APPs in June 2020 to provide two-way audiovisual inpatient stroke and TIA consultations and follow-ups at 19 spoke facilities supported by vascular neurologists at the hub comprehensive stroke center (CSC).
Revamping the TS workflow resulted in a threefold increase in TS cart utilization, a 31% decrease in transfers to the CSC, and a higher home discharge rate from spoke hospitals than from the CSC (57.38% versus 52.8%, respectively). Diagnostic sensitivity also improved, with overall decreases in stroke and TIA diagnosis of 11.5% and 39.8%, respectively, and a 12.9% increase in identification of stroke mimics. The study was published in the March Annals of Neurology.
Future Directions
All three author groups called for larger, more granular follow-up studies. Mr. Mohamed said that the 7396-patient review of 33 studies does not show whether video consultations with neurologists produce better outcomes than phone calls, for example, or whether utilizing different telestroke modalities such as a third-party telemedicine service provides better outcomes than other methods. Additionally, authors wrote, future research should compare telestroke versus non-telestroke patient transport models to optimize treatment plans and outcomes and validate potential advantages and disadvantages of telemedicine for patients with acute ischemic stroke.
“There is also a need to understand the long-term outcomes of patients treated via telestroke versus in-person care,” said Dr. Massaud. Future studies could include randomized, controlled trials comparing telestroke to traditional care in various settings with larger sample sizes, he said. “Additionally, research into the cost-effectiveness of telestroke services, patient satisfaction, and the impact of telestroke on different subtypes of stroke could provide a more comprehensive understanding of its benefits and limitations.”
Dr. Massaud and Mr. Mohamed reported no relevant financial interests. Authors of all three studies reported no funding sources or potential conflicts of interest.
These studies set the stage for larger studies comparing outcomes and efficiency of various telemedicine and transport models and gauging stakeholder satisfaction, authors said.
Surprising Results
In a single-site retrospective comparison of 252 patients with acute stroke assessed under an in-house telestroke protocol and 2437 assessed in person, telestroke provided statistically significant advantages in the following areas:
- Door-to-imaging times (median: 38 minutes vs 44)
- Rates of intravenous (18.2% vs 8.6%) and mechanical (10.4% vs 5.1%) treatment
- Length of stay (median: 6 days vs 8)
- Symptomatic hemorrhagic transformation rate (1.1% vs 5.1%)
- Mortality (6.7% vs 11.1%)
The better metrics observed in the telestroke group were especially surprising, said lead author Rodrigo Meirelles Massaud, MD, because the same team of neurologists conducted both types of evaluations. “This consistency ensures that the quality and expertise of medical care were maintained across both groups,” said Dr. Massaud, a neurologist at the Hospital Israelita Albert Einstein in São Paulo, Brazil. The study appeared online in Frontiers in Neurology.
The findings also counter the preconceived notion that distance medicine could be inferior because of the inability to conduct direct physical examinations and the potential for communication failures, he said. The telestroke group’s younger average age (63.5 years vs 69.5 years) and lower initial National Institutes of Health Stroke Scale (NIHSS) scores — 2 versus 3 — might explain the disparity, Dr. Massaud added, because both factors augur improved outcomes.
Conversely, the authors wrote that the in-person group’s lower median door-to-groin puncture time in ischemic stroke (103.5 minutes vs 151.5 for telemedicine) likely resulted from the need to transport patients from satellite facilities to a hub hospital with neurologists on continuous standby. After adjustment for initial NIHSS score and age, both groups achieved similar percentages of patients with modified Rankin Scale (mRS) scores of 0-2 at discharge: 58.5% for in-person evaluation versus 61.9% for telemedicine (P = .028).
Acute Ischemic Stroke
In another study, a systematic review that included 7396 thrombolysed patients with acute ischemic stroke, odds ratios (ORs) revealed no significant differences between telestroke and in-person care for the percentage of mRS scores 0-2 at discharge (1.06; P = .5), 90-day mortality (OR, 1.16; P = .17), and symptomatic intracranial hemorrhage (OR, 0.99; P = .93). The study appeared in the March International Journal of Stroke.
The lack of significant differences between telestroke and in-person care regarding mortality and mRS scores of 0-2 (which defines a good outcome) surprised researchers, said lead author Ahmed Mohamed, who is completing a master of health sciences degree in medical physiology at the University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada.
“When we were starting this project,” he said, “we thought that telemedicine would probably take longer than conventional treatment.” And waiting longer for treatment — especially for patients with acute ischemic stroke — leads to worse outcomes. “However,” Mr. Mohamed said, “that wasn’t the case.” Additional measures that showed no significant differences included rates of intravenous tissue plasminogen activator (ivtPA) use and endovascular mechanical thrombectomy.
Telestroke Expansion
Authors of a study that analyzed the impact of expanding telestroke coverage beyond community ERs credited many postexpansion improvements to the addition of advanced practice providers (APPs). ProMedica Stroke Network, Toledo, Ohio, added seven APPs in June 2020 to provide two-way audiovisual inpatient stroke and TIA consultations and follow-ups at 19 spoke facilities supported by vascular neurologists at the hub comprehensive stroke center (CSC).
Revamping the TS workflow resulted in a threefold increase in TS cart utilization, a 31% decrease in transfers to the CSC, and a higher home discharge rate from spoke hospitals than from the CSC (57.38% versus 52.8%, respectively). Diagnostic sensitivity also improved, with overall decreases in stroke and TIA diagnosis of 11.5% and 39.8%, respectively, and a 12.9% increase in identification of stroke mimics. The study was published in the March Annals of Neurology.
Future Directions
All three author groups called for larger, more granular follow-up studies. Mr. Mohamed said that the 7396-patient review of 33 studies does not show whether video consultations with neurologists produce better outcomes than phone calls, for example, or whether utilizing different telestroke modalities such as a third-party telemedicine service provides better outcomes than other methods. Additionally, authors wrote, future research should compare telestroke versus non-telestroke patient transport models to optimize treatment plans and outcomes and validate potential advantages and disadvantages of telemedicine for patients with acute ischemic stroke.
“There is also a need to understand the long-term outcomes of patients treated via telestroke versus in-person care,” said Dr. Massaud. Future studies could include randomized, controlled trials comparing telestroke to traditional care in various settings with larger sample sizes, he said. “Additionally, research into the cost-effectiveness of telestroke services, patient satisfaction, and the impact of telestroke on different subtypes of stroke could provide a more comprehensive understanding of its benefits and limitations.”
Dr. Massaud and Mr. Mohamed reported no relevant financial interests. Authors of all three studies reported no funding sources or potential conflicts of interest.
FROM FRONTIERS IN NEUROLOGY, INTERNATIONAL JOURNAL OF STROKE, AND ANNALS OF NEUROLOGY
Nontraditional Risk Factors Play an Outsized Role in Young Adult Stroke Risk
, new research showed.
The findings may offer insight into the increased incidence of stroke in adults under age 45, which has more than doubled in the past 20 years in high-income countries, while incidence in those over 45 has decreased.
Investigators believe the findings are important because most conventional prevention efforts focus on traditional risk factors.
“The younger they are at the time of stroke, the more likely their stroke is due to a nontraditional risk factor,” lead author Michelle Leppert, MD, an assistant professor of neurology at the University of Colorado School of Medicine, Aurora, Colorado, said in a news release.
The findings were published online in Circulation: Cardiovascular Quality and Outcomes.
Traditional Versus Nontraditional
The researchers retrospectively analyzed 2618 stroke cases (52% female; 73% ischemic stroke) that resulted in an inpatient admission and 7827 controls, all aged 18-55 years. Data came from the Colorado All Payer Claims Database between January 2012 and April 2019. Controls were matched by age, sex, and insurance type.
Traditional risk factors were defined as being a well-established risk factor for stroke that is routinely noted during stroke prevention screenings in older adults, including hypertension, diabetes, hyperlipidemia, sleep apnea, cardiovascular disease, alcohol, substance use disorder, and obesity.
Nontraditional risk factors were defined as those that are rarely cited as a cause of stroke in older adults, including migraines, malignancy, HIV, hepatitis, thrombophilia, autoimmune disease, vasculitis, sickle cell disease, heart valve disease, renal failure, and hormonal risk factors in women, such as oral contraceptives, pregnancy, or puerperium.
Overall, traditional risk factors were more common in stroke cases, with nontraditional factors playing a smaller role. However, among adults aged 18-34 years, more strokes were associated with nontraditional than traditional risk factors in men (31% vs 25%, respectively) and in women (43% vs 33%, respectively).
Migraine, the most common nontraditional risk factor for stroke in this younger age group, was found in 20% of men (odds ratio [OR], 3.9) and 35% of women (OR, 3.3).
Other notable nontraditional risk factors included heart valve disease in both men and women (OR, 3.1 and OR, 4.2, respectively); renal failure in men (OR, 8.9); and autoimmune diseases in women (OR, 8.8).
An Underestimate?
The contribution of nontraditional risk factors declined with age. After the age of 44, they were no longer significant. Hypertension was the most important traditional risk factor and increased in contribution with age.
“There have been many studies demonstrating the association between migraines and strokes, but to our knowledge, this study may be the first to demonstrate just how much stroke risk may be attributable to migraines,” Dr. Leppert said.
Overall, women had significantly more risk factors for stroke than men. Among controls, 52% and 34% of women had at least one traditional and nontraditional risk factors, respectively, compared with 48% and 22% in men.
The total contribution of nontraditional risk factors was likely an underestimate because some such factors, including the autoimmune disorder antiphospholipid syndrome and patent foramen ovale, “lacked reliable administrative algorithms” and could not be assessed in this study, the researchers noted.
Further research on how nontraditional risk factors affect strokes could lead to better prevention.
“We need to better understand the underlying mechanisms of these nontraditional risk factors to develop targeted interventions,” Dr. Leppert said.
The study was funded by the National Institutes of Health/National Center for Advancing Translational Sciences Colorado Clinical and Translational Science Award. Dr. Leppert reports receiving an American Heart Association Career Development Grant. Other disclosures are included in the original article.
A version of this article appeared on Medscape.com.
, new research showed.
The findings may offer insight into the increased incidence of stroke in adults under age 45, which has more than doubled in the past 20 years in high-income countries, while incidence in those over 45 has decreased.
Investigators believe the findings are important because most conventional prevention efforts focus on traditional risk factors.
“The younger they are at the time of stroke, the more likely their stroke is due to a nontraditional risk factor,” lead author Michelle Leppert, MD, an assistant professor of neurology at the University of Colorado School of Medicine, Aurora, Colorado, said in a news release.
The findings were published online in Circulation: Cardiovascular Quality and Outcomes.
Traditional Versus Nontraditional
The researchers retrospectively analyzed 2618 stroke cases (52% female; 73% ischemic stroke) that resulted in an inpatient admission and 7827 controls, all aged 18-55 years. Data came from the Colorado All Payer Claims Database between January 2012 and April 2019. Controls were matched by age, sex, and insurance type.
Traditional risk factors were defined as being a well-established risk factor for stroke that is routinely noted during stroke prevention screenings in older adults, including hypertension, diabetes, hyperlipidemia, sleep apnea, cardiovascular disease, alcohol, substance use disorder, and obesity.
Nontraditional risk factors were defined as those that are rarely cited as a cause of stroke in older adults, including migraines, malignancy, HIV, hepatitis, thrombophilia, autoimmune disease, vasculitis, sickle cell disease, heart valve disease, renal failure, and hormonal risk factors in women, such as oral contraceptives, pregnancy, or puerperium.
Overall, traditional risk factors were more common in stroke cases, with nontraditional factors playing a smaller role. However, among adults aged 18-34 years, more strokes were associated with nontraditional than traditional risk factors in men (31% vs 25%, respectively) and in women (43% vs 33%, respectively).
Migraine, the most common nontraditional risk factor for stroke in this younger age group, was found in 20% of men (odds ratio [OR], 3.9) and 35% of women (OR, 3.3).
Other notable nontraditional risk factors included heart valve disease in both men and women (OR, 3.1 and OR, 4.2, respectively); renal failure in men (OR, 8.9); and autoimmune diseases in women (OR, 8.8).
An Underestimate?
The contribution of nontraditional risk factors declined with age. After the age of 44, they were no longer significant. Hypertension was the most important traditional risk factor and increased in contribution with age.
“There have been many studies demonstrating the association between migraines and strokes, but to our knowledge, this study may be the first to demonstrate just how much stroke risk may be attributable to migraines,” Dr. Leppert said.
Overall, women had significantly more risk factors for stroke than men. Among controls, 52% and 34% of women had at least one traditional and nontraditional risk factors, respectively, compared with 48% and 22% in men.
The total contribution of nontraditional risk factors was likely an underestimate because some such factors, including the autoimmune disorder antiphospholipid syndrome and patent foramen ovale, “lacked reliable administrative algorithms” and could not be assessed in this study, the researchers noted.
Further research on how nontraditional risk factors affect strokes could lead to better prevention.
“We need to better understand the underlying mechanisms of these nontraditional risk factors to develop targeted interventions,” Dr. Leppert said.
The study was funded by the National Institutes of Health/National Center for Advancing Translational Sciences Colorado Clinical and Translational Science Award. Dr. Leppert reports receiving an American Heart Association Career Development Grant. Other disclosures are included in the original article.
A version of this article appeared on Medscape.com.
, new research showed.
The findings may offer insight into the increased incidence of stroke in adults under age 45, which has more than doubled in the past 20 years in high-income countries, while incidence in those over 45 has decreased.
Investigators believe the findings are important because most conventional prevention efforts focus on traditional risk factors.
“The younger they are at the time of stroke, the more likely their stroke is due to a nontraditional risk factor,” lead author Michelle Leppert, MD, an assistant professor of neurology at the University of Colorado School of Medicine, Aurora, Colorado, said in a news release.
The findings were published online in Circulation: Cardiovascular Quality and Outcomes.
Traditional Versus Nontraditional
The researchers retrospectively analyzed 2618 stroke cases (52% female; 73% ischemic stroke) that resulted in an inpatient admission and 7827 controls, all aged 18-55 years. Data came from the Colorado All Payer Claims Database between January 2012 and April 2019. Controls were matched by age, sex, and insurance type.
Traditional risk factors were defined as being a well-established risk factor for stroke that is routinely noted during stroke prevention screenings in older adults, including hypertension, diabetes, hyperlipidemia, sleep apnea, cardiovascular disease, alcohol, substance use disorder, and obesity.
Nontraditional risk factors were defined as those that are rarely cited as a cause of stroke in older adults, including migraines, malignancy, HIV, hepatitis, thrombophilia, autoimmune disease, vasculitis, sickle cell disease, heart valve disease, renal failure, and hormonal risk factors in women, such as oral contraceptives, pregnancy, or puerperium.
Overall, traditional risk factors were more common in stroke cases, with nontraditional factors playing a smaller role. However, among adults aged 18-34 years, more strokes were associated with nontraditional than traditional risk factors in men (31% vs 25%, respectively) and in women (43% vs 33%, respectively).
Migraine, the most common nontraditional risk factor for stroke in this younger age group, was found in 20% of men (odds ratio [OR], 3.9) and 35% of women (OR, 3.3).
Other notable nontraditional risk factors included heart valve disease in both men and women (OR, 3.1 and OR, 4.2, respectively); renal failure in men (OR, 8.9); and autoimmune diseases in women (OR, 8.8).
An Underestimate?
The contribution of nontraditional risk factors declined with age. After the age of 44, they were no longer significant. Hypertension was the most important traditional risk factor and increased in contribution with age.
“There have been many studies demonstrating the association between migraines and strokes, but to our knowledge, this study may be the first to demonstrate just how much stroke risk may be attributable to migraines,” Dr. Leppert said.
Overall, women had significantly more risk factors for stroke than men. Among controls, 52% and 34% of women had at least one traditional and nontraditional risk factors, respectively, compared with 48% and 22% in men.
The total contribution of nontraditional risk factors was likely an underestimate because some such factors, including the autoimmune disorder antiphospholipid syndrome and patent foramen ovale, “lacked reliable administrative algorithms” and could not be assessed in this study, the researchers noted.
Further research on how nontraditional risk factors affect strokes could lead to better prevention.
“We need to better understand the underlying mechanisms of these nontraditional risk factors to develop targeted interventions,” Dr. Leppert said.
The study was funded by the National Institutes of Health/National Center for Advancing Translational Sciences Colorado Clinical and Translational Science Award. Dr. Leppert reports receiving an American Heart Association Career Development Grant. Other disclosures are included in the original article.
A version of this article appeared on Medscape.com.
FROM CIRCULATION: CARDIOVASCULAR QUALITY AND OUTCOMES
No Increased Stroke Risk After COVID-19 Bivalent Vaccine
TOPLINE:
, a new study of Medicare beneficiaries showed.
METHODOLOGY:
- The analysis included 5.4 million people age ≥ 65 years who received either the Pfizer-BioNTech COVID-19 bivalent vaccine or the Moderna bivalent vaccine, or the Pfizer vaccine and a high-dose or adjuvanted concomitant influenza vaccine (ie, administered on the same day).
- A total of 11,001 of the cohort experienced a stroke in the first 90 days after vaccination.
- The main outcome was stroke risk (nonhemorrhagic stroke, transient ischemic attack [TIA], or hemorrhagic stroke) during the 1- to 21-day or 22- to 42-day window after vaccination vs the 43- to 90-day control window.
- The mean age of participants was 74 years, and 56% were female.
TAKEAWAY:
- There was no statistically significant association with either brand of the COVID-19 bivalent vaccine or any of the stroke outcomes during the 1- to 21-day or 22- to 42-day risk window compared with the 43- to 90-day control window (incidence rate ratio [IRR] range, 0.72-1.12).
- Vaccination with COVID-19 bivalent vaccine plus a high-dose or adjuvanted influenza vaccine (n = 4596) was associated with a significantly greater risk for nonhemorrhagic stroke 22-42 days after vaccination with Pfizer-BioNTech (IRR, 1.20; risk difference/100,000 doses, 3.13) and an increase in TIA risk 1-21 days after vaccination with Moderna (IRR, 1.35; risk difference/100,000 doses, 3.33).
- There was a significant association between vaccination with a high-dose or adjuvanted influenza vaccine (n = 21,345) and nonhemorrhagic stroke 22-42 days after vaccination (IRR, 1.09; risk difference/100,000 doses, 1.65).
IN PRACTICE:
“The clinical significance of the risk of stroke after vaccination must be carefully considered together with the significant benefits of receiving an influenza vaccination,” the authors wrote. “Because the framework of the current self-controlled case series study does not compare the populations who were vaccinated vs those who were unvaccinated, it does not account for the reduced rate of severe influenza after vaccination. More studies are needed to better understand the association between high-dose or adjuvanted influenza vaccination and stroke.”
SOURCE:
Yun Lu, PhD, of the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, was the lead and corresponding author of the study. It was published online on March 19 in JAMA.
LIMITATIONS:
Some stroke cases may have been missed or misclassified. The study included only vaccinated individuals — a population considered to have health-seeking behaviors — which may limit the generalizability of the findings. The study was conducted using COVID-19 bivalent vaccines, which are no longer available.
DISCLOSURES:
This work was funded by the US Food and Drug Administration through an interagency agreement with the Centers for Medicare & Medicaid Services. Dr. Lu reported no relevant financial relationships. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
TOPLINE:
, a new study of Medicare beneficiaries showed.
METHODOLOGY:
- The analysis included 5.4 million people age ≥ 65 years who received either the Pfizer-BioNTech COVID-19 bivalent vaccine or the Moderna bivalent vaccine, or the Pfizer vaccine and a high-dose or adjuvanted concomitant influenza vaccine (ie, administered on the same day).
- A total of 11,001 of the cohort experienced a stroke in the first 90 days after vaccination.
- The main outcome was stroke risk (nonhemorrhagic stroke, transient ischemic attack [TIA], or hemorrhagic stroke) during the 1- to 21-day or 22- to 42-day window after vaccination vs the 43- to 90-day control window.
- The mean age of participants was 74 years, and 56% were female.
TAKEAWAY:
- There was no statistically significant association with either brand of the COVID-19 bivalent vaccine or any of the stroke outcomes during the 1- to 21-day or 22- to 42-day risk window compared with the 43- to 90-day control window (incidence rate ratio [IRR] range, 0.72-1.12).
- Vaccination with COVID-19 bivalent vaccine plus a high-dose or adjuvanted influenza vaccine (n = 4596) was associated with a significantly greater risk for nonhemorrhagic stroke 22-42 days after vaccination with Pfizer-BioNTech (IRR, 1.20; risk difference/100,000 doses, 3.13) and an increase in TIA risk 1-21 days after vaccination with Moderna (IRR, 1.35; risk difference/100,000 doses, 3.33).
- There was a significant association between vaccination with a high-dose or adjuvanted influenza vaccine (n = 21,345) and nonhemorrhagic stroke 22-42 days after vaccination (IRR, 1.09; risk difference/100,000 doses, 1.65).
IN PRACTICE:
“The clinical significance of the risk of stroke after vaccination must be carefully considered together with the significant benefits of receiving an influenza vaccination,” the authors wrote. “Because the framework of the current self-controlled case series study does not compare the populations who were vaccinated vs those who were unvaccinated, it does not account for the reduced rate of severe influenza after vaccination. More studies are needed to better understand the association between high-dose or adjuvanted influenza vaccination and stroke.”
SOURCE:
Yun Lu, PhD, of the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, was the lead and corresponding author of the study. It was published online on March 19 in JAMA.
LIMITATIONS:
Some stroke cases may have been missed or misclassified. The study included only vaccinated individuals — a population considered to have health-seeking behaviors — which may limit the generalizability of the findings. The study was conducted using COVID-19 bivalent vaccines, which are no longer available.
DISCLOSURES:
This work was funded by the US Food and Drug Administration through an interagency agreement with the Centers for Medicare & Medicaid Services. Dr. Lu reported no relevant financial relationships. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
TOPLINE:
, a new study of Medicare beneficiaries showed.
METHODOLOGY:
- The analysis included 5.4 million people age ≥ 65 years who received either the Pfizer-BioNTech COVID-19 bivalent vaccine or the Moderna bivalent vaccine, or the Pfizer vaccine and a high-dose or adjuvanted concomitant influenza vaccine (ie, administered on the same day).
- A total of 11,001 of the cohort experienced a stroke in the first 90 days after vaccination.
- The main outcome was stroke risk (nonhemorrhagic stroke, transient ischemic attack [TIA], or hemorrhagic stroke) during the 1- to 21-day or 22- to 42-day window after vaccination vs the 43- to 90-day control window.
- The mean age of participants was 74 years, and 56% were female.
TAKEAWAY:
- There was no statistically significant association with either brand of the COVID-19 bivalent vaccine or any of the stroke outcomes during the 1- to 21-day or 22- to 42-day risk window compared with the 43- to 90-day control window (incidence rate ratio [IRR] range, 0.72-1.12).
- Vaccination with COVID-19 bivalent vaccine plus a high-dose or adjuvanted influenza vaccine (n = 4596) was associated with a significantly greater risk for nonhemorrhagic stroke 22-42 days after vaccination with Pfizer-BioNTech (IRR, 1.20; risk difference/100,000 doses, 3.13) and an increase in TIA risk 1-21 days after vaccination with Moderna (IRR, 1.35; risk difference/100,000 doses, 3.33).
- There was a significant association between vaccination with a high-dose or adjuvanted influenza vaccine (n = 21,345) and nonhemorrhagic stroke 22-42 days after vaccination (IRR, 1.09; risk difference/100,000 doses, 1.65).
IN PRACTICE:
“The clinical significance of the risk of stroke after vaccination must be carefully considered together with the significant benefits of receiving an influenza vaccination,” the authors wrote. “Because the framework of the current self-controlled case series study does not compare the populations who were vaccinated vs those who were unvaccinated, it does not account for the reduced rate of severe influenza after vaccination. More studies are needed to better understand the association between high-dose or adjuvanted influenza vaccination and stroke.”
SOURCE:
Yun Lu, PhD, of the Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, was the lead and corresponding author of the study. It was published online on March 19 in JAMA.
LIMITATIONS:
Some stroke cases may have been missed or misclassified. The study included only vaccinated individuals — a population considered to have health-seeking behaviors — which may limit the generalizability of the findings. The study was conducted using COVID-19 bivalent vaccines, which are no longer available.
DISCLOSURES:
This work was funded by the US Food and Drug Administration through an interagency agreement with the Centers for Medicare & Medicaid Services. Dr. Lu reported no relevant financial relationships. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
The Truth About Compounded GLP-1s That Doctors Need to Know
As a cardiologist specializing in obesity medicine, I often encounter patients who would greatly benefit from the new generation of weight loss drugs that work as glucagon-like peptide 1 (GLP-1) agonists. In the recently published SELECT trial results, for example, semaglutide (marketed by Novo Nordisk as Wegovy for weight loss and Ozempic for type 2 diabetes) demonstrated a 20% risk reduction of heart attacks and strokes in overweight and obese individuals without diabetes and with cardiovascular disease, establishing it as a cardiovascular disease–modifying medication in people without type 2 diabetes.
Unfortunately, the high demand for these new weight loss medications has resulted in a frustrating, long-lasting shortage.
To ensure continuation of patient care, federal law allows compounding pharmacies to make “essentially a copy” of the medications that are listed as “currently in shortage” on the US Food and Drug Administration (FDA) drug shortage list. Both semaglutide and tirzepatide are on that list. For Americans who suffer from obesity and other weight-related diseases, these drugs could be a lifeline.
Despite this, the medical community has broadly criticized the utilization of compounded GLP-1 agonists, even those obtained from reputable and legitimate compounding pharmacies.
Yes, high demand has led to the emergence of unregulated companies and scammers producing substandard or counterfeit versions of these medications.
The FDA has found fraudulent products (masquerading as the weight loss drugs) and has issued warning letters to stop the distribution of illegally marketed semaglutide. “These drugs may be counterfeit, which means they could contain the wrong ingredients, contain too little, too much or no active ingredient at all, or contain other harmful ingredients,” it cautions. Some products use a similar-sounding semaglutide sodium salt, which has uncertain safety and efficacy, and had generated warnings from the FDA and state boards of pharmacy.
Many of these products are marketed directly to consumers online through websites and social media, with little to no medical oversight. This practice is a significant concern, as it may affect patient safety, and should be discouraged.
However, according to a statement from the Alliance for Pharmacy Compounding (APC), legitimate compounding pharmacies aren’t the ones selling these dubious products on the black market, particularly online. This illegal practice has garnered media attention and is sometimes incorrectly associated with legitimate pharmacy compounding.
In contrast, legal and certified versions of GLP-1 agonist medications can be obtained from well-regulated and reputable compounding pharmacies. These pharmacies must adhere to all federal and state regulations and dispense medications only with a valid prescription from a licensed physician.
Meanwhile, the APC statement notes, Novo Nordisk and Eli Lilly have sued compounding companies in several states, questioning, among other things, the purity and potency of some compounded products.
There are different designations for compounding pharmacies: 503A and 503B. 503As are state-licensed pharmacies and physicians, and 503B pharmacies are federally regulated outsourcing facilities that are strictly regulated by the FDA. This regulation, established following a 2012 fungal meningitis outbreak linked to a compounding pharmacy, ensures higher-quality control and oversight, especially for medications intended for intravenous or epidural use. These standards exceed those required for subcutaneous injections like GLP-1 analogs.
In the face of this Wild West climate, where compounded drugs may vary in their source, formulation, potency, and purity, The Obesity Society, the Obesity Medical Association, and the Obesity Action Coalition published a joint statement that advised against the use of compounded GLP-1 agonists, citing safety concerns and lack of regulatory oversight.
This stance, while aimed at ensuring patient safety, inadvertently raises a critical issue.
By completely dismissing compounded medications, experts may unintentionally bolster the black market and overlook the needs of patients who could benefit from these medications, contrary to the intentions of the exemption provided in federal law for compounding during a drug shortage. In fact, the presence of unreliable suppliers highlights the need to direct the public toward trustworthy sources, rather than imposing a total ban on medically appropriate alternatives.
The joint statement calls compounded GLP-1 agonists “counterfeit.” This inaccurate overgeneralization probably stems from a misunderstanding of the compounding process and its regulations. Legitimate and regulated pharmacies compound base GLP-1 agonists, which are “essentially a copy” of FDA-approved medications, not counterfeits. Recognizing this is crucial for maintaining trust in both compounding pharmacies and regulatory bodies.
It is correct that “the only FDA-approved manufacturers of these medications are the companies that created the active pharmaceutical ingredients — Novo Nordisk and Eli Lilly,” but the joint statement fails to mention the exemptions provided by law that allow compounding copies of the branded medications if they are on the shortage list.
Compounding pharmacies must obtain active pharmaceutical ingredients (APIs) from FDA-registered facilities, which are required to adhere to Current Good Manufacturing Practices (cGMP). This ensures the APIs’ quality, potency, and purity, crucial for the safety and efficacy of compounded medications.
Compounded drugs are not FDA approved, but they aren’t inherently unsafe. Compounded medications include critical drugs such as resuscitation medications and antibiotics, and are often used in healthcare settings, especially when there’s a shortage. This raises the question of why compounded GLP-1 agonists would be treated any differently in such scenarios.
And in the case of alternative drugs for individuals with obesity who have a higher risk for cardiovascular disease, the brand-name FDA-approved alternative may be of more concern than the compounded GLP-1 agonist. The obesity societies advise: “If you cannot find or get access to a GLP-1-based treatment now, there are other treatments available,” echoing experts. While the statement doesn’t specify the names of the alternatives, experts have advised using alternatives such as Qsymia and Contrave, despite their potential cardiovascular concerns. This recommendation to the public may not represent a responsible risk-benefit analysis.
Rather than outright banning compounded GLP-1 medications, expert associations can contribute to the solution by creating a “seal of approval,” recognizing high-quality compounded medications. This would contribute to informed decision-making for clinicians and patients.
Possible Solutions
When prescribing GLP-1 agonists for obesity treatment, doctors should consider all of the following steps to ensure patient safety and effective treatment:
Preference for FDA-approved brands: FDA-approved branded GLP-1 agonist medications should be the primary choice because of their established safety and efficacy.
Risk-benefit analysis for non–FDA-approved products: In cases where FDA-approved options are not available, doctors may consider prescribing a non–FDA-approved copy of the branded medication. Prior to this, conduct a thorough risk-benefit analysis with the patient, ensuring that they are fully informed about the potential risks and benefits of using a non–FDA-approved product.
Choosing semaglutide copies for specific cases: In patients with obesity and cardiovascular disease, the benefits of using a compounded copy of semaglutide, with its cardiovascular disease–modifying properties, may outweigh the risks compared with other FDA-approved antiobesity drugs that might pose cardiovascular risks or compared with no antiobesity treatment at all.
Informed consent and monitoring: When prescribing a non–FDA-approved version of a GLP-1 agonist, obtaining informed consent from the patient is advised. They should be made aware of the differences between the FDA-approved and nonapproved versions.
Choosing between 503A and 503B pharmacies: Prescriptions for non–FDA-approved GLP-1 agonists can be directed to either 503A or 503B compounding pharmacies. However, it’s advisable to check whether the product can be compounded by a 503B pharmacy, which is subject to an additional layer of FDA regulation, offering greater quality assurance.
Clear prescription specifications: Ensure that the prescription explicitly states that the compounded GLP-1 agonist should be the base compound without additives.
Requesting a Certificate of Analysis: To further ensure safety, request a Certificate of Analysis from the compounding pharmacy. This provides detailed quality and composition information about the product.
Ongoing monitoring: Continuously monitor the patient’s response to the medication and adjust the treatment plan as necessary, maintaining regular follow-ups.
By adhering to these guidelines, doctors can navigate the complexities of prescribing GLP-1 agonists in a way that prioritizes patient well-being, particularly in scenarios where conventional treatment options are limited.
Dr. Einav is a board-certified cardiologist and a Diplomate of the American Board of Obesity Medicine. He is a fellow of the American College of Cardiology and a member of the Obesity Medicine Association. He serves as the medical director of cardiometabolic health in Guthrie Lourdes in Binghamton, New York, and is the founder of myW8/Cardiometabolic Health located in Beverly Hills, California. This article solely reflects the personal views of Dr. Einav and should not be considered as representing the official stance of Guthrie Lourdes. Dr. Einav served as a promotional speaker for Novo Nordisk in 2022. As of now, he has not prescribed any compounded GLP-1 agonist medications in his medical practice.
A version of this article appeared on Medscape.com.
As a cardiologist specializing in obesity medicine, I often encounter patients who would greatly benefit from the new generation of weight loss drugs that work as glucagon-like peptide 1 (GLP-1) agonists. In the recently published SELECT trial results, for example, semaglutide (marketed by Novo Nordisk as Wegovy for weight loss and Ozempic for type 2 diabetes) demonstrated a 20% risk reduction of heart attacks and strokes in overweight and obese individuals without diabetes and with cardiovascular disease, establishing it as a cardiovascular disease–modifying medication in people without type 2 diabetes.
Unfortunately, the high demand for these new weight loss medications has resulted in a frustrating, long-lasting shortage.
To ensure continuation of patient care, federal law allows compounding pharmacies to make “essentially a copy” of the medications that are listed as “currently in shortage” on the US Food and Drug Administration (FDA) drug shortage list. Both semaglutide and tirzepatide are on that list. For Americans who suffer from obesity and other weight-related diseases, these drugs could be a lifeline.
Despite this, the medical community has broadly criticized the utilization of compounded GLP-1 agonists, even those obtained from reputable and legitimate compounding pharmacies.
Yes, high demand has led to the emergence of unregulated companies and scammers producing substandard or counterfeit versions of these medications.
The FDA has found fraudulent products (masquerading as the weight loss drugs) and has issued warning letters to stop the distribution of illegally marketed semaglutide. “These drugs may be counterfeit, which means they could contain the wrong ingredients, contain too little, too much or no active ingredient at all, or contain other harmful ingredients,” it cautions. Some products use a similar-sounding semaglutide sodium salt, which has uncertain safety and efficacy, and had generated warnings from the FDA and state boards of pharmacy.
Many of these products are marketed directly to consumers online through websites and social media, with little to no medical oversight. This practice is a significant concern, as it may affect patient safety, and should be discouraged.
However, according to a statement from the Alliance for Pharmacy Compounding (APC), legitimate compounding pharmacies aren’t the ones selling these dubious products on the black market, particularly online. This illegal practice has garnered media attention and is sometimes incorrectly associated with legitimate pharmacy compounding.
In contrast, legal and certified versions of GLP-1 agonist medications can be obtained from well-regulated and reputable compounding pharmacies. These pharmacies must adhere to all federal and state regulations and dispense medications only with a valid prescription from a licensed physician.
Meanwhile, the APC statement notes, Novo Nordisk and Eli Lilly have sued compounding companies in several states, questioning, among other things, the purity and potency of some compounded products.
There are different designations for compounding pharmacies: 503A and 503B. 503As are state-licensed pharmacies and physicians, and 503B pharmacies are federally regulated outsourcing facilities that are strictly regulated by the FDA. This regulation, established following a 2012 fungal meningitis outbreak linked to a compounding pharmacy, ensures higher-quality control and oversight, especially for medications intended for intravenous or epidural use. These standards exceed those required for subcutaneous injections like GLP-1 analogs.
In the face of this Wild West climate, where compounded drugs may vary in their source, formulation, potency, and purity, The Obesity Society, the Obesity Medical Association, and the Obesity Action Coalition published a joint statement that advised against the use of compounded GLP-1 agonists, citing safety concerns and lack of regulatory oversight.
This stance, while aimed at ensuring patient safety, inadvertently raises a critical issue.
By completely dismissing compounded medications, experts may unintentionally bolster the black market and overlook the needs of patients who could benefit from these medications, contrary to the intentions of the exemption provided in federal law for compounding during a drug shortage. In fact, the presence of unreliable suppliers highlights the need to direct the public toward trustworthy sources, rather than imposing a total ban on medically appropriate alternatives.
The joint statement calls compounded GLP-1 agonists “counterfeit.” This inaccurate overgeneralization probably stems from a misunderstanding of the compounding process and its regulations. Legitimate and regulated pharmacies compound base GLP-1 agonists, which are “essentially a copy” of FDA-approved medications, not counterfeits. Recognizing this is crucial for maintaining trust in both compounding pharmacies and regulatory bodies.
It is correct that “the only FDA-approved manufacturers of these medications are the companies that created the active pharmaceutical ingredients — Novo Nordisk and Eli Lilly,” but the joint statement fails to mention the exemptions provided by law that allow compounding copies of the branded medications if they are on the shortage list.
Compounding pharmacies must obtain active pharmaceutical ingredients (APIs) from FDA-registered facilities, which are required to adhere to Current Good Manufacturing Practices (cGMP). This ensures the APIs’ quality, potency, and purity, crucial for the safety and efficacy of compounded medications.
Compounded drugs are not FDA approved, but they aren’t inherently unsafe. Compounded medications include critical drugs such as resuscitation medications and antibiotics, and are often used in healthcare settings, especially when there’s a shortage. This raises the question of why compounded GLP-1 agonists would be treated any differently in such scenarios.
And in the case of alternative drugs for individuals with obesity who have a higher risk for cardiovascular disease, the brand-name FDA-approved alternative may be of more concern than the compounded GLP-1 agonist. The obesity societies advise: “If you cannot find or get access to a GLP-1-based treatment now, there are other treatments available,” echoing experts. While the statement doesn’t specify the names of the alternatives, experts have advised using alternatives such as Qsymia and Contrave, despite their potential cardiovascular concerns. This recommendation to the public may not represent a responsible risk-benefit analysis.
Rather than outright banning compounded GLP-1 medications, expert associations can contribute to the solution by creating a “seal of approval,” recognizing high-quality compounded medications. This would contribute to informed decision-making for clinicians and patients.
Possible Solutions
When prescribing GLP-1 agonists for obesity treatment, doctors should consider all of the following steps to ensure patient safety and effective treatment:
Preference for FDA-approved brands: FDA-approved branded GLP-1 agonist medications should be the primary choice because of their established safety and efficacy.
Risk-benefit analysis for non–FDA-approved products: In cases where FDA-approved options are not available, doctors may consider prescribing a non–FDA-approved copy of the branded medication. Prior to this, conduct a thorough risk-benefit analysis with the patient, ensuring that they are fully informed about the potential risks and benefits of using a non–FDA-approved product.
Choosing semaglutide copies for specific cases: In patients with obesity and cardiovascular disease, the benefits of using a compounded copy of semaglutide, with its cardiovascular disease–modifying properties, may outweigh the risks compared with other FDA-approved antiobesity drugs that might pose cardiovascular risks or compared with no antiobesity treatment at all.
Informed consent and monitoring: When prescribing a non–FDA-approved version of a GLP-1 agonist, obtaining informed consent from the patient is advised. They should be made aware of the differences between the FDA-approved and nonapproved versions.
Choosing between 503A and 503B pharmacies: Prescriptions for non–FDA-approved GLP-1 agonists can be directed to either 503A or 503B compounding pharmacies. However, it’s advisable to check whether the product can be compounded by a 503B pharmacy, which is subject to an additional layer of FDA regulation, offering greater quality assurance.
Clear prescription specifications: Ensure that the prescription explicitly states that the compounded GLP-1 agonist should be the base compound without additives.
Requesting a Certificate of Analysis: To further ensure safety, request a Certificate of Analysis from the compounding pharmacy. This provides detailed quality and composition information about the product.
Ongoing monitoring: Continuously monitor the patient’s response to the medication and adjust the treatment plan as necessary, maintaining regular follow-ups.
By adhering to these guidelines, doctors can navigate the complexities of prescribing GLP-1 agonists in a way that prioritizes patient well-being, particularly in scenarios where conventional treatment options are limited.
Dr. Einav is a board-certified cardiologist and a Diplomate of the American Board of Obesity Medicine. He is a fellow of the American College of Cardiology and a member of the Obesity Medicine Association. He serves as the medical director of cardiometabolic health in Guthrie Lourdes in Binghamton, New York, and is the founder of myW8/Cardiometabolic Health located in Beverly Hills, California. This article solely reflects the personal views of Dr. Einav and should not be considered as representing the official stance of Guthrie Lourdes. Dr. Einav served as a promotional speaker for Novo Nordisk in 2022. As of now, he has not prescribed any compounded GLP-1 agonist medications in his medical practice.
A version of this article appeared on Medscape.com.
As a cardiologist specializing in obesity medicine, I often encounter patients who would greatly benefit from the new generation of weight loss drugs that work as glucagon-like peptide 1 (GLP-1) agonists. In the recently published SELECT trial results, for example, semaglutide (marketed by Novo Nordisk as Wegovy for weight loss and Ozempic for type 2 diabetes) demonstrated a 20% risk reduction of heart attacks and strokes in overweight and obese individuals without diabetes and with cardiovascular disease, establishing it as a cardiovascular disease–modifying medication in people without type 2 diabetes.
Unfortunately, the high demand for these new weight loss medications has resulted in a frustrating, long-lasting shortage.
To ensure continuation of patient care, federal law allows compounding pharmacies to make “essentially a copy” of the medications that are listed as “currently in shortage” on the US Food and Drug Administration (FDA) drug shortage list. Both semaglutide and tirzepatide are on that list. For Americans who suffer from obesity and other weight-related diseases, these drugs could be a lifeline.
Despite this, the medical community has broadly criticized the utilization of compounded GLP-1 agonists, even those obtained from reputable and legitimate compounding pharmacies.
Yes, high demand has led to the emergence of unregulated companies and scammers producing substandard or counterfeit versions of these medications.
The FDA has found fraudulent products (masquerading as the weight loss drugs) and has issued warning letters to stop the distribution of illegally marketed semaglutide. “These drugs may be counterfeit, which means they could contain the wrong ingredients, contain too little, too much or no active ingredient at all, or contain other harmful ingredients,” it cautions. Some products use a similar-sounding semaglutide sodium salt, which has uncertain safety and efficacy, and had generated warnings from the FDA and state boards of pharmacy.
Many of these products are marketed directly to consumers online through websites and social media, with little to no medical oversight. This practice is a significant concern, as it may affect patient safety, and should be discouraged.
However, according to a statement from the Alliance for Pharmacy Compounding (APC), legitimate compounding pharmacies aren’t the ones selling these dubious products on the black market, particularly online. This illegal practice has garnered media attention and is sometimes incorrectly associated with legitimate pharmacy compounding.
In contrast, legal and certified versions of GLP-1 agonist medications can be obtained from well-regulated and reputable compounding pharmacies. These pharmacies must adhere to all federal and state regulations and dispense medications only with a valid prescription from a licensed physician.
Meanwhile, the APC statement notes, Novo Nordisk and Eli Lilly have sued compounding companies in several states, questioning, among other things, the purity and potency of some compounded products.
There are different designations for compounding pharmacies: 503A and 503B. 503As are state-licensed pharmacies and physicians, and 503B pharmacies are federally regulated outsourcing facilities that are strictly regulated by the FDA. This regulation, established following a 2012 fungal meningitis outbreak linked to a compounding pharmacy, ensures higher-quality control and oversight, especially for medications intended for intravenous or epidural use. These standards exceed those required for subcutaneous injections like GLP-1 analogs.
In the face of this Wild West climate, where compounded drugs may vary in their source, formulation, potency, and purity, The Obesity Society, the Obesity Medical Association, and the Obesity Action Coalition published a joint statement that advised against the use of compounded GLP-1 agonists, citing safety concerns and lack of regulatory oversight.
This stance, while aimed at ensuring patient safety, inadvertently raises a critical issue.
By completely dismissing compounded medications, experts may unintentionally bolster the black market and overlook the needs of patients who could benefit from these medications, contrary to the intentions of the exemption provided in federal law for compounding during a drug shortage. In fact, the presence of unreliable suppliers highlights the need to direct the public toward trustworthy sources, rather than imposing a total ban on medically appropriate alternatives.
The joint statement calls compounded GLP-1 agonists “counterfeit.” This inaccurate overgeneralization probably stems from a misunderstanding of the compounding process and its regulations. Legitimate and regulated pharmacies compound base GLP-1 agonists, which are “essentially a copy” of FDA-approved medications, not counterfeits. Recognizing this is crucial for maintaining trust in both compounding pharmacies and regulatory bodies.
It is correct that “the only FDA-approved manufacturers of these medications are the companies that created the active pharmaceutical ingredients — Novo Nordisk and Eli Lilly,” but the joint statement fails to mention the exemptions provided by law that allow compounding copies of the branded medications if they are on the shortage list.
Compounding pharmacies must obtain active pharmaceutical ingredients (APIs) from FDA-registered facilities, which are required to adhere to Current Good Manufacturing Practices (cGMP). This ensures the APIs’ quality, potency, and purity, crucial for the safety and efficacy of compounded medications.
Compounded drugs are not FDA approved, but they aren’t inherently unsafe. Compounded medications include critical drugs such as resuscitation medications and antibiotics, and are often used in healthcare settings, especially when there’s a shortage. This raises the question of why compounded GLP-1 agonists would be treated any differently in such scenarios.
And in the case of alternative drugs for individuals with obesity who have a higher risk for cardiovascular disease, the brand-name FDA-approved alternative may be of more concern than the compounded GLP-1 agonist. The obesity societies advise: “If you cannot find or get access to a GLP-1-based treatment now, there are other treatments available,” echoing experts. While the statement doesn’t specify the names of the alternatives, experts have advised using alternatives such as Qsymia and Contrave, despite their potential cardiovascular concerns. This recommendation to the public may not represent a responsible risk-benefit analysis.
Rather than outright banning compounded GLP-1 medications, expert associations can contribute to the solution by creating a “seal of approval,” recognizing high-quality compounded medications. This would contribute to informed decision-making for clinicians and patients.
Possible Solutions
When prescribing GLP-1 agonists for obesity treatment, doctors should consider all of the following steps to ensure patient safety and effective treatment:
Preference for FDA-approved brands: FDA-approved branded GLP-1 agonist medications should be the primary choice because of their established safety and efficacy.
Risk-benefit analysis for non–FDA-approved products: In cases where FDA-approved options are not available, doctors may consider prescribing a non–FDA-approved copy of the branded medication. Prior to this, conduct a thorough risk-benefit analysis with the patient, ensuring that they are fully informed about the potential risks and benefits of using a non–FDA-approved product.
Choosing semaglutide copies for specific cases: In patients with obesity and cardiovascular disease, the benefits of using a compounded copy of semaglutide, with its cardiovascular disease–modifying properties, may outweigh the risks compared with other FDA-approved antiobesity drugs that might pose cardiovascular risks or compared with no antiobesity treatment at all.
Informed consent and monitoring: When prescribing a non–FDA-approved version of a GLP-1 agonist, obtaining informed consent from the patient is advised. They should be made aware of the differences between the FDA-approved and nonapproved versions.
Choosing between 503A and 503B pharmacies: Prescriptions for non–FDA-approved GLP-1 agonists can be directed to either 503A or 503B compounding pharmacies. However, it’s advisable to check whether the product can be compounded by a 503B pharmacy, which is subject to an additional layer of FDA regulation, offering greater quality assurance.
Clear prescription specifications: Ensure that the prescription explicitly states that the compounded GLP-1 agonist should be the base compound without additives.
Requesting a Certificate of Analysis: To further ensure safety, request a Certificate of Analysis from the compounding pharmacy. This provides detailed quality and composition information about the product.
Ongoing monitoring: Continuously monitor the patient’s response to the medication and adjust the treatment plan as necessary, maintaining regular follow-ups.
By adhering to these guidelines, doctors can navigate the complexities of prescribing GLP-1 agonists in a way that prioritizes patient well-being, particularly in scenarios where conventional treatment options are limited.
Dr. Einav is a board-certified cardiologist and a Diplomate of the American Board of Obesity Medicine. He is a fellow of the American College of Cardiology and a member of the Obesity Medicine Association. He serves as the medical director of cardiometabolic health in Guthrie Lourdes in Binghamton, New York, and is the founder of myW8/Cardiometabolic Health located in Beverly Hills, California. This article solely reflects the personal views of Dr. Einav and should not be considered as representing the official stance of Guthrie Lourdes. Dr. Einav served as a promotional speaker for Novo Nordisk in 2022. As of now, he has not prescribed any compounded GLP-1 agonist medications in his medical practice.
A version of this article appeared on Medscape.com.
Hemorrhagic Stroke a Key Driver of Spike in US Stroke Rates
TOPLINE:
Age-standardized stroke rates decreased in the United States between 1990 and 2019, while absolute stroke incidence, prevalence, mortality, and disability-adjusted life years (DALYs) rates increased, a new study showed. Investigators noted the findings, which also show a significant increase in hemorrhagic stroke and an uptick in stroke among adults under 50 years in the South and Midwest, suggesting a significant shift in the US stroke burden.
METHODOLOGY:
- This in-depth, cross-sectional analysis of the 2019 Global Burden of Disease study included data on all-cause and ischemic strokes, intracerebral hemorrhages (ICHs), and subarachnoid hemorrhages (SAHs) between 1990 and 2019 in the United States.
- Researchers focused on both overall and age-standardized estimates, stroke incidence, prevalence, mortality, and DALYs per 100,000 people.
TAKEAWAY:
- In 2019, the United States recorded 7.09 million prevalent strokes, 83% of which were ischemic and 57% of which occurred in women.
- The absolute numbers of stroke cases, mortality, and DALYs increased from 1990 to 2019, but the age-standardized rates either declined or remained steady.
- Overall incidence increased by 40% for ICH, 51% for SAH, and 13% for , and stroke mortality increased by 56% for ICH, 72% for SAH, and 5.4% for ischemic stroke.
- Age-adjusted analyses showed the results were not uniform across all geographical areas, with older adults (ages, 50-74 years) experiencing decreased incidence in coastal areas and younger individuals (ages, 15-49 years) experiencing an uptick in the South and Midwest United States.
IN PRACTICE:
“As the country prepares for an imminent swell in the aging population, coupled with a noticeable plateau in advancements against stroke mortality, it becomes evident that future directions must focus on a multipronged strategy,” the authors wrote. “This involves both embracing precision medicine’s potential and fortifying widespread public health campaigns.”
SOURCE:
Kevin N. Sheth, MD, of the Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, Connecticut, was the senior and corresponding author of the study. It was published online in JAMA Neurology.
LIMITATIONS:
The accuracy of stroke ascertainment was limited by the data source, which may be prone to misclassification. The data lacked detailed information on race, ethnicity, and stroke characteristics other than stroke type.
DISCLOSURES:
This work was funded by the Bill and Melinda Gates Foundation, the American Heart Association Medical Student Research Fellowship, grants from the National Institutes of Health, the American Heart Association, the Yale Pepper Scholar Award, and the Neurocritical Care Society Research fellowship. Sheth reported receiving grants from the National Institutes of Health, American Heart Association, and Hyperfine; personal fees/monitoring board fees/equity from Astrocyte, CSL Behring, Zoll, Sense, Bexorg, Rhaeos, and Alva and having a patent for Alva licensed. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
TOPLINE:
Age-standardized stroke rates decreased in the United States between 1990 and 2019, while absolute stroke incidence, prevalence, mortality, and disability-adjusted life years (DALYs) rates increased, a new study showed. Investigators noted the findings, which also show a significant increase in hemorrhagic stroke and an uptick in stroke among adults under 50 years in the South and Midwest, suggesting a significant shift in the US stroke burden.
METHODOLOGY:
- This in-depth, cross-sectional analysis of the 2019 Global Burden of Disease study included data on all-cause and ischemic strokes, intracerebral hemorrhages (ICHs), and subarachnoid hemorrhages (SAHs) between 1990 and 2019 in the United States.
- Researchers focused on both overall and age-standardized estimates, stroke incidence, prevalence, mortality, and DALYs per 100,000 people.
TAKEAWAY:
- In 2019, the United States recorded 7.09 million prevalent strokes, 83% of which were ischemic and 57% of which occurred in women.
- The absolute numbers of stroke cases, mortality, and DALYs increased from 1990 to 2019, but the age-standardized rates either declined or remained steady.
- Overall incidence increased by 40% for ICH, 51% for SAH, and 13% for , and stroke mortality increased by 56% for ICH, 72% for SAH, and 5.4% for ischemic stroke.
- Age-adjusted analyses showed the results were not uniform across all geographical areas, with older adults (ages, 50-74 years) experiencing decreased incidence in coastal areas and younger individuals (ages, 15-49 years) experiencing an uptick in the South and Midwest United States.
IN PRACTICE:
“As the country prepares for an imminent swell in the aging population, coupled with a noticeable plateau in advancements against stroke mortality, it becomes evident that future directions must focus on a multipronged strategy,” the authors wrote. “This involves both embracing precision medicine’s potential and fortifying widespread public health campaigns.”
SOURCE:
Kevin N. Sheth, MD, of the Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, Connecticut, was the senior and corresponding author of the study. It was published online in JAMA Neurology.
LIMITATIONS:
The accuracy of stroke ascertainment was limited by the data source, which may be prone to misclassification. The data lacked detailed information on race, ethnicity, and stroke characteristics other than stroke type.
DISCLOSURES:
This work was funded by the Bill and Melinda Gates Foundation, the American Heart Association Medical Student Research Fellowship, grants from the National Institutes of Health, the American Heart Association, the Yale Pepper Scholar Award, and the Neurocritical Care Society Research fellowship. Sheth reported receiving grants from the National Institutes of Health, American Heart Association, and Hyperfine; personal fees/monitoring board fees/equity from Astrocyte, CSL Behring, Zoll, Sense, Bexorg, Rhaeos, and Alva and having a patent for Alva licensed. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
TOPLINE:
Age-standardized stroke rates decreased in the United States between 1990 and 2019, while absolute stroke incidence, prevalence, mortality, and disability-adjusted life years (DALYs) rates increased, a new study showed. Investigators noted the findings, which also show a significant increase in hemorrhagic stroke and an uptick in stroke among adults under 50 years in the South and Midwest, suggesting a significant shift in the US stroke burden.
METHODOLOGY:
- This in-depth, cross-sectional analysis of the 2019 Global Burden of Disease study included data on all-cause and ischemic strokes, intracerebral hemorrhages (ICHs), and subarachnoid hemorrhages (SAHs) between 1990 and 2019 in the United States.
- Researchers focused on both overall and age-standardized estimates, stroke incidence, prevalence, mortality, and DALYs per 100,000 people.
TAKEAWAY:
- In 2019, the United States recorded 7.09 million prevalent strokes, 83% of which were ischemic and 57% of which occurred in women.
- The absolute numbers of stroke cases, mortality, and DALYs increased from 1990 to 2019, but the age-standardized rates either declined or remained steady.
- Overall incidence increased by 40% for ICH, 51% for SAH, and 13% for , and stroke mortality increased by 56% for ICH, 72% for SAH, and 5.4% for ischemic stroke.
- Age-adjusted analyses showed the results were not uniform across all geographical areas, with older adults (ages, 50-74 years) experiencing decreased incidence in coastal areas and younger individuals (ages, 15-49 years) experiencing an uptick in the South and Midwest United States.
IN PRACTICE:
“As the country prepares for an imminent swell in the aging population, coupled with a noticeable plateau in advancements against stroke mortality, it becomes evident that future directions must focus on a multipronged strategy,” the authors wrote. “This involves both embracing precision medicine’s potential and fortifying widespread public health campaigns.”
SOURCE:
Kevin N. Sheth, MD, of the Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, Connecticut, was the senior and corresponding author of the study. It was published online in JAMA Neurology.
LIMITATIONS:
The accuracy of stroke ascertainment was limited by the data source, which may be prone to misclassification. The data lacked detailed information on race, ethnicity, and stroke characteristics other than stroke type.
DISCLOSURES:
This work was funded by the Bill and Melinda Gates Foundation, the American Heart Association Medical Student Research Fellowship, grants from the National Institutes of Health, the American Heart Association, the Yale Pepper Scholar Award, and the Neurocritical Care Society Research fellowship. Sheth reported receiving grants from the National Institutes of Health, American Heart Association, and Hyperfine; personal fees/monitoring board fees/equity from Astrocyte, CSL Behring, Zoll, Sense, Bexorg, Rhaeos, and Alva and having a patent for Alva licensed. The other authors’ disclosures are listed in the original paper.
A version of this article appeared on Medscape.com.
Most Disadvantaged Least Likely to Receive Thrombolysis
, early research shows.
“The findings should serve as an eye-opener that social determinants of health seem to be playing a role in who receives thrombolytic therapy, said study investigator Chanaka Kahathuduwa, MD, PhD, resident physician, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock.
The findings were released ahead of the study’s scheduled presentation at the annual meeting of the American Academy of Neurology.
Contributor to Poor Outcomes
Social determinants of health are important contributors to poor stroke-related outcomes, the investigators noted. They pointed out that previous research has yielded conflicting results as to the cause.
Whereas some studies suggest poor social determinants of health drive increased stroke incidence, others raise the question of whether there are disparities in acute stroke care.
To investigate, the researchers used a publicly available database and diagnostic and procedure codes to identify patients presenting at emergency departments in Texas from 2016 to 2019 with ischemic stroke who did and did not receive thrombolytic therapy.
“We focused on Texas, which has a very large area but few places where people have easy access to health care, which is a problem,” said study co-investigator Chathurika Dhanasekara, MD, PhD, research assistant professor in the Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center.
The study included 63,983 stroke patients, of whom 51.6% were female, 66.6% were White, and 17.7% were Black. Of these, 7198 (11.2%) received thrombolytic therapy; such therapies include the tissue plasminogen activators (tPAs) alteplase and tenecteplace.
Researchers collected information on social determinants of health such as age, race, gender, insurance type, and residence based on zip codes. They computed risk ratios (RRs) of administering thrombolysis on the basis of these variables.
Results showed that Black patients were less likely than their White counterparts to receive thrombolysis (RR, 0.90; 95% CI, 0.85-0.96). In addition, patients older than 65 years were less likely those aged 18-45 years to receive thrombolysis (RR, 0.47; 95% CI, 0.44-0.51), and rural residents were less likely than urban dwellers to receive the intervention (RR, 0.60; 95% CI, 0.55-0.65).
It makes some sense, the researchers said, that rural stroke patients would be less likely to get thrombolysis because there’s a limited time window — within 4.5 hours — during which this therapy can be given, and such patients may live a long distance from a hospital.
Two other groups less likely to receive thrombolysis were Hispanic persons versus non-Hispanic persons (RR, 0.93; 95% CI, 0.87-0.98) and Medicare/Medicaid/Veterans Administration patients (RR, 0.77; 95% CI, 0.73-0.81) or uninsured patients (RR, 0.90; 95% CI, 0.94-0.87) vs those with private insurance.
Interestingly, male patients were less likely than female patients to receive thrombolysis (RR, 0.95; 95% CI, 0.90-0.99).
Surprising Findings
With the exception of the discrepancy in thrombolysis rates between rural versus urban dwellers, the study’s findings were surprising, said Dr. Kahathuduwa.
Researchers divided participants into quartiles, from least to most disadvantaged, based on the Social Vulnerability Index (SVI), created by the Centers for Disease Control and Prevention to determine social vulnerability or factors that can negatively affect a community’s health.
Among the 7930 individuals in the least disadvantaged group, 1037 received thrombolysis. In comparison, among the 7966 persons in the most disadvantaged group, 964 received thrombolysis.
After adjusting for age, sex, and education, investigators found that patients in the first quartile based on SVI were more likely to be associated with thrombolysis vs those in the second and third quartiles (RR, 1.13; 95% CI, 1.04-1.22).
The researchers also examined the impact of comorbidities using the Charlson Comorbidity Index. Patients with diabetes, hypertension, and high cholesterol in addition to signs of stroke would rouse a higher degree of suspicion and be more likely to be treated with tPA or tenecteplase, said Dr. Kahathuduwa.
“But even when we controlled for those comorbidities, the relationships we identified between health disparities and the likelihood of receiving thrombolysis remained the same,” said Dr. Kahathuduwa.
It’s not clear from this study what factors contribute to the disparities in stroke treatment. “All we know is these relationships exist,” said Dr. Kahathuduwa. “We should use this as a foundation to understand what’s really going on at the grassroots level.”
However, he added, it’s possible that accessibility plays a role. He noted that Lubbock has the only Level 1 stroke center in west Texas; most stroke centers in the state are concentrated in cities in east and central Texas.
The investigators are embarking on further research to assess the impact of determinants of health on receipt of endovascular therapy and the role of stroke severity.
“In an ideal world, all patients who need thrombolytic therapy would get thrombolytic therapy within the recommended time window because the benefits are very clear,” said Dr. Kahathuduwa.
The findings may not be generalizable because they come from a single database. “Our findings need to be validated in another independent dataset before we can confidently determine what’s going on,” said Dr. Kahathuduwa.
A limitation of the study was that it is unknown how many of the participants were seen at the hospital within the recommended time frame and would thus be eligible to receive the treatment.
Commenting on the research, Martinson Arnan, MD , a vascular neurologist at Bronson Neuroscience Center, Kalamazoo, Michigan, said the study’s “exploratory finding” is important and “illuminates the potential impact of social determinants of health on disparities in acute stroke treatment.”
Neurologists consistently emphasize the principle that “time is brain” — that timely restoration of blood flow is crucial for minimizing morbidity associated with ischemic stroke. This study offers a potential opportunity to investigate how social determinants of health may affect stroke care, said Dr. Arnan.
However, he added, further research is needed “to understand whether the differences in outcomes observed here are influenced by levels of health education, concordance between patients and their treating providers, or other issues related to access barriers.”
The investigators and Dr. Arnan report no relevant conflicts of interest.
A version of this article appeared on Medscape.com.
, early research shows.
“The findings should serve as an eye-opener that social determinants of health seem to be playing a role in who receives thrombolytic therapy, said study investigator Chanaka Kahathuduwa, MD, PhD, resident physician, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock.
The findings were released ahead of the study’s scheduled presentation at the annual meeting of the American Academy of Neurology.
Contributor to Poor Outcomes
Social determinants of health are important contributors to poor stroke-related outcomes, the investigators noted. They pointed out that previous research has yielded conflicting results as to the cause.
Whereas some studies suggest poor social determinants of health drive increased stroke incidence, others raise the question of whether there are disparities in acute stroke care.
To investigate, the researchers used a publicly available database and diagnostic and procedure codes to identify patients presenting at emergency departments in Texas from 2016 to 2019 with ischemic stroke who did and did not receive thrombolytic therapy.
“We focused on Texas, which has a very large area but few places where people have easy access to health care, which is a problem,” said study co-investigator Chathurika Dhanasekara, MD, PhD, research assistant professor in the Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center.
The study included 63,983 stroke patients, of whom 51.6% were female, 66.6% were White, and 17.7% were Black. Of these, 7198 (11.2%) received thrombolytic therapy; such therapies include the tissue plasminogen activators (tPAs) alteplase and tenecteplace.
Researchers collected information on social determinants of health such as age, race, gender, insurance type, and residence based on zip codes. They computed risk ratios (RRs) of administering thrombolysis on the basis of these variables.
Results showed that Black patients were less likely than their White counterparts to receive thrombolysis (RR, 0.90; 95% CI, 0.85-0.96). In addition, patients older than 65 years were less likely those aged 18-45 years to receive thrombolysis (RR, 0.47; 95% CI, 0.44-0.51), and rural residents were less likely than urban dwellers to receive the intervention (RR, 0.60; 95% CI, 0.55-0.65).
It makes some sense, the researchers said, that rural stroke patients would be less likely to get thrombolysis because there’s a limited time window — within 4.5 hours — during which this therapy can be given, and such patients may live a long distance from a hospital.
Two other groups less likely to receive thrombolysis were Hispanic persons versus non-Hispanic persons (RR, 0.93; 95% CI, 0.87-0.98) and Medicare/Medicaid/Veterans Administration patients (RR, 0.77; 95% CI, 0.73-0.81) or uninsured patients (RR, 0.90; 95% CI, 0.94-0.87) vs those with private insurance.
Interestingly, male patients were less likely than female patients to receive thrombolysis (RR, 0.95; 95% CI, 0.90-0.99).
Surprising Findings
With the exception of the discrepancy in thrombolysis rates between rural versus urban dwellers, the study’s findings were surprising, said Dr. Kahathuduwa.
Researchers divided participants into quartiles, from least to most disadvantaged, based on the Social Vulnerability Index (SVI), created by the Centers for Disease Control and Prevention to determine social vulnerability or factors that can negatively affect a community’s health.
Among the 7930 individuals in the least disadvantaged group, 1037 received thrombolysis. In comparison, among the 7966 persons in the most disadvantaged group, 964 received thrombolysis.
After adjusting for age, sex, and education, investigators found that patients in the first quartile based on SVI were more likely to be associated with thrombolysis vs those in the second and third quartiles (RR, 1.13; 95% CI, 1.04-1.22).
The researchers also examined the impact of comorbidities using the Charlson Comorbidity Index. Patients with diabetes, hypertension, and high cholesterol in addition to signs of stroke would rouse a higher degree of suspicion and be more likely to be treated with tPA or tenecteplase, said Dr. Kahathuduwa.
“But even when we controlled for those comorbidities, the relationships we identified between health disparities and the likelihood of receiving thrombolysis remained the same,” said Dr. Kahathuduwa.
It’s not clear from this study what factors contribute to the disparities in stroke treatment. “All we know is these relationships exist,” said Dr. Kahathuduwa. “We should use this as a foundation to understand what’s really going on at the grassroots level.”
However, he added, it’s possible that accessibility plays a role. He noted that Lubbock has the only Level 1 stroke center in west Texas; most stroke centers in the state are concentrated in cities in east and central Texas.
The investigators are embarking on further research to assess the impact of determinants of health on receipt of endovascular therapy and the role of stroke severity.
“In an ideal world, all patients who need thrombolytic therapy would get thrombolytic therapy within the recommended time window because the benefits are very clear,” said Dr. Kahathuduwa.
The findings may not be generalizable because they come from a single database. “Our findings need to be validated in another independent dataset before we can confidently determine what’s going on,” said Dr. Kahathuduwa.
A limitation of the study was that it is unknown how many of the participants were seen at the hospital within the recommended time frame and would thus be eligible to receive the treatment.
Commenting on the research, Martinson Arnan, MD , a vascular neurologist at Bronson Neuroscience Center, Kalamazoo, Michigan, said the study’s “exploratory finding” is important and “illuminates the potential impact of social determinants of health on disparities in acute stroke treatment.”
Neurologists consistently emphasize the principle that “time is brain” — that timely restoration of blood flow is crucial for minimizing morbidity associated with ischemic stroke. This study offers a potential opportunity to investigate how social determinants of health may affect stroke care, said Dr. Arnan.
However, he added, further research is needed “to understand whether the differences in outcomes observed here are influenced by levels of health education, concordance between patients and their treating providers, or other issues related to access barriers.”
The investigators and Dr. Arnan report no relevant conflicts of interest.
A version of this article appeared on Medscape.com.
, early research shows.
“The findings should serve as an eye-opener that social determinants of health seem to be playing a role in who receives thrombolytic therapy, said study investigator Chanaka Kahathuduwa, MD, PhD, resident physician, Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock.
The findings were released ahead of the study’s scheduled presentation at the annual meeting of the American Academy of Neurology.
Contributor to Poor Outcomes
Social determinants of health are important contributors to poor stroke-related outcomes, the investigators noted. They pointed out that previous research has yielded conflicting results as to the cause.
Whereas some studies suggest poor social determinants of health drive increased stroke incidence, others raise the question of whether there are disparities in acute stroke care.
To investigate, the researchers used a publicly available database and diagnostic and procedure codes to identify patients presenting at emergency departments in Texas from 2016 to 2019 with ischemic stroke who did and did not receive thrombolytic therapy.
“We focused on Texas, which has a very large area but few places where people have easy access to health care, which is a problem,” said study co-investigator Chathurika Dhanasekara, MD, PhD, research assistant professor in the Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center.
The study included 63,983 stroke patients, of whom 51.6% were female, 66.6% were White, and 17.7% were Black. Of these, 7198 (11.2%) received thrombolytic therapy; such therapies include the tissue plasminogen activators (tPAs) alteplase and tenecteplace.
Researchers collected information on social determinants of health such as age, race, gender, insurance type, and residence based on zip codes. They computed risk ratios (RRs) of administering thrombolysis on the basis of these variables.
Results showed that Black patients were less likely than their White counterparts to receive thrombolysis (RR, 0.90; 95% CI, 0.85-0.96). In addition, patients older than 65 years were less likely those aged 18-45 years to receive thrombolysis (RR, 0.47; 95% CI, 0.44-0.51), and rural residents were less likely than urban dwellers to receive the intervention (RR, 0.60; 95% CI, 0.55-0.65).
It makes some sense, the researchers said, that rural stroke patients would be less likely to get thrombolysis because there’s a limited time window — within 4.5 hours — during which this therapy can be given, and such patients may live a long distance from a hospital.
Two other groups less likely to receive thrombolysis were Hispanic persons versus non-Hispanic persons (RR, 0.93; 95% CI, 0.87-0.98) and Medicare/Medicaid/Veterans Administration patients (RR, 0.77; 95% CI, 0.73-0.81) or uninsured patients (RR, 0.90; 95% CI, 0.94-0.87) vs those with private insurance.
Interestingly, male patients were less likely than female patients to receive thrombolysis (RR, 0.95; 95% CI, 0.90-0.99).
Surprising Findings
With the exception of the discrepancy in thrombolysis rates between rural versus urban dwellers, the study’s findings were surprising, said Dr. Kahathuduwa.
Researchers divided participants into quartiles, from least to most disadvantaged, based on the Social Vulnerability Index (SVI), created by the Centers for Disease Control and Prevention to determine social vulnerability or factors that can negatively affect a community’s health.
Among the 7930 individuals in the least disadvantaged group, 1037 received thrombolysis. In comparison, among the 7966 persons in the most disadvantaged group, 964 received thrombolysis.
After adjusting for age, sex, and education, investigators found that patients in the first quartile based on SVI were more likely to be associated with thrombolysis vs those in the second and third quartiles (RR, 1.13; 95% CI, 1.04-1.22).
The researchers also examined the impact of comorbidities using the Charlson Comorbidity Index. Patients with diabetes, hypertension, and high cholesterol in addition to signs of stroke would rouse a higher degree of suspicion and be more likely to be treated with tPA or tenecteplase, said Dr. Kahathuduwa.
“But even when we controlled for those comorbidities, the relationships we identified between health disparities and the likelihood of receiving thrombolysis remained the same,” said Dr. Kahathuduwa.
It’s not clear from this study what factors contribute to the disparities in stroke treatment. “All we know is these relationships exist,” said Dr. Kahathuduwa. “We should use this as a foundation to understand what’s really going on at the grassroots level.”
However, he added, it’s possible that accessibility plays a role. He noted that Lubbock has the only Level 1 stroke center in west Texas; most stroke centers in the state are concentrated in cities in east and central Texas.
The investigators are embarking on further research to assess the impact of determinants of health on receipt of endovascular therapy and the role of stroke severity.
“In an ideal world, all patients who need thrombolytic therapy would get thrombolytic therapy within the recommended time window because the benefits are very clear,” said Dr. Kahathuduwa.
The findings may not be generalizable because they come from a single database. “Our findings need to be validated in another independent dataset before we can confidently determine what’s going on,” said Dr. Kahathuduwa.
A limitation of the study was that it is unknown how many of the participants were seen at the hospital within the recommended time frame and would thus be eligible to receive the treatment.
Commenting on the research, Martinson Arnan, MD , a vascular neurologist at Bronson Neuroscience Center, Kalamazoo, Michigan, said the study’s “exploratory finding” is important and “illuminates the potential impact of social determinants of health on disparities in acute stroke treatment.”
Neurologists consistently emphasize the principle that “time is brain” — that timely restoration of blood flow is crucial for minimizing morbidity associated with ischemic stroke. This study offers a potential opportunity to investigate how social determinants of health may affect stroke care, said Dr. Arnan.
However, he added, further research is needed “to understand whether the differences in outcomes observed here are influenced by levels of health education, concordance between patients and their treating providers, or other issues related to access barriers.”
The investigators and Dr. Arnan report no relevant conflicts of interest.
A version of this article appeared on Medscape.com.
FROM AAN 2024
CHIP: The Silent Threat Steps Into the Limelight
While it is increasingly apparent that
Now, researchers at the cutting edge of both oncologic and cardiovascular research are not only defining the prognosis of CHIP with greater granularity but are also finding clues to mitigate the risks.
“It’s a very, very rapidly moving area,” said Christie M. Ballantyne, MD, Director, Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, adding that, in many respects, “it’s a totally new area.”
CHIP Defined
CHIP was first recognized in the 1990s, when Martin F. Fey, MD, and colleagues from University and Inselspital, Bern, Switzerland, found X-linked inactivation in older women and suggested it was the result of acquired clonality later referred to as being of “indeterminate potential,” although that added syntax is currently a matter of debate.
Further work showed that, while somatic gene mutations occur spontaneously and are an unavoidable consequence of aging, their impact can vary widely.
The majority are “functionally silent,” while others may affect genes crucial to tissue self-renewal and differentiation, Lukasz Gondek, MD, PhD, assistant professor, Johns Hopkins Cellular and Molecular Medicine Program, Baltimore, and colleagues, noted in a recent review.
This results in the outgrowth of affected cells, known as clonal expansion, further dubbed clonal hematopoiesis when it occurs in hematopoietic tissue.
“Even though there’s clonal expansion, there’s no one CHIP,” Dr. Gondek said. “There are different flavors, and it depends on the genes that are mutated in the hematopoietic cells.”
He continued: “The older we get, the more mutations we acquire, and the probability that this mutation will hit the gene that’s responsible for expansion of the clone is higher.”
“That’s why CHIP is very uncommon in people under the age of 40, but it becomes more common in the fifth, sixth, and seventh decade of life and beyond.”
Indeed, it occurs in 10% to 15% of people aged 65 years or older, and in at least 30% of individuals by 80 years of age. In contrast, just 1% of those aged less than 50 years have the condition.
The most commonly affected genes, in around 80% of patients with CHIP, are the epigenetic regulators DNMT3A, TET2, and ASXL1; the DNA damage repair genes PPM1D and TP53; the regulatory tyrosine kinase JAK2; and the messenger RNA spliceosome components SF3B1 and SRSF2.
These mutations can have “two potential consequences,” explained Lachelle D. Weeks, MD, PhD, a hematologist at the Dana-Farber Cancer Institute, Boston.
“One is that there’s a risk of blood cancer development,” as several of the mutations are known drivers of leukemia or myelodysplastic syndromes (MDS).
Although the majority of individuals who acquire clonal hematopoiesis with age will never develop MDS, it nevertheless confers an 11- to 13-fold increased risk or an absolute risk of approximately 0.5%-1.0% per year.
Dr. Weeks continued that “the other side of it, though, is that those cells that have these mutations can also accelerate the risk of developing nonmalignant diseases like cardiovascular disease.”
This, Dr. Gondek explained, is because the mutations will be retained when the stem cells become monocytes or macrophages and, by either silencing or activating individual genes, they can make the cells more pro-inflammatory.
The result is that CHIP is associated with a marked increased risk for arteriosclerotic events such as stroke, myocardial infarction, decompensated heart failure, and cardiogenic shock, and worse outcomes after these events.
Researchers have shown that CHIP-related somatic mutations are associated with a twofold increased risk for coronary heart disease, a more than 2.5-fold increased risk for ischemic stroke, and a fourfold greater risk for myocardial infarction. A study from earlier this year found that CHIP also increases the risk for heart failure with preserved ejection fraction more than twofold.
There is even evidence to suggest that CHIP is associated with more severe acute kidney injury (AKI) and greater post-AKI kidney fibrosis.
The consequence is that individuals with CHIP face a 40% increased risk for all-cause mortality over 8 years.
No CHIP Test Yet
All of which has led for some to call for CHIP testing.
However, there are currently no screening programs for CHIP and no plans to introduce any. “So most CHIP is actually being diagnosed incidentally, when patients get genetic testing for some other indication,” said Dr. Weeks.
“The patients that we see in our CHIP clinic at Dana-Farber have genetic testing because they have low blood counts,” she continued, “and somebody’s trying to figure out: Do you have MDS?”
Other patients have genetic testing due to a family history of other cancers, “and so they’re getting hereditary cancer panels to determine if they have Lynch syndrome, or other hereditary syndromes,” which are picking up gene mutations associated with CHIP.
In other cases, study protocols are identifying CHIP “in various research contexts, and then as a follow-up, some of those patients end up with our clinic,” added Dr. Weeks.
Due to the associated risks for CHIP, “obviously everyone wants to know whether they are at risk for hematologic malignancy, or not,” said Dr. Gondek. To those ends, Dr. Weeks and colleagues developed the clonal hematopoiesis risk score (CHRS).
Published by NEJM Evidence in 2023, the score takes a range of predictive variables, such as age, number of mutations and their degree of associated risk, the variant allele fraction, and a series of blood indices to define patients as low-, intermediate-, or high-risk.
“A little over half” of high-risk individuals “will develop a blood cancer” such as MDS or acute myeloid leukemia (AML)” over the next 10 years, Weeks explained, while “for your intermediate risk folks, in that same time period, 7%-8% of them will develop a blood cancer.”
In low-risk individuals, the 10-year risk for MDS or AML is just 1%.
Dr. Weeks noted the “caveat that there are environmental factors or patient-specific issues that might increase your risk that are not considered in the calculator,” such the presence of hereditary cancer syndromes, “or if you’re getting chemotherapy for other cancers.”
From a cardiology point of view, Dr. Ballantyne said that, above all, “cardiologists need to be aware that some of these people are at increased risk for cardiovascular events.” This prompted a team including Dr. Weeks and Dr. Ballantyne to study whether the CHRS can also predict cardiovascular risk.
They found that people designated low-risk on the score faced an 8% increased risk for all-cause mortality vs individuals without CHIP during a median follow-up of 7 years. This rose to a 12% increase in intermediate-risk individuals.
And those deemed high-risk had a 2.5-fold increased risk for early mortality and a threefold higher risk for cardiovascular death.
Dr. Weeks noted: “We have not done a dedicated study to define a cardiovascular disease-specific calculator for CHIP,” but in the meantime, the CHRS is a “very reasonable way to estimate what someone’s risk of progression or adverse events is for cardiovascular disease.”
For clinicians, however, the key question becomes: What can be done to mitigate the risks, particularly in high-risk individuals?
For malignant conditions, the approach is to monitor patients, although “we and other centers are in the process of developing various interventional clinical trials to test various agents on their ability to improve blood counts, as well as to mitigate the risk of progression to overt blood cancer,” said Dr. Weeks.
Treat CHIP Like Lipoprotein(a)?
As for cardiovascular risk, Dr. Ballantyne believes that, because CHIP is an unmodifiable risk factor, an example to follow could be lipoprotein(a) (LP[a]).
“We don’t have a therapy specifically to target LP(a) yet, but we do know that the things that benefit in general,” he said, such as “taking a statin, lowering blood pressure into the optimal zone, diet ,and exercise.”
“What we do in our clinic, and what others have been doing,” Dr. Weeks added, “is for every patient who comes in and is diagnosed with CHIP, we are referring them to preventative cardiology for very aggressive preventative management.”
Finally, both Dr. Ballantyne and Dr. Weeks agree that there are many potential innovations on the horizon.
“It’s pretty exciting in terms of beginning to understand some of the links between aging, cardiovascular disease, and cancer that we had not been thinking about,” Dr. Ballantyne said.
On the malignant side, Dr. Weeks is already working on a prospective study to determine how the risks associated with CHIP evolve when patients undergo chemotherapy and radiation for other cancers.
“That will be really exciting and will help us to develop a specific calculator in that context,” she said, adding that a cardiovascular-specific calculator “is also coming down the line.”
Dr. Weeks declared relationships with Abbvie, Vertex, and Sobi. Dr. Ballantyne declared a relationship with Ten Sixteen Bio, and funding from the National Heart, Lung, and Blood Institute. No other relevant financial relationships were declared.
A version of this article appeared on Medscape.com.
While it is increasingly apparent that
Now, researchers at the cutting edge of both oncologic and cardiovascular research are not only defining the prognosis of CHIP with greater granularity but are also finding clues to mitigate the risks.
“It’s a very, very rapidly moving area,” said Christie M. Ballantyne, MD, Director, Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, adding that, in many respects, “it’s a totally new area.”
CHIP Defined
CHIP was first recognized in the 1990s, when Martin F. Fey, MD, and colleagues from University and Inselspital, Bern, Switzerland, found X-linked inactivation in older women and suggested it was the result of acquired clonality later referred to as being of “indeterminate potential,” although that added syntax is currently a matter of debate.
Further work showed that, while somatic gene mutations occur spontaneously and are an unavoidable consequence of aging, their impact can vary widely.
The majority are “functionally silent,” while others may affect genes crucial to tissue self-renewal and differentiation, Lukasz Gondek, MD, PhD, assistant professor, Johns Hopkins Cellular and Molecular Medicine Program, Baltimore, and colleagues, noted in a recent review.
This results in the outgrowth of affected cells, known as clonal expansion, further dubbed clonal hematopoiesis when it occurs in hematopoietic tissue.
“Even though there’s clonal expansion, there’s no one CHIP,” Dr. Gondek said. “There are different flavors, and it depends on the genes that are mutated in the hematopoietic cells.”
He continued: “The older we get, the more mutations we acquire, and the probability that this mutation will hit the gene that’s responsible for expansion of the clone is higher.”
“That’s why CHIP is very uncommon in people under the age of 40, but it becomes more common in the fifth, sixth, and seventh decade of life and beyond.”
Indeed, it occurs in 10% to 15% of people aged 65 years or older, and in at least 30% of individuals by 80 years of age. In contrast, just 1% of those aged less than 50 years have the condition.
The most commonly affected genes, in around 80% of patients with CHIP, are the epigenetic regulators DNMT3A, TET2, and ASXL1; the DNA damage repair genes PPM1D and TP53; the regulatory tyrosine kinase JAK2; and the messenger RNA spliceosome components SF3B1 and SRSF2.
These mutations can have “two potential consequences,” explained Lachelle D. Weeks, MD, PhD, a hematologist at the Dana-Farber Cancer Institute, Boston.
“One is that there’s a risk of blood cancer development,” as several of the mutations are known drivers of leukemia or myelodysplastic syndromes (MDS).
Although the majority of individuals who acquire clonal hematopoiesis with age will never develop MDS, it nevertheless confers an 11- to 13-fold increased risk or an absolute risk of approximately 0.5%-1.0% per year.
Dr. Weeks continued that “the other side of it, though, is that those cells that have these mutations can also accelerate the risk of developing nonmalignant diseases like cardiovascular disease.”
This, Dr. Gondek explained, is because the mutations will be retained when the stem cells become monocytes or macrophages and, by either silencing or activating individual genes, they can make the cells more pro-inflammatory.
The result is that CHIP is associated with a marked increased risk for arteriosclerotic events such as stroke, myocardial infarction, decompensated heart failure, and cardiogenic shock, and worse outcomes after these events.
Researchers have shown that CHIP-related somatic mutations are associated with a twofold increased risk for coronary heart disease, a more than 2.5-fold increased risk for ischemic stroke, and a fourfold greater risk for myocardial infarction. A study from earlier this year found that CHIP also increases the risk for heart failure with preserved ejection fraction more than twofold.
There is even evidence to suggest that CHIP is associated with more severe acute kidney injury (AKI) and greater post-AKI kidney fibrosis.
The consequence is that individuals with CHIP face a 40% increased risk for all-cause mortality over 8 years.
No CHIP Test Yet
All of which has led for some to call for CHIP testing.
However, there are currently no screening programs for CHIP and no plans to introduce any. “So most CHIP is actually being diagnosed incidentally, when patients get genetic testing for some other indication,” said Dr. Weeks.
“The patients that we see in our CHIP clinic at Dana-Farber have genetic testing because they have low blood counts,” she continued, “and somebody’s trying to figure out: Do you have MDS?”
Other patients have genetic testing due to a family history of other cancers, “and so they’re getting hereditary cancer panels to determine if they have Lynch syndrome, or other hereditary syndromes,” which are picking up gene mutations associated with CHIP.
In other cases, study protocols are identifying CHIP “in various research contexts, and then as a follow-up, some of those patients end up with our clinic,” added Dr. Weeks.
Due to the associated risks for CHIP, “obviously everyone wants to know whether they are at risk for hematologic malignancy, or not,” said Dr. Gondek. To those ends, Dr. Weeks and colleagues developed the clonal hematopoiesis risk score (CHRS).
Published by NEJM Evidence in 2023, the score takes a range of predictive variables, such as age, number of mutations and their degree of associated risk, the variant allele fraction, and a series of blood indices to define patients as low-, intermediate-, or high-risk.
“A little over half” of high-risk individuals “will develop a blood cancer” such as MDS or acute myeloid leukemia (AML)” over the next 10 years, Weeks explained, while “for your intermediate risk folks, in that same time period, 7%-8% of them will develop a blood cancer.”
In low-risk individuals, the 10-year risk for MDS or AML is just 1%.
Dr. Weeks noted the “caveat that there are environmental factors or patient-specific issues that might increase your risk that are not considered in the calculator,” such the presence of hereditary cancer syndromes, “or if you’re getting chemotherapy for other cancers.”
From a cardiology point of view, Dr. Ballantyne said that, above all, “cardiologists need to be aware that some of these people are at increased risk for cardiovascular events.” This prompted a team including Dr. Weeks and Dr. Ballantyne to study whether the CHRS can also predict cardiovascular risk.
They found that people designated low-risk on the score faced an 8% increased risk for all-cause mortality vs individuals without CHIP during a median follow-up of 7 years. This rose to a 12% increase in intermediate-risk individuals.
And those deemed high-risk had a 2.5-fold increased risk for early mortality and a threefold higher risk for cardiovascular death.
Dr. Weeks noted: “We have not done a dedicated study to define a cardiovascular disease-specific calculator for CHIP,” but in the meantime, the CHRS is a “very reasonable way to estimate what someone’s risk of progression or adverse events is for cardiovascular disease.”
For clinicians, however, the key question becomes: What can be done to mitigate the risks, particularly in high-risk individuals?
For malignant conditions, the approach is to monitor patients, although “we and other centers are in the process of developing various interventional clinical trials to test various agents on their ability to improve blood counts, as well as to mitigate the risk of progression to overt blood cancer,” said Dr. Weeks.
Treat CHIP Like Lipoprotein(a)?
As for cardiovascular risk, Dr. Ballantyne believes that, because CHIP is an unmodifiable risk factor, an example to follow could be lipoprotein(a) (LP[a]).
“We don’t have a therapy specifically to target LP(a) yet, but we do know that the things that benefit in general,” he said, such as “taking a statin, lowering blood pressure into the optimal zone, diet ,and exercise.”
“What we do in our clinic, and what others have been doing,” Dr. Weeks added, “is for every patient who comes in and is diagnosed with CHIP, we are referring them to preventative cardiology for very aggressive preventative management.”
Finally, both Dr. Ballantyne and Dr. Weeks agree that there are many potential innovations on the horizon.
“It’s pretty exciting in terms of beginning to understand some of the links between aging, cardiovascular disease, and cancer that we had not been thinking about,” Dr. Ballantyne said.
On the malignant side, Dr. Weeks is already working on a prospective study to determine how the risks associated with CHIP evolve when patients undergo chemotherapy and radiation for other cancers.
“That will be really exciting and will help us to develop a specific calculator in that context,” she said, adding that a cardiovascular-specific calculator “is also coming down the line.”
Dr. Weeks declared relationships with Abbvie, Vertex, and Sobi. Dr. Ballantyne declared a relationship with Ten Sixteen Bio, and funding from the National Heart, Lung, and Blood Institute. No other relevant financial relationships were declared.
A version of this article appeared on Medscape.com.
While it is increasingly apparent that
Now, researchers at the cutting edge of both oncologic and cardiovascular research are not only defining the prognosis of CHIP with greater granularity but are also finding clues to mitigate the risks.
“It’s a very, very rapidly moving area,” said Christie M. Ballantyne, MD, Director, Center for Cardiometabolic Disease Prevention, Baylor College of Medicine, Houston, adding that, in many respects, “it’s a totally new area.”
CHIP Defined
CHIP was first recognized in the 1990s, when Martin F. Fey, MD, and colleagues from University and Inselspital, Bern, Switzerland, found X-linked inactivation in older women and suggested it was the result of acquired clonality later referred to as being of “indeterminate potential,” although that added syntax is currently a matter of debate.
Further work showed that, while somatic gene mutations occur spontaneously and are an unavoidable consequence of aging, their impact can vary widely.
The majority are “functionally silent,” while others may affect genes crucial to tissue self-renewal and differentiation, Lukasz Gondek, MD, PhD, assistant professor, Johns Hopkins Cellular and Molecular Medicine Program, Baltimore, and colleagues, noted in a recent review.
This results in the outgrowth of affected cells, known as clonal expansion, further dubbed clonal hematopoiesis when it occurs in hematopoietic tissue.
“Even though there’s clonal expansion, there’s no one CHIP,” Dr. Gondek said. “There are different flavors, and it depends on the genes that are mutated in the hematopoietic cells.”
He continued: “The older we get, the more mutations we acquire, and the probability that this mutation will hit the gene that’s responsible for expansion of the clone is higher.”
“That’s why CHIP is very uncommon in people under the age of 40, but it becomes more common in the fifth, sixth, and seventh decade of life and beyond.”
Indeed, it occurs in 10% to 15% of people aged 65 years or older, and in at least 30% of individuals by 80 years of age. In contrast, just 1% of those aged less than 50 years have the condition.
The most commonly affected genes, in around 80% of patients with CHIP, are the epigenetic regulators DNMT3A, TET2, and ASXL1; the DNA damage repair genes PPM1D and TP53; the regulatory tyrosine kinase JAK2; and the messenger RNA spliceosome components SF3B1 and SRSF2.
These mutations can have “two potential consequences,” explained Lachelle D. Weeks, MD, PhD, a hematologist at the Dana-Farber Cancer Institute, Boston.
“One is that there’s a risk of blood cancer development,” as several of the mutations are known drivers of leukemia or myelodysplastic syndromes (MDS).
Although the majority of individuals who acquire clonal hematopoiesis with age will never develop MDS, it nevertheless confers an 11- to 13-fold increased risk or an absolute risk of approximately 0.5%-1.0% per year.
Dr. Weeks continued that “the other side of it, though, is that those cells that have these mutations can also accelerate the risk of developing nonmalignant diseases like cardiovascular disease.”
This, Dr. Gondek explained, is because the mutations will be retained when the stem cells become monocytes or macrophages and, by either silencing or activating individual genes, they can make the cells more pro-inflammatory.
The result is that CHIP is associated with a marked increased risk for arteriosclerotic events such as stroke, myocardial infarction, decompensated heart failure, and cardiogenic shock, and worse outcomes after these events.
Researchers have shown that CHIP-related somatic mutations are associated with a twofold increased risk for coronary heart disease, a more than 2.5-fold increased risk for ischemic stroke, and a fourfold greater risk for myocardial infarction. A study from earlier this year found that CHIP also increases the risk for heart failure with preserved ejection fraction more than twofold.
There is even evidence to suggest that CHIP is associated with more severe acute kidney injury (AKI) and greater post-AKI kidney fibrosis.
The consequence is that individuals with CHIP face a 40% increased risk for all-cause mortality over 8 years.
No CHIP Test Yet
All of which has led for some to call for CHIP testing.
However, there are currently no screening programs for CHIP and no plans to introduce any. “So most CHIP is actually being diagnosed incidentally, when patients get genetic testing for some other indication,” said Dr. Weeks.
“The patients that we see in our CHIP clinic at Dana-Farber have genetic testing because they have low blood counts,” she continued, “and somebody’s trying to figure out: Do you have MDS?”
Other patients have genetic testing due to a family history of other cancers, “and so they’re getting hereditary cancer panels to determine if they have Lynch syndrome, or other hereditary syndromes,” which are picking up gene mutations associated with CHIP.
In other cases, study protocols are identifying CHIP “in various research contexts, and then as a follow-up, some of those patients end up with our clinic,” added Dr. Weeks.
Due to the associated risks for CHIP, “obviously everyone wants to know whether they are at risk for hematologic malignancy, or not,” said Dr. Gondek. To those ends, Dr. Weeks and colleagues developed the clonal hematopoiesis risk score (CHRS).
Published by NEJM Evidence in 2023, the score takes a range of predictive variables, such as age, number of mutations and their degree of associated risk, the variant allele fraction, and a series of blood indices to define patients as low-, intermediate-, or high-risk.
“A little over half” of high-risk individuals “will develop a blood cancer” such as MDS or acute myeloid leukemia (AML)” over the next 10 years, Weeks explained, while “for your intermediate risk folks, in that same time period, 7%-8% of them will develop a blood cancer.”
In low-risk individuals, the 10-year risk for MDS or AML is just 1%.
Dr. Weeks noted the “caveat that there are environmental factors or patient-specific issues that might increase your risk that are not considered in the calculator,” such the presence of hereditary cancer syndromes, “or if you’re getting chemotherapy for other cancers.”
From a cardiology point of view, Dr. Ballantyne said that, above all, “cardiologists need to be aware that some of these people are at increased risk for cardiovascular events.” This prompted a team including Dr. Weeks and Dr. Ballantyne to study whether the CHRS can also predict cardiovascular risk.
They found that people designated low-risk on the score faced an 8% increased risk for all-cause mortality vs individuals without CHIP during a median follow-up of 7 years. This rose to a 12% increase in intermediate-risk individuals.
And those deemed high-risk had a 2.5-fold increased risk for early mortality and a threefold higher risk for cardiovascular death.
Dr. Weeks noted: “We have not done a dedicated study to define a cardiovascular disease-specific calculator for CHIP,” but in the meantime, the CHRS is a “very reasonable way to estimate what someone’s risk of progression or adverse events is for cardiovascular disease.”
For clinicians, however, the key question becomes: What can be done to mitigate the risks, particularly in high-risk individuals?
For malignant conditions, the approach is to monitor patients, although “we and other centers are in the process of developing various interventional clinical trials to test various agents on their ability to improve blood counts, as well as to mitigate the risk of progression to overt blood cancer,” said Dr. Weeks.
Treat CHIP Like Lipoprotein(a)?
As for cardiovascular risk, Dr. Ballantyne believes that, because CHIP is an unmodifiable risk factor, an example to follow could be lipoprotein(a) (LP[a]).
“We don’t have a therapy specifically to target LP(a) yet, but we do know that the things that benefit in general,” he said, such as “taking a statin, lowering blood pressure into the optimal zone, diet ,and exercise.”
“What we do in our clinic, and what others have been doing,” Dr. Weeks added, “is for every patient who comes in and is diagnosed with CHIP, we are referring them to preventative cardiology for very aggressive preventative management.”
Finally, both Dr. Ballantyne and Dr. Weeks agree that there are many potential innovations on the horizon.
“It’s pretty exciting in terms of beginning to understand some of the links between aging, cardiovascular disease, and cancer that we had not been thinking about,” Dr. Ballantyne said.
On the malignant side, Dr. Weeks is already working on a prospective study to determine how the risks associated with CHIP evolve when patients undergo chemotherapy and radiation for other cancers.
“That will be really exciting and will help us to develop a specific calculator in that context,” she said, adding that a cardiovascular-specific calculator “is also coming down the line.”
Dr. Weeks declared relationships with Abbvie, Vertex, and Sobi. Dr. Ballantyne declared a relationship with Ten Sixteen Bio, and funding from the National Heart, Lung, and Blood Institute. No other relevant financial relationships were declared.
A version of this article appeared on Medscape.com.
Can a Stroke Be Caused by Cervical Manipulation?
Cervical manipulations have been associated with vascular complications. While the incidence of carotid dissections does not seem to have increased, the question remains open for vertebral artery injuries. We must remain vigilant!
Resorting to joint manipulation for neck pain is not unusual. Currently, cervical manipulation remains a popular first-line treatment for cervicodynia or headaches. Although evidence exists showing that specific joint mobilization can improve this type of symptomatology, there is a possibility that it may risk damaging the cervical arteries and causing ischemic stroke through arterial dissection.
Epidemiologically, internal carotid artery dissection is a relatively rare event with an estimated annual incidence of 1.72 per 100,000 individuals (those most likely to be diagnosed being obviously those leading to hospitalization for stroke) but represents one of the most common causes of stroke in young and middle-aged adults. Faced with case reports that may raise concerns and hypotheses about an associated risk, two studies have sought to delve into the issue.
No Increased Carotid Risk Identified
The first study, of a case-cross design, identified all incident cases of ischemic stroke in the territory of the internal carotid artery admitted to the hospital over a 9-year period using administrative healthcare data, the cases being used as their own control by sampling control periods before the date of the index stroke. Thus, 15,523 cases were compared with 62,092 control periods using exposure windows of 1, 3, 7, and 14 days before the stroke. The study also compared post-medical consultation and post-chiropractic consultation outcomes, knowing that as a first-line for complaints of neck pain or headache, patients often turn to one of these two types of primary care clinicians.
However, data analysis shows, among subjects aged under 45 years, positive associations for both different consultations in cases of subsequent carotid stroke (but no association for those aged over 45 years). These associations tended to increase when analyses were limited to visits for diagnoses of neck pain and headaches. Nevertheless, there was no significant difference between risk estimates after chiropractic or general medical consultation.
A notable limitation of this work is that it did not focus on strokes due to vertebral artery dissections that run through the transverse foramina of the cervical vertebrae.
A Screening Test Lacking Precision
More recently, the International Federation of Orthopedic Manual Physical Therapists has looked into the subject to refine the assessment of the risk for vascular complications in patients seeking physiotherapy/osteopathy care for neck pain and/or headaches. Through a cross-sectional study involving 150 patients, it tested a vascular complication risk index (from high to low grade, based on history taking and clinical examination), developed to estimate the risk for the presence of vascular rather than musculoskeletal pathology, to determine whether or not there is a contraindication to cervical manipulation.
However, the developed index had only low sensitivity (0.50; 95% CI, 0.39-0.61) and moderate specificity (0.63; 95% CI, 0.51-0.75), knowing that the reference test was a consensus medical decision made by a vascular neurologist, an interventional neurologist, and a neuroradiologist (based on clinical data and cervical MRI). Similarly, positive and negative likelihood ratios were low at 1.36 (95% CI, 0.93-1.99) and 0.79 (95% CI, 0.60-1.05), respectively.
In conclusion, the data from the case-cross study did not seem to demonstrate an excess risk for stroke in the territory of the internal carotid artery after cervical joint manipulations. Associations between cervical manipulation sessions or medical consultations and carotid strokes appear similar and could have been due to the fact that patients with early symptoms related to arterial dissection seek care before developing their stroke.
However, it is regrettable that the study did not focus on vertebral artery dissections, which are anatomically more exposed to cervical chiropractic sessions. Nevertheless, because indices defined from joint tests and medical history are insufficient to identify patients “at risk or in the process of arterial dissection,” and because stroke can result in severe disability, practitioners managing patients with neck pain cannot take this type of complication lightly.
This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Cervical manipulations have been associated with vascular complications. While the incidence of carotid dissections does not seem to have increased, the question remains open for vertebral artery injuries. We must remain vigilant!
Resorting to joint manipulation for neck pain is not unusual. Currently, cervical manipulation remains a popular first-line treatment for cervicodynia or headaches. Although evidence exists showing that specific joint mobilization can improve this type of symptomatology, there is a possibility that it may risk damaging the cervical arteries and causing ischemic stroke through arterial dissection.
Epidemiologically, internal carotid artery dissection is a relatively rare event with an estimated annual incidence of 1.72 per 100,000 individuals (those most likely to be diagnosed being obviously those leading to hospitalization for stroke) but represents one of the most common causes of stroke in young and middle-aged adults. Faced with case reports that may raise concerns and hypotheses about an associated risk, two studies have sought to delve into the issue.
No Increased Carotid Risk Identified
The first study, of a case-cross design, identified all incident cases of ischemic stroke in the territory of the internal carotid artery admitted to the hospital over a 9-year period using administrative healthcare data, the cases being used as their own control by sampling control periods before the date of the index stroke. Thus, 15,523 cases were compared with 62,092 control periods using exposure windows of 1, 3, 7, and 14 days before the stroke. The study also compared post-medical consultation and post-chiropractic consultation outcomes, knowing that as a first-line for complaints of neck pain or headache, patients often turn to one of these two types of primary care clinicians.
However, data analysis shows, among subjects aged under 45 years, positive associations for both different consultations in cases of subsequent carotid stroke (but no association for those aged over 45 years). These associations tended to increase when analyses were limited to visits for diagnoses of neck pain and headaches. Nevertheless, there was no significant difference between risk estimates after chiropractic or general medical consultation.
A notable limitation of this work is that it did not focus on strokes due to vertebral artery dissections that run through the transverse foramina of the cervical vertebrae.
A Screening Test Lacking Precision
More recently, the International Federation of Orthopedic Manual Physical Therapists has looked into the subject to refine the assessment of the risk for vascular complications in patients seeking physiotherapy/osteopathy care for neck pain and/or headaches. Through a cross-sectional study involving 150 patients, it tested a vascular complication risk index (from high to low grade, based on history taking and clinical examination), developed to estimate the risk for the presence of vascular rather than musculoskeletal pathology, to determine whether or not there is a contraindication to cervical manipulation.
However, the developed index had only low sensitivity (0.50; 95% CI, 0.39-0.61) and moderate specificity (0.63; 95% CI, 0.51-0.75), knowing that the reference test was a consensus medical decision made by a vascular neurologist, an interventional neurologist, and a neuroradiologist (based on clinical data and cervical MRI). Similarly, positive and negative likelihood ratios were low at 1.36 (95% CI, 0.93-1.99) and 0.79 (95% CI, 0.60-1.05), respectively.
In conclusion, the data from the case-cross study did not seem to demonstrate an excess risk for stroke in the territory of the internal carotid artery after cervical joint manipulations. Associations between cervical manipulation sessions or medical consultations and carotid strokes appear similar and could have been due to the fact that patients with early symptoms related to arterial dissection seek care before developing their stroke.
However, it is regrettable that the study did not focus on vertebral artery dissections, which are anatomically more exposed to cervical chiropractic sessions. Nevertheless, because indices defined from joint tests and medical history are insufficient to identify patients “at risk or in the process of arterial dissection,” and because stroke can result in severe disability, practitioners managing patients with neck pain cannot take this type of complication lightly.
This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.
Cervical manipulations have been associated with vascular complications. While the incidence of carotid dissections does not seem to have increased, the question remains open for vertebral artery injuries. We must remain vigilant!
Resorting to joint manipulation for neck pain is not unusual. Currently, cervical manipulation remains a popular first-line treatment for cervicodynia or headaches. Although evidence exists showing that specific joint mobilization can improve this type of symptomatology, there is a possibility that it may risk damaging the cervical arteries and causing ischemic stroke through arterial dissection.
Epidemiologically, internal carotid artery dissection is a relatively rare event with an estimated annual incidence of 1.72 per 100,000 individuals (those most likely to be diagnosed being obviously those leading to hospitalization for stroke) but represents one of the most common causes of stroke in young and middle-aged adults. Faced with case reports that may raise concerns and hypotheses about an associated risk, two studies have sought to delve into the issue.
No Increased Carotid Risk Identified
The first study, of a case-cross design, identified all incident cases of ischemic stroke in the territory of the internal carotid artery admitted to the hospital over a 9-year period using administrative healthcare data, the cases being used as their own control by sampling control periods before the date of the index stroke. Thus, 15,523 cases were compared with 62,092 control periods using exposure windows of 1, 3, 7, and 14 days before the stroke. The study also compared post-medical consultation and post-chiropractic consultation outcomes, knowing that as a first-line for complaints of neck pain or headache, patients often turn to one of these two types of primary care clinicians.
However, data analysis shows, among subjects aged under 45 years, positive associations for both different consultations in cases of subsequent carotid stroke (but no association for those aged over 45 years). These associations tended to increase when analyses were limited to visits for diagnoses of neck pain and headaches. Nevertheless, there was no significant difference between risk estimates after chiropractic or general medical consultation.
A notable limitation of this work is that it did not focus on strokes due to vertebral artery dissections that run through the transverse foramina of the cervical vertebrae.
A Screening Test Lacking Precision
More recently, the International Federation of Orthopedic Manual Physical Therapists has looked into the subject to refine the assessment of the risk for vascular complications in patients seeking physiotherapy/osteopathy care for neck pain and/or headaches. Through a cross-sectional study involving 150 patients, it tested a vascular complication risk index (from high to low grade, based on history taking and clinical examination), developed to estimate the risk for the presence of vascular rather than musculoskeletal pathology, to determine whether or not there is a contraindication to cervical manipulation.
However, the developed index had only low sensitivity (0.50; 95% CI, 0.39-0.61) and moderate specificity (0.63; 95% CI, 0.51-0.75), knowing that the reference test was a consensus medical decision made by a vascular neurologist, an interventional neurologist, and a neuroradiologist (based on clinical data and cervical MRI). Similarly, positive and negative likelihood ratios were low at 1.36 (95% CI, 0.93-1.99) and 0.79 (95% CI, 0.60-1.05), respectively.
In conclusion, the data from the case-cross study did not seem to demonstrate an excess risk for stroke in the territory of the internal carotid artery after cervical joint manipulations. Associations between cervical manipulation sessions or medical consultations and carotid strokes appear similar and could have been due to the fact that patients with early symptoms related to arterial dissection seek care before developing their stroke.
However, it is regrettable that the study did not focus on vertebral artery dissections, which are anatomically more exposed to cervical chiropractic sessions. Nevertheless, because indices defined from joint tests and medical history are insufficient to identify patients “at risk or in the process of arterial dissection,” and because stroke can result in severe disability, practitioners managing patients with neck pain cannot take this type of complication lightly.
This story was translated from JIM using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.