LayerRx Mapping ID
205
Slot System
Featured Buckets
Featured Buckets Admin

Five Key Measures to Ensure a Quality Colonoscopy

Article Type
Changed
Wed, 09/18/2024 - 09:44

 

A task force established by the American College of Gastroenterology (ACG) and the American Society for Gastrointestinal Endoscopy (ASGE) issued updated recommendations highlighting what they consider to be the highest priority quality indicators for colonoscopy, a list that, for the first time, includes adequate bowel preparation and sessile serrated lesion detection rate (SSLDR).

“Endoscopy teams now have an updated set of guidelines which can be used to enhance the quality of their colonoscopies and should certainly use these current quality measures to ‘raise the bar’ on behalf of their patients,” task force member Nicholas J. Shaheen, MD, MPH, Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, said in a statement.

Dr. Nicholas J. Shaheen



The task force published the recommendations online August 21 in The American Journal of Gastroenterology and in Gastrointestinal Endoscopy. It represents the third iteration of the ACG/ASGE quality indicators on colonoscopy recommendations and incorporates new evidence published since 2015.

“The last set of quality indicators from this group was 9 years ago. Since then, there has been a tremendous amount of new data published in colonoscopy quality,” Ziad F. Gellad, MD, MPH, professor of medicine, Duke University Medical Center, Durham, North Carolina, said in an interview.

“Keeping up with that data is a challenge, and so guidelines such as these are important in helping clinicians synthesize data on quality of care and implement best practices,” said Dr. Gellad, who was not involved with the task force.
 

Two New Priority Indicators 

The task force identified 15 quality indicators, divided into preprocedure, intraprocedure, and postprocedure. It includes five “priority” indicators — two of which are new.

One is the rate of adequate bowel preparation, preferably defined as a Boston Bowel Preparation Scale score ≥ 2 in each of three colon segments or by description of the preparation as excellent, good, or adequate. It has a performance target > 90%.

“Inadequate bowel preparation substantially increases the cost of colonoscopy delivery and creates risk and inconvenience for patients, thus warranting a ranking as a priority indicator,” the task force wrote.

Dr. Gellad explained that the addition of this priority indicator is “notable because it highlights the importance of bowel prep in high-quality colonoscopy. It also shifts more of the responsibility of bowel prep from the patient to the practice.”

The second new quality indicator is the SSLDR, which was selected due to its ability to contribute to cancer prevention.

Based on available evidence, the task force recommends a current minimum threshold for the SSLDR of 6%. “This is expected to be revised upward as evidence of increasing detection occurs,” they wrote.

Duke University
Dr. Ziad F. Gellad



Dr. Gellad said the addition of SSLDR is “an important advance in these recommendations. We know that serrated adenomas are a precursor for colorectal cancer and that the detection of these subtle lesions is variable.

“Providing a benchmark encourages practices to measure the detection of serrated adenomas and intervene when rates are below benchmarks. Prior to these benchmarks, it was difficult to know where to peg our expectations,” Dr. Gellad added.
 

 

 

Changes to the Adenoma Detection Rate (ADR)

The ADR remains a priority indicator in the update, albeit with changes.

To keep the ADR measurement consistent with current screening guidelines, the task force now recommends that the ADR be measured starting at age 45 rather than 50 years.

“ADR plays a critical role in evaluating the performance of the colonoscopists,” task force lead Douglas K. Rex, MD, a gastroenterologist at Indiana University School of Medicine in Indianapolis, said in the statement.

“It is recommended that ADR calculations include screening, surveillance, and diagnostic colonoscopy but exclude indications of a positive noncolonoscopy screening test and therapeutic procedures for resection or treatment of known neoplasia, genetic cancer syndromes, and inflammatory bowel disease,” Dr. Rex explained.

Dr. Douglas K. Rex



The task force recommends a minimum ADR threshold of 35% (40% in men and 30% in women) and that colonoscopists with ADRs below 35% “undertake remedial measures to improve and to achieve acceptable performance.”
 

Additional Priorities 

The cecal intubation rate (CIR) — the percentage of patients undergoing colonoscopy with intact colons who have full intubation of the cecum with photo documentation of cecal landmarks — remains a priority quality indicator and has a performance target ≥ 95%.

“A trained colonoscopist should achieve a high CIR with a very high level of safety,” the task force wrote. “Low CIRs have been associated with higher PCCRC [postcolonoscopy colorectal cancer] rates.” 

The final priority indicator is the rate of using recommended screening and surveillance intervals, which carries a performance target ≥ 90%.

“We recommend that quality improvement efforts initially focus on high-priority indicators and then progress to other indicators once it is ascertained that endoscopists are performing above recommended thresholds, either at baseline or after corrective interventions,” the task force wrote.

“The priority indicators are absolutely important for practices to implement,” Dr. Gellad said.

“There is compelling evidence that these measures are correlated with clinically important outcomes, particularly ADR,” he added. “Many practices already capture this data, and the changes in ADR calculation make measurement less burdensome. Hopefully, this will encourage more practices to collect and report these measures.” 

Dr. Rex is a consultant for Olympus, Boston Scientific, Braintree Laboratories, Norgine, GI Supply, Medtronic, and Acacia Pharmaceuticals; receives research support from Olympus, Medivators, Erbe USA, and Braintree Laboratories; and is a shareholder in Satisfai Health. Dr. Shaheen had no relevant disclosures. Dr. Gellad has consulted for Merck & Co. and Novo Nordisk and is a cofounder of Higgs Boson.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

A task force established by the American College of Gastroenterology (ACG) and the American Society for Gastrointestinal Endoscopy (ASGE) issued updated recommendations highlighting what they consider to be the highest priority quality indicators for colonoscopy, a list that, for the first time, includes adequate bowel preparation and sessile serrated lesion detection rate (SSLDR).

“Endoscopy teams now have an updated set of guidelines which can be used to enhance the quality of their colonoscopies and should certainly use these current quality measures to ‘raise the bar’ on behalf of their patients,” task force member Nicholas J. Shaheen, MD, MPH, Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, said in a statement.

Dr. Nicholas J. Shaheen



The task force published the recommendations online August 21 in The American Journal of Gastroenterology and in Gastrointestinal Endoscopy. It represents the third iteration of the ACG/ASGE quality indicators on colonoscopy recommendations and incorporates new evidence published since 2015.

“The last set of quality indicators from this group was 9 years ago. Since then, there has been a tremendous amount of new data published in colonoscopy quality,” Ziad F. Gellad, MD, MPH, professor of medicine, Duke University Medical Center, Durham, North Carolina, said in an interview.

“Keeping up with that data is a challenge, and so guidelines such as these are important in helping clinicians synthesize data on quality of care and implement best practices,” said Dr. Gellad, who was not involved with the task force.
 

Two New Priority Indicators 

The task force identified 15 quality indicators, divided into preprocedure, intraprocedure, and postprocedure. It includes five “priority” indicators — two of which are new.

One is the rate of adequate bowel preparation, preferably defined as a Boston Bowel Preparation Scale score ≥ 2 in each of three colon segments or by description of the preparation as excellent, good, or adequate. It has a performance target > 90%.

“Inadequate bowel preparation substantially increases the cost of colonoscopy delivery and creates risk and inconvenience for patients, thus warranting a ranking as a priority indicator,” the task force wrote.

Dr. Gellad explained that the addition of this priority indicator is “notable because it highlights the importance of bowel prep in high-quality colonoscopy. It also shifts more of the responsibility of bowel prep from the patient to the practice.”

The second new quality indicator is the SSLDR, which was selected due to its ability to contribute to cancer prevention.

Based on available evidence, the task force recommends a current minimum threshold for the SSLDR of 6%. “This is expected to be revised upward as evidence of increasing detection occurs,” they wrote.

Duke University
Dr. Ziad F. Gellad



Dr. Gellad said the addition of SSLDR is “an important advance in these recommendations. We know that serrated adenomas are a precursor for colorectal cancer and that the detection of these subtle lesions is variable.

“Providing a benchmark encourages practices to measure the detection of serrated adenomas and intervene when rates are below benchmarks. Prior to these benchmarks, it was difficult to know where to peg our expectations,” Dr. Gellad added.
 

 

 

Changes to the Adenoma Detection Rate (ADR)

The ADR remains a priority indicator in the update, albeit with changes.

To keep the ADR measurement consistent with current screening guidelines, the task force now recommends that the ADR be measured starting at age 45 rather than 50 years.

“ADR plays a critical role in evaluating the performance of the colonoscopists,” task force lead Douglas K. Rex, MD, a gastroenterologist at Indiana University School of Medicine in Indianapolis, said in the statement.

“It is recommended that ADR calculations include screening, surveillance, and diagnostic colonoscopy but exclude indications of a positive noncolonoscopy screening test and therapeutic procedures for resection or treatment of known neoplasia, genetic cancer syndromes, and inflammatory bowel disease,” Dr. Rex explained.

Dr. Douglas K. Rex



The task force recommends a minimum ADR threshold of 35% (40% in men and 30% in women) and that colonoscopists with ADRs below 35% “undertake remedial measures to improve and to achieve acceptable performance.”
 

Additional Priorities 

The cecal intubation rate (CIR) — the percentage of patients undergoing colonoscopy with intact colons who have full intubation of the cecum with photo documentation of cecal landmarks — remains a priority quality indicator and has a performance target ≥ 95%.

“A trained colonoscopist should achieve a high CIR with a very high level of safety,” the task force wrote. “Low CIRs have been associated with higher PCCRC [postcolonoscopy colorectal cancer] rates.” 

The final priority indicator is the rate of using recommended screening and surveillance intervals, which carries a performance target ≥ 90%.

“We recommend that quality improvement efforts initially focus on high-priority indicators and then progress to other indicators once it is ascertained that endoscopists are performing above recommended thresholds, either at baseline or after corrective interventions,” the task force wrote.

“The priority indicators are absolutely important for practices to implement,” Dr. Gellad said.

“There is compelling evidence that these measures are correlated with clinically important outcomes, particularly ADR,” he added. “Many practices already capture this data, and the changes in ADR calculation make measurement less burdensome. Hopefully, this will encourage more practices to collect and report these measures.” 

Dr. Rex is a consultant for Olympus, Boston Scientific, Braintree Laboratories, Norgine, GI Supply, Medtronic, and Acacia Pharmaceuticals; receives research support from Olympus, Medivators, Erbe USA, and Braintree Laboratories; and is a shareholder in Satisfai Health. Dr. Shaheen had no relevant disclosures. Dr. Gellad has consulted for Merck & Co. and Novo Nordisk and is a cofounder of Higgs Boson.
 

A version of this article first appeared on Medscape.com.

 

A task force established by the American College of Gastroenterology (ACG) and the American Society for Gastrointestinal Endoscopy (ASGE) issued updated recommendations highlighting what they consider to be the highest priority quality indicators for colonoscopy, a list that, for the first time, includes adequate bowel preparation and sessile serrated lesion detection rate (SSLDR).

“Endoscopy teams now have an updated set of guidelines which can be used to enhance the quality of their colonoscopies and should certainly use these current quality measures to ‘raise the bar’ on behalf of their patients,” task force member Nicholas J. Shaheen, MD, MPH, Division of Gastroenterology and Hepatology, The University of North Carolina at Chapel Hill, said in a statement.

Dr. Nicholas J. Shaheen



The task force published the recommendations online August 21 in The American Journal of Gastroenterology and in Gastrointestinal Endoscopy. It represents the third iteration of the ACG/ASGE quality indicators on colonoscopy recommendations and incorporates new evidence published since 2015.

“The last set of quality indicators from this group was 9 years ago. Since then, there has been a tremendous amount of new data published in colonoscopy quality,” Ziad F. Gellad, MD, MPH, professor of medicine, Duke University Medical Center, Durham, North Carolina, said in an interview.

“Keeping up with that data is a challenge, and so guidelines such as these are important in helping clinicians synthesize data on quality of care and implement best practices,” said Dr. Gellad, who was not involved with the task force.
 

Two New Priority Indicators 

The task force identified 15 quality indicators, divided into preprocedure, intraprocedure, and postprocedure. It includes five “priority” indicators — two of which are new.

One is the rate of adequate bowel preparation, preferably defined as a Boston Bowel Preparation Scale score ≥ 2 in each of three colon segments or by description of the preparation as excellent, good, or adequate. It has a performance target > 90%.

“Inadequate bowel preparation substantially increases the cost of colonoscopy delivery and creates risk and inconvenience for patients, thus warranting a ranking as a priority indicator,” the task force wrote.

Dr. Gellad explained that the addition of this priority indicator is “notable because it highlights the importance of bowel prep in high-quality colonoscopy. It also shifts more of the responsibility of bowel prep from the patient to the practice.”

The second new quality indicator is the SSLDR, which was selected due to its ability to contribute to cancer prevention.

Based on available evidence, the task force recommends a current minimum threshold for the SSLDR of 6%. “This is expected to be revised upward as evidence of increasing detection occurs,” they wrote.

Duke University
Dr. Ziad F. Gellad



Dr. Gellad said the addition of SSLDR is “an important advance in these recommendations. We know that serrated adenomas are a precursor for colorectal cancer and that the detection of these subtle lesions is variable.

“Providing a benchmark encourages practices to measure the detection of serrated adenomas and intervene when rates are below benchmarks. Prior to these benchmarks, it was difficult to know where to peg our expectations,” Dr. Gellad added.
 

 

 

Changes to the Adenoma Detection Rate (ADR)

The ADR remains a priority indicator in the update, albeit with changes.

To keep the ADR measurement consistent with current screening guidelines, the task force now recommends that the ADR be measured starting at age 45 rather than 50 years.

“ADR plays a critical role in evaluating the performance of the colonoscopists,” task force lead Douglas K. Rex, MD, a gastroenterologist at Indiana University School of Medicine in Indianapolis, said in the statement.

“It is recommended that ADR calculations include screening, surveillance, and diagnostic colonoscopy but exclude indications of a positive noncolonoscopy screening test and therapeutic procedures for resection or treatment of known neoplasia, genetic cancer syndromes, and inflammatory bowel disease,” Dr. Rex explained.

Dr. Douglas K. Rex



The task force recommends a minimum ADR threshold of 35% (40% in men and 30% in women) and that colonoscopists with ADRs below 35% “undertake remedial measures to improve and to achieve acceptable performance.”
 

Additional Priorities 

The cecal intubation rate (CIR) — the percentage of patients undergoing colonoscopy with intact colons who have full intubation of the cecum with photo documentation of cecal landmarks — remains a priority quality indicator and has a performance target ≥ 95%.

“A trained colonoscopist should achieve a high CIR with a very high level of safety,” the task force wrote. “Low CIRs have been associated with higher PCCRC [postcolonoscopy colorectal cancer] rates.” 

The final priority indicator is the rate of using recommended screening and surveillance intervals, which carries a performance target ≥ 90%.

“We recommend that quality improvement efforts initially focus on high-priority indicators and then progress to other indicators once it is ascertained that endoscopists are performing above recommended thresholds, either at baseline or after corrective interventions,” the task force wrote.

“The priority indicators are absolutely important for practices to implement,” Dr. Gellad said.

“There is compelling evidence that these measures are correlated with clinically important outcomes, particularly ADR,” he added. “Many practices already capture this data, and the changes in ADR calculation make measurement less burdensome. Hopefully, this will encourage more practices to collect and report these measures.” 

Dr. Rex is a consultant for Olympus, Boston Scientific, Braintree Laboratories, Norgine, GI Supply, Medtronic, and Acacia Pharmaceuticals; receives research support from Olympus, Medivators, Erbe USA, and Braintree Laboratories; and is a shareholder in Satisfai Health. Dr. Shaheen had no relevant disclosures. Dr. Gellad has consulted for Merck & Co. and Novo Nordisk and is a cofounder of Higgs Boson.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Wed, 09/18/2024 - 01:23
Un-Gate On Date
Wed, 09/18/2024 - 01:23
Use ProPublica
CFC Schedule Remove Status
Wed, 09/18/2024 - 01:23
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Wed, 09/18/2024 - 01:23

In Colorectal Cancer, Donating Half a Liver Could Save Lives

Article Type
Changed
Mon, 09/09/2024 - 03:43

 



This transcript has been edited for clarity.
 

Benjamin L. Schlechter, MD: Today we’re discussing liver transplant for metastatic colorectal cancer with our guest, Dr. Martin Dib. Dr. Dib is the director of the Hepatobiliary Surgery and Living Donor Program at Beth Israel Deaconess Medical Center here in Boston, and a Harvard Medical School faculty member.

He was previously at the Pontificia Universidad Católica de Chile, a leading international institution investigating the role of liver transplant in colorectal cancer, among other diseases. Dr. Dib, before we move to our discussion, I’d like to hear a bit about your pathway to becoming a transplant surgeon. How did you end up working on colorectal cancer and liver transplants in this field?

Martin J. Dib, MD: Thank you so much, Dr. Schlechter. I am originally from Chile. I had an opportunity to come to Beth Israel Deaconess Medical Center after medical school and I did liver regeneration research at the transplant center. After that, I was lucky enough to match as a general surgery resident at Beth Israel Deaconess.

This is my alma mater and I was able to graduate as a surgeon here. You and I had some paths together. After graduating from Harvard as a surgeon, I was trained in liver transplant, abdominal transplant, surgical oncology, and hepatobiliary surgery at the University of Toronto.

I have been developing this passion for being able to transplant cancer patients and use organ transplant techniques to be able to do complex resections for cancer.

Dr. Schlechter: Let’s talk about the topic for today, which is liver transplant and colorectal cancer. I’ll be honest — this is not a very familiar topic for a lot of oncologists. There are a lot of details that I think are new to us as oncologists. We need to expand this conversation to get access to patients for this.

First and foremost, can you talk about some of the parameters for a resectable liver metastasis vs unresectable disease that would be an indication for a liver transplant?

Dr. Dib: I think this is a very interesting topic because liver transplantation for cancer is not new. Liver transplantation started in the 1960s when people started doing liver transplants for advanced liver tumors. The problem is that they were selecting patients who had very advanced — and poor tumor biology — tumors. The outcomes were not good.

It was only in 1996 when the Milan criteria started. Mazzaferro and colleagues, using strict patient selection, were able to do liver transplant for selected hepatocellular carcinoma patients. Having those excellent outcomes in selecting patients opened the field for what we now call transplant oncology, which is using selection criteria and using other methods to be able to select which patients will do well after transplantation, even with immunosuppression.

Liver transplantation for colorectal metastasis was used at the very beginning of the era of liver transplantation, but with very poor outcomes. It was abandoned because of the outcomes. It is exciting to see that after 20 years of not doing it, there was a group in Norway that started again. They are doing liver transplants for colorectal metastases (mets), but with very selected patients.

In Norway, they had a very unusual setting where they had more liver donors than patients on the list waiting for liver transplant. So they can’t share these livers and we’re all jealous, right? Every single country in the West struggles because we don’t have enough livers for the rest of the list. And they had a lot of livers to be able to transplant people.

They decided to transplant some selected patients with colorectal mets that were unresectable. And the surprise was that they found that they were able to get a 60% survival at 5 years. And so that was new. After that, in Norway, they started showing this data to other centers in the world. It wasn’t until this year that we could see not only the long-term data and long-term outcomes of using liver transplantation for unresectable colorectal mets, but also we’re now having data from a prospective clinical trial from France.

It was three countries in the prospective clinical trial: France, Belgium, and Italy. We now see that we have a little stronger data to support the use of liver transplants for unresectable colorectal mets.

 

 

Dr. Schlechter: That’s the TRANSMET study you’re referencing that was presented at ASCO in the late-breaking abstract session in 2024, and then more recently in The Lancet’s eClinicalMedicine. Both of those papers were led by René Adam. That was a cool presentation to sit through. I was in the room, and I was taking a ton of notes and there was a lot of info that came out of that.

First of all, it showed that patients who had received chemotherapy and were responding could then go on to liver transplant in that population. Impressively, 81% of the patients who were randomized to transplant received it. Frankly, that’s a big number, especially compared with the West, as you said, and in particular the US and here in New England where livers are a very precious commodity.

And even accounting for that, if you look at the intention-to-treat analysis, the 5-year overall survival in that population was 57% compared with 13% with chemotherapy. And that feels like a real number for chemotherapy. If you look at the per-protocol analysis, frankly, the numbers are higher.

It’s always a challenging assessment. What was also interesting to me was the pattern of recurrence, which in general was that recurrences were extrahepatic. So not only were patients rendered disease-free, but in general, the liver remained disease-free and only 3% of patients had liver-only recurrence and 11% had widespread metastatic disease.

The biggest group was lung metastases, at about 40%. Ultimately, they reported a progression-free survival of 17. 4 months for transplant compared with 6. 4 months with chemotherapy. On every parameter, it looks like liver transplant wins for these people. Help me out. Who are these people? How do we find these people?

What are the inclusions and exclusions for this population?

Dr. Dib: I think that’s very important. This is not a therapy that will be for every patient. These are selected patients who have liver-only unresectable colorectal mets. These are patients that don’t have any extrahepatic disease and that either the primary has been taken out already or that they have the primary present, but the plan is to take the primary and then do a liver transplantation after 3 months, hopefully after 6 months, of removing the primary.

These are patients who meet all the criteria that we have seen in terms of the best outcomes — patients that have Oslo scores of less than three. The Oslo trial, which included the SECA (Secondary Cancer)-I and SECA-II trials, basically showed that patients with a maximal tumor diameter of less than 5.5 with a pretransplant CEA (carcinoembryonic antigen) of less than 80 that do not have progression on chemotherapy, among other variables, do better. But the concept is that this is a therapy that will apply only to selected patients. That way we can continue to have adequate overall survival post-transplant that would be comparable to other diseases that we do liver transplants for.

Dr. Schlechter: Were there other biomarkers, any mutations that were included or excluded?

Dr. Dib: Yes. If you look at SECA-I, SECA-II trial outcomes, and also TRANSMET, they all say patients with BRAF mutations shouldn’t be transplanted. There are other parameters, including, for example, the site of the primary tumor. Patients with a left-sided colon primary tumor do much better than patients who have a right-sided primary tumor.

 

 

That’s not a complete contraindication, but if you look at the most updated inclusion criteria of programs, like the ones that the one that we have here at Beth Israel Deaconess and many others, the inclusion criteria protocols include patients who have only hepatic disease.

So, if there are no extrahepatic mets, the resection of the primary has been done or will be done after a multidisciplinary discussion. We want to make sure they have the absence of BRAF mutation, and that they don’t have disease progression while on chemotherapy. So hopefully we have data from enough months to be able to make sure that there’s no intrahepatic or extrahepatic progression while on chemotherapy.

And that’s including CEA and also looking at the imaging.

Dr. Schlechter: When you’re seeing a patient, how much chemo do you think they should have? What’s a good run chemotherapy-wise for these patients? Let’s say, before I refer a patient to you, how much chemo should they have? And then what should I do? Do I get a PET scan? Do I get MRI? What’s the right scanning I should do to prove there’s no extrahepatic disease before sending a patient in for consideration?

Dr. Dib: First, we need to confirm unresectability. Referring patients early is always a good measure to make sure that we’re all in agreement that it’s an unresectable patient. Having a PET scan from the very beginning is helpful because it shows the disease before doing chemotherapy.

In terms of the lines of chemotherapy, ideally in the TRANSMET trial, for example, the idea was to show tumor control for at least 3 months, with less than three lines of chemotherapy. Some patients will do that with FOLFIRI. It depends on the case.

I think some of those evaluations will need a multidisciplinary discussion. In our case, we are connected to the Norway team. We frequently talk with the Oslo team and an international community of transplant centers to get opinions on particular cases.

But I think referring patients early is a good measure. If we don’t think that they qualify, we will let the team know. We’re strictly looking at patients who have unresectable liver mets that don’t have extrahepatic disease. The idea is to do a primary tumor resection, and then get to transplantation, hopefully after 6 months. In some cases that have some concerns in terms of tumor biology, we may even extend the time from diagnosis to transplant to over 1.5 years.

Dr. Schlechter: Excellent. And what’s the experience like for these patients? In training as a resident many years ago, I saw patients with cirrhosis who went on to have a liver transplant, and that was sort of trading one disease for another. What is the posttransplant, or the remission, experience of a liver transplant for colorectal cancer like for the patient?

Dr. Dib: That’s a very important point. I think that transplantation has gotten better and better, as has chemotherapy systemic therapy. The liver transplantation experience from 20 years ago has improved dramatically. I think the quality of life of liver transplant patients after transplantation has increased quite a bit.

 

 

At Beth Israel Deaconess, we have a liver transplant program that is doing over a 100 livers a year. And when you have a high-volume center, usually the experience gets better. The time in the hospital post-transplant decreases.

In general, when we’re doing liver transplants, patients are getting extubated in the OR 30% of the time. The vast majority of patients are going home within 1 or 2 weeks. They need to have immunosuppression for the rest of their lives. We have a very good program of transplant coordinators that will help the family and the patient to live with immunosuppression and live with a transplanted organ.

But I would say that we have many, many patients, especially these patients who are not patients with cirrhosis. Their health is not as deteriorated as patients who have low MELD (model for end-stage liver disease) scores. They don’t have liver disease. They have cancer. So usually patients like that, many of them can go back to work and live a quality of life that is fairly reasonable.

Dr. Schlechter: That’s good to hear. When we hear statements like liver transplant for colon cancer, a lot of us have this picture of a much sicker population, but it’s interesting and true that the colorectal cancer population as a candidate for liver transplant is a much healthier population than the population with cirrhosis.

Let’s talk about organs and donors. Largely in the TRANSMET study, for example, that was cadaveric donors. Those were not living donors and you’ve done a lot of work on living donors. If the answer in the United States, because of limited access to organs, is going to be living donors, who are those donors?

What is that like? How do you identify them?

Dr. Dib: There’s a lot of advantages to using living donors for these patients. In any type of patient that needs a liver transplant, cadaveric donors or deceased donors is the same concept. There are two types of deceased donors: the brain-dead donors and donors after cardiac death. Those are hard to come by.

We still have 15%-20% mortality on the waiting list in the United States. We’re already still struggling to get enough donors to transplant the patients that are on the list. Now, if you add a new indication, which is unresectable colorectal mets, we need to make sure that the outcomes are equivalent to the patients who are going to be transplanted for other reasons.

Right now, for example, the 5-year overall survival of a patient with cirrhosis, or a patient with hepatocellular carcinoma, is over 80% 5-year survival. In the SECA trials and TRANSMET trial, if we do a good selection, I think we can get to 70% 5-year survival. But until we have more data, I think it’s a cautious measure to, as a field, try to use living donors and not compete with the rest of the list of patients who are already dying on the list for liver transplants.

Once we get more data, it’s going to be something that, in the transplant community, we may be able to use deceased donors. Especially deceased donors with maybe extended criteria that are not going to be used for other patients. We can do living-unrelated or living-related donations. Family members or also friends or neighbors or part of the community, even altruistic donors, can donate to a potential recipient. And that enables us to not only time the transplant in an adequate manner, because we’re able to transplant the patient early, but also time it so we can give the number of chemotherapy cycles that we want to give.

That’s a huge advantage. You don’t compete for a liver with the cadaveric waiting list of patients that are waiting for other reasons, and you can select the tumor biology very well because you know exactly when the surgery is going to be. For instance, we can say, okay, this patient has KRAS mutation, left-sided colon cancer, and has been having good tumor biology with no progression. We will wait 6 months from the primary tumor to the transplant, which is going to be 1 year from diagnosis to transplant. And we can see during that time whether they continue to have good tumor biology.

But if you have a deceased donor liver transplant, sometimes you can’t time that well and schedule it. It becomes a bit more tricky in terms of patient selection and making sure that we do this for the people who are going to benefit.

 

 

Dr. Schlechter: And how does donor matching work? Is it HLA (human leukocyte antigen) matched or ABO-matched? Who can donate when you say a living-related? For example, when we think about bone marrow transplantation, which we’re all familiar with in the oncology population, it’s an incredibly complex match process. Is this the same challenge?

Dr. Dib: No, it’s a little bit simpler. Living donors for liver transplants need to be between the ages of 18 and 60. They need to be relatively healthy, relatively fit, with a BMI hopefully less than 30, definitely less than 35. The compatibility is ABO compatibility. So, if they’re ABO-compatible, relatively young, relatively healthy, they would be a potential donor and we will go ahead and do a CT scan.

If the CT scan shows that they have a good, adequate anatomy, more than 90% of those will be good donors. I would say that out of 100 people who want to be donors, 25 of them will be adequate. One out of four people who want to save their family member and want to have this operation are able to donate half of their liver to their family member or loved one.

Dr. Schlechter: Excellent. And it’s helpful to know that the matching process is simpler. During his discussion, René Adam unequivocally stated that liver transplants are a new standard of care for colorectal cancer. And I guess my question is, do you agree with this statement? How do we balance the demand for living donors and the demand for deceased donors? Especially in a time of increasing fatty liver disease and obesity, other indications for liver transplant, causes of cirrhosis, and also in an era of young-onset colorectal cancer. Patients are younger. Is this a new standard of care? Do you agree with that statement?

Dr. Dib: I do agree with that statement. I think it’s important to understand that not all patients with colorectal mets are the same. Of the number of patients in the United States who have colorectal cancer, let’s say 50% of them will have liver metastasis. Only 15%-20% of them will have liver-only metastasis.

This is only for patients who have liver-only metastasis without extrahepatic disease. And only maybe 15%-20% of them will meet all the criteria to be able to undergo liver transplantation. I think it’s for a very selective subset of patients who have very good tumor biology, generally young patients who don’t have any other alternative to having even a complex liver resection and are not able to get R0 resection. That is when we could think about doing liver transplantation.

It’s one more of the skills that we can have. It doesn’t mean that it will be the only skill, or the best skill, for all of the patients.

Dr. Schlechter: When a patient volunteers to be a living donor for a loved one or a family member, and they go through all the screening and they’re found to be a candidate, what is the surgical experience for that patient?

 

 

How long are they in the hospital? What sort of operation is that?

Dr. Dib: Living donors are very special patients. These are patients who do not need an operation. And the only reason they’re doing this is to save the life of their loved one. Donor safety is our priority number one, two, three, and four. The donor operation needs to be perfect.

And so we take good care of, first of all, selecting the living donors, making sure that they’re young and they don’t have any big contraindications. We also ensure that they are well informed of the process. The living donor surgery that we’re now doing is laparoscopic and minimally invasive. Here at Beth Israel Deaconess, we have done it laparoscopically with very good results.

I think that experience before and after the surgery gets so much better because of the better recovery. They’re able to go home, in general, within 4 or 5 days, and they get on with their normal life within 6-8 weeks. I think it’s important for them to know all the processes and the actual risks and benefits for the recipient.

Among those risks, I think it’s important for them to understand that this is a complex operation. Even if we do it laparoscopically or robotically, so that the scar is less, inside we’re still taking out half of the liver. That is a surgery that needs to be undertaken very meticulously, with a focus on minimizing any bleeding.

It’s a surgery that takes a long time. It takes about 6 hours. We do our best to try to minimize any risks.

Dr. Schlechter: Excellent. Thanks for that. Today we had Dr. Martin Dib joining us to discuss liver transplant for metastatic colorectal cancer. We discussed the various important criteria. We discussed that early referral to multidisciplinary centers that manage these is important to help get patients set up.

We discussed the fact that there are certain inclusion and exclusion criteria to consider. Obviously, unresectable disease is a critical determination that should be made by a liver surgeon. The absence of extrahepatic disease is important in staging with PET or other imaging. We discussed certain other biological exclusions.

There’s a relative contraindication of right-sided vs left-sided cancers, but right-sided cancers can be transplanted. We discussed that an elevated CEA greater than 80 is a contraindication, as are mutations in BRAF. We reviewed data from both the TRANSMET trial recently published in The Lancet and presented at ASCO in 2024, as well as the older Oslo criteria and Oslo trials and SECA trials.

And finally, we heard that donors can now come as living donors, a laparoscopic robotic surgery with a better safety profile, and greater access to organs that are ABO matched and not HLA matched because of the nature of the biology. Thank you again for joining us.


 

Benjamin L. Schlechter, MD, is senior physician, Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts. He has disclosed no relevant financial relationships. Martin J. Dib, MD, is member of the faculty, Department of Surgery, Harvard Medical School; director of Hepatobiliary Surgery, Division of Transplantation, Beth Israel Deaconess Medical Center, Boston. He has disclosed no relevant financial relationships.

A version of this transcript appeared on Medscape.com.

Publications
Topics
Sections

 



This transcript has been edited for clarity.
 

Benjamin L. Schlechter, MD: Today we’re discussing liver transplant for metastatic colorectal cancer with our guest, Dr. Martin Dib. Dr. Dib is the director of the Hepatobiliary Surgery and Living Donor Program at Beth Israel Deaconess Medical Center here in Boston, and a Harvard Medical School faculty member.

He was previously at the Pontificia Universidad Católica de Chile, a leading international institution investigating the role of liver transplant in colorectal cancer, among other diseases. Dr. Dib, before we move to our discussion, I’d like to hear a bit about your pathway to becoming a transplant surgeon. How did you end up working on colorectal cancer and liver transplants in this field?

Martin J. Dib, MD: Thank you so much, Dr. Schlechter. I am originally from Chile. I had an opportunity to come to Beth Israel Deaconess Medical Center after medical school and I did liver regeneration research at the transplant center. After that, I was lucky enough to match as a general surgery resident at Beth Israel Deaconess.

This is my alma mater and I was able to graduate as a surgeon here. You and I had some paths together. After graduating from Harvard as a surgeon, I was trained in liver transplant, abdominal transplant, surgical oncology, and hepatobiliary surgery at the University of Toronto.

I have been developing this passion for being able to transplant cancer patients and use organ transplant techniques to be able to do complex resections for cancer.

Dr. Schlechter: Let’s talk about the topic for today, which is liver transplant and colorectal cancer. I’ll be honest — this is not a very familiar topic for a lot of oncologists. There are a lot of details that I think are new to us as oncologists. We need to expand this conversation to get access to patients for this.

First and foremost, can you talk about some of the parameters for a resectable liver metastasis vs unresectable disease that would be an indication for a liver transplant?

Dr. Dib: I think this is a very interesting topic because liver transplantation for cancer is not new. Liver transplantation started in the 1960s when people started doing liver transplants for advanced liver tumors. The problem is that they were selecting patients who had very advanced — and poor tumor biology — tumors. The outcomes were not good.

It was only in 1996 when the Milan criteria started. Mazzaferro and colleagues, using strict patient selection, were able to do liver transplant for selected hepatocellular carcinoma patients. Having those excellent outcomes in selecting patients opened the field for what we now call transplant oncology, which is using selection criteria and using other methods to be able to select which patients will do well after transplantation, even with immunosuppression.

Liver transplantation for colorectal metastasis was used at the very beginning of the era of liver transplantation, but with very poor outcomes. It was abandoned because of the outcomes. It is exciting to see that after 20 years of not doing it, there was a group in Norway that started again. They are doing liver transplants for colorectal metastases (mets), but with very selected patients.

In Norway, they had a very unusual setting where they had more liver donors than patients on the list waiting for liver transplant. So they can’t share these livers and we’re all jealous, right? Every single country in the West struggles because we don’t have enough livers for the rest of the list. And they had a lot of livers to be able to transplant people.

They decided to transplant some selected patients with colorectal mets that were unresectable. And the surprise was that they found that they were able to get a 60% survival at 5 years. And so that was new. After that, in Norway, they started showing this data to other centers in the world. It wasn’t until this year that we could see not only the long-term data and long-term outcomes of using liver transplantation for unresectable colorectal mets, but also we’re now having data from a prospective clinical trial from France.

It was three countries in the prospective clinical trial: France, Belgium, and Italy. We now see that we have a little stronger data to support the use of liver transplants for unresectable colorectal mets.

 

 

Dr. Schlechter: That’s the TRANSMET study you’re referencing that was presented at ASCO in the late-breaking abstract session in 2024, and then more recently in The Lancet’s eClinicalMedicine. Both of those papers were led by René Adam. That was a cool presentation to sit through. I was in the room, and I was taking a ton of notes and there was a lot of info that came out of that.

First of all, it showed that patients who had received chemotherapy and were responding could then go on to liver transplant in that population. Impressively, 81% of the patients who were randomized to transplant received it. Frankly, that’s a big number, especially compared with the West, as you said, and in particular the US and here in New England where livers are a very precious commodity.

And even accounting for that, if you look at the intention-to-treat analysis, the 5-year overall survival in that population was 57% compared with 13% with chemotherapy. And that feels like a real number for chemotherapy. If you look at the per-protocol analysis, frankly, the numbers are higher.

It’s always a challenging assessment. What was also interesting to me was the pattern of recurrence, which in general was that recurrences were extrahepatic. So not only were patients rendered disease-free, but in general, the liver remained disease-free and only 3% of patients had liver-only recurrence and 11% had widespread metastatic disease.

The biggest group was lung metastases, at about 40%. Ultimately, they reported a progression-free survival of 17. 4 months for transplant compared with 6. 4 months with chemotherapy. On every parameter, it looks like liver transplant wins for these people. Help me out. Who are these people? How do we find these people?

What are the inclusions and exclusions for this population?

Dr. Dib: I think that’s very important. This is not a therapy that will be for every patient. These are selected patients who have liver-only unresectable colorectal mets. These are patients that don’t have any extrahepatic disease and that either the primary has been taken out already or that they have the primary present, but the plan is to take the primary and then do a liver transplantation after 3 months, hopefully after 6 months, of removing the primary.

These are patients who meet all the criteria that we have seen in terms of the best outcomes — patients that have Oslo scores of less than three. The Oslo trial, which included the SECA (Secondary Cancer)-I and SECA-II trials, basically showed that patients with a maximal tumor diameter of less than 5.5 with a pretransplant CEA (carcinoembryonic antigen) of less than 80 that do not have progression on chemotherapy, among other variables, do better. But the concept is that this is a therapy that will apply only to selected patients. That way we can continue to have adequate overall survival post-transplant that would be comparable to other diseases that we do liver transplants for.

Dr. Schlechter: Were there other biomarkers, any mutations that were included or excluded?

Dr. Dib: Yes. If you look at SECA-I, SECA-II trial outcomes, and also TRANSMET, they all say patients with BRAF mutations shouldn’t be transplanted. There are other parameters, including, for example, the site of the primary tumor. Patients with a left-sided colon primary tumor do much better than patients who have a right-sided primary tumor.

 

 

That’s not a complete contraindication, but if you look at the most updated inclusion criteria of programs, like the ones that the one that we have here at Beth Israel Deaconess and many others, the inclusion criteria protocols include patients who have only hepatic disease.

So, if there are no extrahepatic mets, the resection of the primary has been done or will be done after a multidisciplinary discussion. We want to make sure they have the absence of BRAF mutation, and that they don’t have disease progression while on chemotherapy. So hopefully we have data from enough months to be able to make sure that there’s no intrahepatic or extrahepatic progression while on chemotherapy.

And that’s including CEA and also looking at the imaging.

Dr. Schlechter: When you’re seeing a patient, how much chemo do you think they should have? What’s a good run chemotherapy-wise for these patients? Let’s say, before I refer a patient to you, how much chemo should they have? And then what should I do? Do I get a PET scan? Do I get MRI? What’s the right scanning I should do to prove there’s no extrahepatic disease before sending a patient in for consideration?

Dr. Dib: First, we need to confirm unresectability. Referring patients early is always a good measure to make sure that we’re all in agreement that it’s an unresectable patient. Having a PET scan from the very beginning is helpful because it shows the disease before doing chemotherapy.

In terms of the lines of chemotherapy, ideally in the TRANSMET trial, for example, the idea was to show tumor control for at least 3 months, with less than three lines of chemotherapy. Some patients will do that with FOLFIRI. It depends on the case.

I think some of those evaluations will need a multidisciplinary discussion. In our case, we are connected to the Norway team. We frequently talk with the Oslo team and an international community of transplant centers to get opinions on particular cases.

But I think referring patients early is a good measure. If we don’t think that they qualify, we will let the team know. We’re strictly looking at patients who have unresectable liver mets that don’t have extrahepatic disease. The idea is to do a primary tumor resection, and then get to transplantation, hopefully after 6 months. In some cases that have some concerns in terms of tumor biology, we may even extend the time from diagnosis to transplant to over 1.5 years.

Dr. Schlechter: Excellent. And what’s the experience like for these patients? In training as a resident many years ago, I saw patients with cirrhosis who went on to have a liver transplant, and that was sort of trading one disease for another. What is the posttransplant, or the remission, experience of a liver transplant for colorectal cancer like for the patient?

Dr. Dib: That’s a very important point. I think that transplantation has gotten better and better, as has chemotherapy systemic therapy. The liver transplantation experience from 20 years ago has improved dramatically. I think the quality of life of liver transplant patients after transplantation has increased quite a bit.

 

 

At Beth Israel Deaconess, we have a liver transplant program that is doing over a 100 livers a year. And when you have a high-volume center, usually the experience gets better. The time in the hospital post-transplant decreases.

In general, when we’re doing liver transplants, patients are getting extubated in the OR 30% of the time. The vast majority of patients are going home within 1 or 2 weeks. They need to have immunosuppression for the rest of their lives. We have a very good program of transplant coordinators that will help the family and the patient to live with immunosuppression and live with a transplanted organ.

But I would say that we have many, many patients, especially these patients who are not patients with cirrhosis. Their health is not as deteriorated as patients who have low MELD (model for end-stage liver disease) scores. They don’t have liver disease. They have cancer. So usually patients like that, many of them can go back to work and live a quality of life that is fairly reasonable.

Dr. Schlechter: That’s good to hear. When we hear statements like liver transplant for colon cancer, a lot of us have this picture of a much sicker population, but it’s interesting and true that the colorectal cancer population as a candidate for liver transplant is a much healthier population than the population with cirrhosis.

Let’s talk about organs and donors. Largely in the TRANSMET study, for example, that was cadaveric donors. Those were not living donors and you’ve done a lot of work on living donors. If the answer in the United States, because of limited access to organs, is going to be living donors, who are those donors?

What is that like? How do you identify them?

Dr. Dib: There’s a lot of advantages to using living donors for these patients. In any type of patient that needs a liver transplant, cadaveric donors or deceased donors is the same concept. There are two types of deceased donors: the brain-dead donors and donors after cardiac death. Those are hard to come by.

We still have 15%-20% mortality on the waiting list in the United States. We’re already still struggling to get enough donors to transplant the patients that are on the list. Now, if you add a new indication, which is unresectable colorectal mets, we need to make sure that the outcomes are equivalent to the patients who are going to be transplanted for other reasons.

Right now, for example, the 5-year overall survival of a patient with cirrhosis, or a patient with hepatocellular carcinoma, is over 80% 5-year survival. In the SECA trials and TRANSMET trial, if we do a good selection, I think we can get to 70% 5-year survival. But until we have more data, I think it’s a cautious measure to, as a field, try to use living donors and not compete with the rest of the list of patients who are already dying on the list for liver transplants.

Once we get more data, it’s going to be something that, in the transplant community, we may be able to use deceased donors. Especially deceased donors with maybe extended criteria that are not going to be used for other patients. We can do living-unrelated or living-related donations. Family members or also friends or neighbors or part of the community, even altruistic donors, can donate to a potential recipient. And that enables us to not only time the transplant in an adequate manner, because we’re able to transplant the patient early, but also time it so we can give the number of chemotherapy cycles that we want to give.

That’s a huge advantage. You don’t compete for a liver with the cadaveric waiting list of patients that are waiting for other reasons, and you can select the tumor biology very well because you know exactly when the surgery is going to be. For instance, we can say, okay, this patient has KRAS mutation, left-sided colon cancer, and has been having good tumor biology with no progression. We will wait 6 months from the primary tumor to the transplant, which is going to be 1 year from diagnosis to transplant. And we can see during that time whether they continue to have good tumor biology.

But if you have a deceased donor liver transplant, sometimes you can’t time that well and schedule it. It becomes a bit more tricky in terms of patient selection and making sure that we do this for the people who are going to benefit.

 

 

Dr. Schlechter: And how does donor matching work? Is it HLA (human leukocyte antigen) matched or ABO-matched? Who can donate when you say a living-related? For example, when we think about bone marrow transplantation, which we’re all familiar with in the oncology population, it’s an incredibly complex match process. Is this the same challenge?

Dr. Dib: No, it’s a little bit simpler. Living donors for liver transplants need to be between the ages of 18 and 60. They need to be relatively healthy, relatively fit, with a BMI hopefully less than 30, definitely less than 35. The compatibility is ABO compatibility. So, if they’re ABO-compatible, relatively young, relatively healthy, they would be a potential donor and we will go ahead and do a CT scan.

If the CT scan shows that they have a good, adequate anatomy, more than 90% of those will be good donors. I would say that out of 100 people who want to be donors, 25 of them will be adequate. One out of four people who want to save their family member and want to have this operation are able to donate half of their liver to their family member or loved one.

Dr. Schlechter: Excellent. And it’s helpful to know that the matching process is simpler. During his discussion, René Adam unequivocally stated that liver transplants are a new standard of care for colorectal cancer. And I guess my question is, do you agree with this statement? How do we balance the demand for living donors and the demand for deceased donors? Especially in a time of increasing fatty liver disease and obesity, other indications for liver transplant, causes of cirrhosis, and also in an era of young-onset colorectal cancer. Patients are younger. Is this a new standard of care? Do you agree with that statement?

Dr. Dib: I do agree with that statement. I think it’s important to understand that not all patients with colorectal mets are the same. Of the number of patients in the United States who have colorectal cancer, let’s say 50% of them will have liver metastasis. Only 15%-20% of them will have liver-only metastasis.

This is only for patients who have liver-only metastasis without extrahepatic disease. And only maybe 15%-20% of them will meet all the criteria to be able to undergo liver transplantation. I think it’s for a very selective subset of patients who have very good tumor biology, generally young patients who don’t have any other alternative to having even a complex liver resection and are not able to get R0 resection. That is when we could think about doing liver transplantation.

It’s one more of the skills that we can have. It doesn’t mean that it will be the only skill, or the best skill, for all of the patients.

Dr. Schlechter: When a patient volunteers to be a living donor for a loved one or a family member, and they go through all the screening and they’re found to be a candidate, what is the surgical experience for that patient?

 

 

How long are they in the hospital? What sort of operation is that?

Dr. Dib: Living donors are very special patients. These are patients who do not need an operation. And the only reason they’re doing this is to save the life of their loved one. Donor safety is our priority number one, two, three, and four. The donor operation needs to be perfect.

And so we take good care of, first of all, selecting the living donors, making sure that they’re young and they don’t have any big contraindications. We also ensure that they are well informed of the process. The living donor surgery that we’re now doing is laparoscopic and minimally invasive. Here at Beth Israel Deaconess, we have done it laparoscopically with very good results.

I think that experience before and after the surgery gets so much better because of the better recovery. They’re able to go home, in general, within 4 or 5 days, and they get on with their normal life within 6-8 weeks. I think it’s important for them to know all the processes and the actual risks and benefits for the recipient.

Among those risks, I think it’s important for them to understand that this is a complex operation. Even if we do it laparoscopically or robotically, so that the scar is less, inside we’re still taking out half of the liver. That is a surgery that needs to be undertaken very meticulously, with a focus on minimizing any bleeding.

It’s a surgery that takes a long time. It takes about 6 hours. We do our best to try to minimize any risks.

Dr. Schlechter: Excellent. Thanks for that. Today we had Dr. Martin Dib joining us to discuss liver transplant for metastatic colorectal cancer. We discussed the various important criteria. We discussed that early referral to multidisciplinary centers that manage these is important to help get patients set up.

We discussed the fact that there are certain inclusion and exclusion criteria to consider. Obviously, unresectable disease is a critical determination that should be made by a liver surgeon. The absence of extrahepatic disease is important in staging with PET or other imaging. We discussed certain other biological exclusions.

There’s a relative contraindication of right-sided vs left-sided cancers, but right-sided cancers can be transplanted. We discussed that an elevated CEA greater than 80 is a contraindication, as are mutations in BRAF. We reviewed data from both the TRANSMET trial recently published in The Lancet and presented at ASCO in 2024, as well as the older Oslo criteria and Oslo trials and SECA trials.

And finally, we heard that donors can now come as living donors, a laparoscopic robotic surgery with a better safety profile, and greater access to organs that are ABO matched and not HLA matched because of the nature of the biology. Thank you again for joining us.


 

Benjamin L. Schlechter, MD, is senior physician, Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts. He has disclosed no relevant financial relationships. Martin J. Dib, MD, is member of the faculty, Department of Surgery, Harvard Medical School; director of Hepatobiliary Surgery, Division of Transplantation, Beth Israel Deaconess Medical Center, Boston. He has disclosed no relevant financial relationships.

A version of this transcript appeared on Medscape.com.

 



This transcript has been edited for clarity.
 

Benjamin L. Schlechter, MD: Today we’re discussing liver transplant for metastatic colorectal cancer with our guest, Dr. Martin Dib. Dr. Dib is the director of the Hepatobiliary Surgery and Living Donor Program at Beth Israel Deaconess Medical Center here in Boston, and a Harvard Medical School faculty member.

He was previously at the Pontificia Universidad Católica de Chile, a leading international institution investigating the role of liver transplant in colorectal cancer, among other diseases. Dr. Dib, before we move to our discussion, I’d like to hear a bit about your pathway to becoming a transplant surgeon. How did you end up working on colorectal cancer and liver transplants in this field?

Martin J. Dib, MD: Thank you so much, Dr. Schlechter. I am originally from Chile. I had an opportunity to come to Beth Israel Deaconess Medical Center after medical school and I did liver regeneration research at the transplant center. After that, I was lucky enough to match as a general surgery resident at Beth Israel Deaconess.

This is my alma mater and I was able to graduate as a surgeon here. You and I had some paths together. After graduating from Harvard as a surgeon, I was trained in liver transplant, abdominal transplant, surgical oncology, and hepatobiliary surgery at the University of Toronto.

I have been developing this passion for being able to transplant cancer patients and use organ transplant techniques to be able to do complex resections for cancer.

Dr. Schlechter: Let’s talk about the topic for today, which is liver transplant and colorectal cancer. I’ll be honest — this is not a very familiar topic for a lot of oncologists. There are a lot of details that I think are new to us as oncologists. We need to expand this conversation to get access to patients for this.

First and foremost, can you talk about some of the parameters for a resectable liver metastasis vs unresectable disease that would be an indication for a liver transplant?

Dr. Dib: I think this is a very interesting topic because liver transplantation for cancer is not new. Liver transplantation started in the 1960s when people started doing liver transplants for advanced liver tumors. The problem is that they were selecting patients who had very advanced — and poor tumor biology — tumors. The outcomes were not good.

It was only in 1996 when the Milan criteria started. Mazzaferro and colleagues, using strict patient selection, were able to do liver transplant for selected hepatocellular carcinoma patients. Having those excellent outcomes in selecting patients opened the field for what we now call transplant oncology, which is using selection criteria and using other methods to be able to select which patients will do well after transplantation, even with immunosuppression.

Liver transplantation for colorectal metastasis was used at the very beginning of the era of liver transplantation, but with very poor outcomes. It was abandoned because of the outcomes. It is exciting to see that after 20 years of not doing it, there was a group in Norway that started again. They are doing liver transplants for colorectal metastases (mets), but with very selected patients.

In Norway, they had a very unusual setting where they had more liver donors than patients on the list waiting for liver transplant. So they can’t share these livers and we’re all jealous, right? Every single country in the West struggles because we don’t have enough livers for the rest of the list. And they had a lot of livers to be able to transplant people.

They decided to transplant some selected patients with colorectal mets that were unresectable. And the surprise was that they found that they were able to get a 60% survival at 5 years. And so that was new. After that, in Norway, they started showing this data to other centers in the world. It wasn’t until this year that we could see not only the long-term data and long-term outcomes of using liver transplantation for unresectable colorectal mets, but also we’re now having data from a prospective clinical trial from France.

It was three countries in the prospective clinical trial: France, Belgium, and Italy. We now see that we have a little stronger data to support the use of liver transplants for unresectable colorectal mets.

 

 

Dr. Schlechter: That’s the TRANSMET study you’re referencing that was presented at ASCO in the late-breaking abstract session in 2024, and then more recently in The Lancet’s eClinicalMedicine. Both of those papers were led by René Adam. That was a cool presentation to sit through. I was in the room, and I was taking a ton of notes and there was a lot of info that came out of that.

First of all, it showed that patients who had received chemotherapy and were responding could then go on to liver transplant in that population. Impressively, 81% of the patients who were randomized to transplant received it. Frankly, that’s a big number, especially compared with the West, as you said, and in particular the US and here in New England where livers are a very precious commodity.

And even accounting for that, if you look at the intention-to-treat analysis, the 5-year overall survival in that population was 57% compared with 13% with chemotherapy. And that feels like a real number for chemotherapy. If you look at the per-protocol analysis, frankly, the numbers are higher.

It’s always a challenging assessment. What was also interesting to me was the pattern of recurrence, which in general was that recurrences were extrahepatic. So not only were patients rendered disease-free, but in general, the liver remained disease-free and only 3% of patients had liver-only recurrence and 11% had widespread metastatic disease.

The biggest group was lung metastases, at about 40%. Ultimately, they reported a progression-free survival of 17. 4 months for transplant compared with 6. 4 months with chemotherapy. On every parameter, it looks like liver transplant wins for these people. Help me out. Who are these people? How do we find these people?

What are the inclusions and exclusions for this population?

Dr. Dib: I think that’s very important. This is not a therapy that will be for every patient. These are selected patients who have liver-only unresectable colorectal mets. These are patients that don’t have any extrahepatic disease and that either the primary has been taken out already or that they have the primary present, but the plan is to take the primary and then do a liver transplantation after 3 months, hopefully after 6 months, of removing the primary.

These are patients who meet all the criteria that we have seen in terms of the best outcomes — patients that have Oslo scores of less than three. The Oslo trial, which included the SECA (Secondary Cancer)-I and SECA-II trials, basically showed that patients with a maximal tumor diameter of less than 5.5 with a pretransplant CEA (carcinoembryonic antigen) of less than 80 that do not have progression on chemotherapy, among other variables, do better. But the concept is that this is a therapy that will apply only to selected patients. That way we can continue to have adequate overall survival post-transplant that would be comparable to other diseases that we do liver transplants for.

Dr. Schlechter: Were there other biomarkers, any mutations that were included or excluded?

Dr. Dib: Yes. If you look at SECA-I, SECA-II trial outcomes, and also TRANSMET, they all say patients with BRAF mutations shouldn’t be transplanted. There are other parameters, including, for example, the site of the primary tumor. Patients with a left-sided colon primary tumor do much better than patients who have a right-sided primary tumor.

 

 

That’s not a complete contraindication, but if you look at the most updated inclusion criteria of programs, like the ones that the one that we have here at Beth Israel Deaconess and many others, the inclusion criteria protocols include patients who have only hepatic disease.

So, if there are no extrahepatic mets, the resection of the primary has been done or will be done after a multidisciplinary discussion. We want to make sure they have the absence of BRAF mutation, and that they don’t have disease progression while on chemotherapy. So hopefully we have data from enough months to be able to make sure that there’s no intrahepatic or extrahepatic progression while on chemotherapy.

And that’s including CEA and also looking at the imaging.

Dr. Schlechter: When you’re seeing a patient, how much chemo do you think they should have? What’s a good run chemotherapy-wise for these patients? Let’s say, before I refer a patient to you, how much chemo should they have? And then what should I do? Do I get a PET scan? Do I get MRI? What’s the right scanning I should do to prove there’s no extrahepatic disease before sending a patient in for consideration?

Dr. Dib: First, we need to confirm unresectability. Referring patients early is always a good measure to make sure that we’re all in agreement that it’s an unresectable patient. Having a PET scan from the very beginning is helpful because it shows the disease before doing chemotherapy.

In terms of the lines of chemotherapy, ideally in the TRANSMET trial, for example, the idea was to show tumor control for at least 3 months, with less than three lines of chemotherapy. Some patients will do that with FOLFIRI. It depends on the case.

I think some of those evaluations will need a multidisciplinary discussion. In our case, we are connected to the Norway team. We frequently talk with the Oslo team and an international community of transplant centers to get opinions on particular cases.

But I think referring patients early is a good measure. If we don’t think that they qualify, we will let the team know. We’re strictly looking at patients who have unresectable liver mets that don’t have extrahepatic disease. The idea is to do a primary tumor resection, and then get to transplantation, hopefully after 6 months. In some cases that have some concerns in terms of tumor biology, we may even extend the time from diagnosis to transplant to over 1.5 years.

Dr. Schlechter: Excellent. And what’s the experience like for these patients? In training as a resident many years ago, I saw patients with cirrhosis who went on to have a liver transplant, and that was sort of trading one disease for another. What is the posttransplant, or the remission, experience of a liver transplant for colorectal cancer like for the patient?

Dr. Dib: That’s a very important point. I think that transplantation has gotten better and better, as has chemotherapy systemic therapy. The liver transplantation experience from 20 years ago has improved dramatically. I think the quality of life of liver transplant patients after transplantation has increased quite a bit.

 

 

At Beth Israel Deaconess, we have a liver transplant program that is doing over a 100 livers a year. And when you have a high-volume center, usually the experience gets better. The time in the hospital post-transplant decreases.

In general, when we’re doing liver transplants, patients are getting extubated in the OR 30% of the time. The vast majority of patients are going home within 1 or 2 weeks. They need to have immunosuppression for the rest of their lives. We have a very good program of transplant coordinators that will help the family and the patient to live with immunosuppression and live with a transplanted organ.

But I would say that we have many, many patients, especially these patients who are not patients with cirrhosis. Their health is not as deteriorated as patients who have low MELD (model for end-stage liver disease) scores. They don’t have liver disease. They have cancer. So usually patients like that, many of them can go back to work and live a quality of life that is fairly reasonable.

Dr. Schlechter: That’s good to hear. When we hear statements like liver transplant for colon cancer, a lot of us have this picture of a much sicker population, but it’s interesting and true that the colorectal cancer population as a candidate for liver transplant is a much healthier population than the population with cirrhosis.

Let’s talk about organs and donors. Largely in the TRANSMET study, for example, that was cadaveric donors. Those were not living donors and you’ve done a lot of work on living donors. If the answer in the United States, because of limited access to organs, is going to be living donors, who are those donors?

What is that like? How do you identify them?

Dr. Dib: There’s a lot of advantages to using living donors for these patients. In any type of patient that needs a liver transplant, cadaveric donors or deceased donors is the same concept. There are two types of deceased donors: the brain-dead donors and donors after cardiac death. Those are hard to come by.

We still have 15%-20% mortality on the waiting list in the United States. We’re already still struggling to get enough donors to transplant the patients that are on the list. Now, if you add a new indication, which is unresectable colorectal mets, we need to make sure that the outcomes are equivalent to the patients who are going to be transplanted for other reasons.

Right now, for example, the 5-year overall survival of a patient with cirrhosis, or a patient with hepatocellular carcinoma, is over 80% 5-year survival. In the SECA trials and TRANSMET trial, if we do a good selection, I think we can get to 70% 5-year survival. But until we have more data, I think it’s a cautious measure to, as a field, try to use living donors and not compete with the rest of the list of patients who are already dying on the list for liver transplants.

Once we get more data, it’s going to be something that, in the transplant community, we may be able to use deceased donors. Especially deceased donors with maybe extended criteria that are not going to be used for other patients. We can do living-unrelated or living-related donations. Family members or also friends or neighbors or part of the community, even altruistic donors, can donate to a potential recipient. And that enables us to not only time the transplant in an adequate manner, because we’re able to transplant the patient early, but also time it so we can give the number of chemotherapy cycles that we want to give.

That’s a huge advantage. You don’t compete for a liver with the cadaveric waiting list of patients that are waiting for other reasons, and you can select the tumor biology very well because you know exactly when the surgery is going to be. For instance, we can say, okay, this patient has KRAS mutation, left-sided colon cancer, and has been having good tumor biology with no progression. We will wait 6 months from the primary tumor to the transplant, which is going to be 1 year from diagnosis to transplant. And we can see during that time whether they continue to have good tumor biology.

But if you have a deceased donor liver transplant, sometimes you can’t time that well and schedule it. It becomes a bit more tricky in terms of patient selection and making sure that we do this for the people who are going to benefit.

 

 

Dr. Schlechter: And how does donor matching work? Is it HLA (human leukocyte antigen) matched or ABO-matched? Who can donate when you say a living-related? For example, when we think about bone marrow transplantation, which we’re all familiar with in the oncology population, it’s an incredibly complex match process. Is this the same challenge?

Dr. Dib: No, it’s a little bit simpler. Living donors for liver transplants need to be between the ages of 18 and 60. They need to be relatively healthy, relatively fit, with a BMI hopefully less than 30, definitely less than 35. The compatibility is ABO compatibility. So, if they’re ABO-compatible, relatively young, relatively healthy, they would be a potential donor and we will go ahead and do a CT scan.

If the CT scan shows that they have a good, adequate anatomy, more than 90% of those will be good donors. I would say that out of 100 people who want to be donors, 25 of them will be adequate. One out of four people who want to save their family member and want to have this operation are able to donate half of their liver to their family member or loved one.

Dr. Schlechter: Excellent. And it’s helpful to know that the matching process is simpler. During his discussion, René Adam unequivocally stated that liver transplants are a new standard of care for colorectal cancer. And I guess my question is, do you agree with this statement? How do we balance the demand for living donors and the demand for deceased donors? Especially in a time of increasing fatty liver disease and obesity, other indications for liver transplant, causes of cirrhosis, and also in an era of young-onset colorectal cancer. Patients are younger. Is this a new standard of care? Do you agree with that statement?

Dr. Dib: I do agree with that statement. I think it’s important to understand that not all patients with colorectal mets are the same. Of the number of patients in the United States who have colorectal cancer, let’s say 50% of them will have liver metastasis. Only 15%-20% of them will have liver-only metastasis.

This is only for patients who have liver-only metastasis without extrahepatic disease. And only maybe 15%-20% of them will meet all the criteria to be able to undergo liver transplantation. I think it’s for a very selective subset of patients who have very good tumor biology, generally young patients who don’t have any other alternative to having even a complex liver resection and are not able to get R0 resection. That is when we could think about doing liver transplantation.

It’s one more of the skills that we can have. It doesn’t mean that it will be the only skill, or the best skill, for all of the patients.

Dr. Schlechter: When a patient volunteers to be a living donor for a loved one or a family member, and they go through all the screening and they’re found to be a candidate, what is the surgical experience for that patient?

 

 

How long are they in the hospital? What sort of operation is that?

Dr. Dib: Living donors are very special patients. These are patients who do not need an operation. And the only reason they’re doing this is to save the life of their loved one. Donor safety is our priority number one, two, three, and four. The donor operation needs to be perfect.

And so we take good care of, first of all, selecting the living donors, making sure that they’re young and they don’t have any big contraindications. We also ensure that they are well informed of the process. The living donor surgery that we’re now doing is laparoscopic and minimally invasive. Here at Beth Israel Deaconess, we have done it laparoscopically with very good results.

I think that experience before and after the surgery gets so much better because of the better recovery. They’re able to go home, in general, within 4 or 5 days, and they get on with their normal life within 6-8 weeks. I think it’s important for them to know all the processes and the actual risks and benefits for the recipient.

Among those risks, I think it’s important for them to understand that this is a complex operation. Even if we do it laparoscopically or robotically, so that the scar is less, inside we’re still taking out half of the liver. That is a surgery that needs to be undertaken very meticulously, with a focus on minimizing any bleeding.

It’s a surgery that takes a long time. It takes about 6 hours. We do our best to try to minimize any risks.

Dr. Schlechter: Excellent. Thanks for that. Today we had Dr. Martin Dib joining us to discuss liver transplant for metastatic colorectal cancer. We discussed the various important criteria. We discussed that early referral to multidisciplinary centers that manage these is important to help get patients set up.

We discussed the fact that there are certain inclusion and exclusion criteria to consider. Obviously, unresectable disease is a critical determination that should be made by a liver surgeon. The absence of extrahepatic disease is important in staging with PET or other imaging. We discussed certain other biological exclusions.

There’s a relative contraindication of right-sided vs left-sided cancers, but right-sided cancers can be transplanted. We discussed that an elevated CEA greater than 80 is a contraindication, as are mutations in BRAF. We reviewed data from both the TRANSMET trial recently published in The Lancet and presented at ASCO in 2024, as well as the older Oslo criteria and Oslo trials and SECA trials.

And finally, we heard that donors can now come as living donors, a laparoscopic robotic surgery with a better safety profile, and greater access to organs that are ABO matched and not HLA matched because of the nature of the biology. Thank you again for joining us.


 

Benjamin L. Schlechter, MD, is senior physician, Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts. He has disclosed no relevant financial relationships. Martin J. Dib, MD, is member of the faculty, Department of Surgery, Harvard Medical School; director of Hepatobiliary Surgery, Division of Transplantation, Beth Israel Deaconess Medical Center, Boston. He has disclosed no relevant financial relationships.

A version of this transcript appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Diet Rich in Processed Foods Linked to Elevated Risk for Colorectal Cancer

Article Type
Changed
Mon, 09/09/2024 - 03:48

 

TOPLINE:

A dietary pattern linked to the microbial signature of colorectal cancer (CRC) is positively correlated with an increased risk for CRC, particularly for tumors with detectable Fusobacterium nucleatum, the pks strain of Escherichia coli, and enterotoxigenic Bacteroides fragilis (ETBF).

METHODOLOGY:

  • To date, no known studies have investigated how a dietary pattern (rather than just individual foods or nutrients) specifically directed at CRC-related microbes may contribute to an increased CRC risk.
  • Using stool metagenomes and dietary information from 307 men and 212 women, researchers identified and then validated a dietary pattern specifically linked to an established CRC-related gut microbial signature, which they termed the CRC Microbial Dietary Score (CMDS).
  • They then investigated the association between CMDS and the risk for CRC in 259,200 participants (50,637 men and 208,563 women) from three large US cohorts where health professionals provided detailed information on various lifestyle factors over long follow-up periods.
  • Researchers also analyzed the risk for CRC on the basis of the presence of gut bacteria, such as F nucleatum, pks+ E coli, and ETBF, in the tumor tissues of the participants who underwent surgical resection for CRC.

TAKEAWAY:

  • The CMDS was characterized by high intake of processed foods and low intake of fiber-rich foods.
  • Over 6,467,378 person-years assessed in the three US cohorts, 3854 cases of incident CRC were documented, with 1172, 1096, and 1119 cases measured for F nucleatum, pks+ E coli, and ETBF, respectively.
  • A higher CMDS was associated with an increased risk for CRC after adjusting for putative CRC risk factors (adjusted hazard ratio [HR], 1.25; Ptrend < .001).
  • The association between CMDS and the risk for CRC was stronger for tumors with detectable levels of F nucleatum (HR, 2.51; Ptrend < .001), pks+ E coli (HR, 1.68; Ptrend = .005), and ETBF (HR, 2.06; Ptrend = .016).

IN PRACTICE:

“A dietary pattern with a low consumption of processed foods may help prevent colorectal cancer through modulation of the gut microbiome. The dietary pattern modulating the colorectal cancer–related gut microbial signature may particularly help prevent tumoral microbial positive colorectal cancer, which tends to have a worse prognosis,” the authors wrote.

SOURCE:

This study, led by Kai Wang and Chun-Han Lo, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, was published online in Gastroenterology.

LIMITATIONS:

The study’s observational design may have limited the ability to establish causality between dietary patterns and the risk for CRC. The inclusion of participants who were all health professionals from a predominantly White US population may have limited the generalizability of the findings to other populations. The reliance on self-reported dietary data may have introduced recall bias and affected the accuracy of the dietary pattern assessed.

DISCLOSURES:

This work was supported by various sources, including the National Institutes of Health and the Cancer Research UK Grand Challenge Award. One author served as a consultant for some pharmaceutical companies, and another received funding from various sources, both unrelated to this study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

A dietary pattern linked to the microbial signature of colorectal cancer (CRC) is positively correlated with an increased risk for CRC, particularly for tumors with detectable Fusobacterium nucleatum, the pks strain of Escherichia coli, and enterotoxigenic Bacteroides fragilis (ETBF).

METHODOLOGY:

  • To date, no known studies have investigated how a dietary pattern (rather than just individual foods or nutrients) specifically directed at CRC-related microbes may contribute to an increased CRC risk.
  • Using stool metagenomes and dietary information from 307 men and 212 women, researchers identified and then validated a dietary pattern specifically linked to an established CRC-related gut microbial signature, which they termed the CRC Microbial Dietary Score (CMDS).
  • They then investigated the association between CMDS and the risk for CRC in 259,200 participants (50,637 men and 208,563 women) from three large US cohorts where health professionals provided detailed information on various lifestyle factors over long follow-up periods.
  • Researchers also analyzed the risk for CRC on the basis of the presence of gut bacteria, such as F nucleatum, pks+ E coli, and ETBF, in the tumor tissues of the participants who underwent surgical resection for CRC.

TAKEAWAY:

  • The CMDS was characterized by high intake of processed foods and low intake of fiber-rich foods.
  • Over 6,467,378 person-years assessed in the three US cohorts, 3854 cases of incident CRC were documented, with 1172, 1096, and 1119 cases measured for F nucleatum, pks+ E coli, and ETBF, respectively.
  • A higher CMDS was associated with an increased risk for CRC after adjusting for putative CRC risk factors (adjusted hazard ratio [HR], 1.25; Ptrend < .001).
  • The association between CMDS and the risk for CRC was stronger for tumors with detectable levels of F nucleatum (HR, 2.51; Ptrend < .001), pks+ E coli (HR, 1.68; Ptrend = .005), and ETBF (HR, 2.06; Ptrend = .016).

IN PRACTICE:

“A dietary pattern with a low consumption of processed foods may help prevent colorectal cancer through modulation of the gut microbiome. The dietary pattern modulating the colorectal cancer–related gut microbial signature may particularly help prevent tumoral microbial positive colorectal cancer, which tends to have a worse prognosis,” the authors wrote.

SOURCE:

This study, led by Kai Wang and Chun-Han Lo, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, was published online in Gastroenterology.

LIMITATIONS:

The study’s observational design may have limited the ability to establish causality between dietary patterns and the risk for CRC. The inclusion of participants who were all health professionals from a predominantly White US population may have limited the generalizability of the findings to other populations. The reliance on self-reported dietary data may have introduced recall bias and affected the accuracy of the dietary pattern assessed.

DISCLOSURES:

This work was supported by various sources, including the National Institutes of Health and the Cancer Research UK Grand Challenge Award. One author served as a consultant for some pharmaceutical companies, and another received funding from various sources, both unrelated to this study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

A dietary pattern linked to the microbial signature of colorectal cancer (CRC) is positively correlated with an increased risk for CRC, particularly for tumors with detectable Fusobacterium nucleatum, the pks strain of Escherichia coli, and enterotoxigenic Bacteroides fragilis (ETBF).

METHODOLOGY:

  • To date, no known studies have investigated how a dietary pattern (rather than just individual foods or nutrients) specifically directed at CRC-related microbes may contribute to an increased CRC risk.
  • Using stool metagenomes and dietary information from 307 men and 212 women, researchers identified and then validated a dietary pattern specifically linked to an established CRC-related gut microbial signature, which they termed the CRC Microbial Dietary Score (CMDS).
  • They then investigated the association between CMDS and the risk for CRC in 259,200 participants (50,637 men and 208,563 women) from three large US cohorts where health professionals provided detailed information on various lifestyle factors over long follow-up periods.
  • Researchers also analyzed the risk for CRC on the basis of the presence of gut bacteria, such as F nucleatum, pks+ E coli, and ETBF, in the tumor tissues of the participants who underwent surgical resection for CRC.

TAKEAWAY:

  • The CMDS was characterized by high intake of processed foods and low intake of fiber-rich foods.
  • Over 6,467,378 person-years assessed in the three US cohorts, 3854 cases of incident CRC were documented, with 1172, 1096, and 1119 cases measured for F nucleatum, pks+ E coli, and ETBF, respectively.
  • A higher CMDS was associated with an increased risk for CRC after adjusting for putative CRC risk factors (adjusted hazard ratio [HR], 1.25; Ptrend < .001).
  • The association between CMDS and the risk for CRC was stronger for tumors with detectable levels of F nucleatum (HR, 2.51; Ptrend < .001), pks+ E coli (HR, 1.68; Ptrend = .005), and ETBF (HR, 2.06; Ptrend = .016).

IN PRACTICE:

“A dietary pattern with a low consumption of processed foods may help prevent colorectal cancer through modulation of the gut microbiome. The dietary pattern modulating the colorectal cancer–related gut microbial signature may particularly help prevent tumoral microbial positive colorectal cancer, which tends to have a worse prognosis,” the authors wrote.

SOURCE:

This study, led by Kai Wang and Chun-Han Lo, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, was published online in Gastroenterology.

LIMITATIONS:

The study’s observational design may have limited the ability to establish causality between dietary patterns and the risk for CRC. The inclusion of participants who were all health professionals from a predominantly White US population may have limited the generalizability of the findings to other populations. The reliance on self-reported dietary data may have introduced recall bias and affected the accuracy of the dietary pattern assessed.

DISCLOSURES:

This work was supported by various sources, including the National Institutes of Health and the Cancer Research UK Grand Challenge Award. One author served as a consultant for some pharmaceutical companies, and another received funding from various sources, both unrelated to this study.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

SBRT vs Surgery in CRC Lung Metastases: Which Is Better?

Article Type
Changed
Mon, 09/09/2024 - 03:37

 

TOPLINE:

In patients with pulmonary oligometastases from colorectal cancer (CRC), both stereotactic body radiotherapy (SBRT) and surgery led to similar overall survival rates at 5 years. However, those who received surgery had significantly better progression-free and disease-free survival rates, as well as a longer time to intrathoracic progression.
 

METHODOLOGY:

  • SBRT has been shown to provide effective local control and improve short-term survival for patients with pulmonary oligometastases from CRC and has become an alternative for these patients who are ineligible or reluctant to undergo surgery. It’s unclear, however, whether SBRT should be prioritized over surgery in patients with CRC pulmonary metastases, largely because of a lack of prospective data.
  • In the current analysis, researchers compared outcomes among 335 patients (median age, 61 years) with lung metastases from CRC who underwent surgery or SBRT, using data from the Peking University Cancer Hospital and Institute between March 2011 and September 2022.
  • A total of 251 patients were included in the final analysis after propensity score matching, 173 (68.9%) underwent surgery and 78 (31.1%) received SBRT. The median follow-up was 61.6 months in the surgery group and 54.4 months in the SBRT group.
  • The study outcomes were freedom from intrathoracic progression, progression-free survival, and overall survival.

TAKEAWAY:

  • At 5 years, rates of freedom from intrathoracic progression were more than twofold higher in the surgery group than in the SBRT group (53% vs 23.4%; hazard ratio [HR], 0.46; P < .001). Progression-free survival rates were also more than twofold higher in the surgery group vs the SBRT group (43.8% vs 18.5%; HR, 0.47; P < .001), respectively. In the SBRT group, a higher percentage of patients had a disease-free interval of less than 12 months compared with the surgery group, with rates of 48.7% and 32.9%, respectively (P = 0.025). 
  • Overall survival, however, was not significantly different between the two groups at 5 years (72.5% in the surgery group vs 63.7% in the SBRT group; P = .260). The number of pulmonary metastases (HR, 1.87; 95% CI, 1.11-3.14, P = .019 and tumor size (HR, 1.03; 95% CI, 1.00-1.05, P = .023) were significant prognostic factors for overall survival.
  • Local recurrence was more prevalent after SBRT (33.3%) than surgery (16.9%), while new intrathoracic tumors occurred more frequently after surgery than SBRT (71.8% vs 43.1%). Repeated local treatments were common among patients with intrathoracic progression, which might have contributed to favorable survival outcomes in both groups.
  • Both treatments were well-tolerated with no treatment-related mortality or grade ≥ 3 toxicities. In the surgery group, 14 patients experienced complications, including atrial fibrillation (n = 4) and prolonged air leaks (n = 7). In the SBRT group, radiation pneumonitis was the most common adverse event (n = 21).

IN PRACTICE:

SBRT yielded overall survival benefits similar to surgery despite a “higher likelihood of prior extrapulmonary metastases, a shorter disease-free interval, and a greater number of metastatic lesions,” the authors wrote. Still, SBRT should be regarded as an “effective alternative in cases in which surgical intervention is either unviable or declined by the patient,” the authors concluded.
 

SOURCE:

The study was co-led by Yaqi Wang and Xin Dong, Peking University Cancer Hospital & Institute, Beijing, China, and was published online in the International Journal of Radiation Oncology, Biology, Physics.
 

LIMITATIONS:

This single-center retrospective study had an inherent selection bias. The lack of balanced sample sizes of the surgery and SBRT groups might have affected the robustness of the statistical analyses. Detailed data on adverse events were not available.
 

DISCLOSURES:

The study was supported by grants from the National Natural Science Foundation of China, Beijing Natural Science Foundation, and Beijing Municipal Administration of Hospital’s Ascent Plan. The authors did not declare any conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

In patients with pulmonary oligometastases from colorectal cancer (CRC), both stereotactic body radiotherapy (SBRT) and surgery led to similar overall survival rates at 5 years. However, those who received surgery had significantly better progression-free and disease-free survival rates, as well as a longer time to intrathoracic progression.
 

METHODOLOGY:

  • SBRT has been shown to provide effective local control and improve short-term survival for patients with pulmonary oligometastases from CRC and has become an alternative for these patients who are ineligible or reluctant to undergo surgery. It’s unclear, however, whether SBRT should be prioritized over surgery in patients with CRC pulmonary metastases, largely because of a lack of prospective data.
  • In the current analysis, researchers compared outcomes among 335 patients (median age, 61 years) with lung metastases from CRC who underwent surgery or SBRT, using data from the Peking University Cancer Hospital and Institute between March 2011 and September 2022.
  • A total of 251 patients were included in the final analysis after propensity score matching, 173 (68.9%) underwent surgery and 78 (31.1%) received SBRT. The median follow-up was 61.6 months in the surgery group and 54.4 months in the SBRT group.
  • The study outcomes were freedom from intrathoracic progression, progression-free survival, and overall survival.

TAKEAWAY:

  • At 5 years, rates of freedom from intrathoracic progression were more than twofold higher in the surgery group than in the SBRT group (53% vs 23.4%; hazard ratio [HR], 0.46; P < .001). Progression-free survival rates were also more than twofold higher in the surgery group vs the SBRT group (43.8% vs 18.5%; HR, 0.47; P < .001), respectively. In the SBRT group, a higher percentage of patients had a disease-free interval of less than 12 months compared with the surgery group, with rates of 48.7% and 32.9%, respectively (P = 0.025). 
  • Overall survival, however, was not significantly different between the two groups at 5 years (72.5% in the surgery group vs 63.7% in the SBRT group; P = .260). The number of pulmonary metastases (HR, 1.87; 95% CI, 1.11-3.14, P = .019 and tumor size (HR, 1.03; 95% CI, 1.00-1.05, P = .023) were significant prognostic factors for overall survival.
  • Local recurrence was more prevalent after SBRT (33.3%) than surgery (16.9%), while new intrathoracic tumors occurred more frequently after surgery than SBRT (71.8% vs 43.1%). Repeated local treatments were common among patients with intrathoracic progression, which might have contributed to favorable survival outcomes in both groups.
  • Both treatments were well-tolerated with no treatment-related mortality or grade ≥ 3 toxicities. In the surgery group, 14 patients experienced complications, including atrial fibrillation (n = 4) and prolonged air leaks (n = 7). In the SBRT group, radiation pneumonitis was the most common adverse event (n = 21).

IN PRACTICE:

SBRT yielded overall survival benefits similar to surgery despite a “higher likelihood of prior extrapulmonary metastases, a shorter disease-free interval, and a greater number of metastatic lesions,” the authors wrote. Still, SBRT should be regarded as an “effective alternative in cases in which surgical intervention is either unviable or declined by the patient,” the authors concluded.
 

SOURCE:

The study was co-led by Yaqi Wang and Xin Dong, Peking University Cancer Hospital & Institute, Beijing, China, and was published online in the International Journal of Radiation Oncology, Biology, Physics.
 

LIMITATIONS:

This single-center retrospective study had an inherent selection bias. The lack of balanced sample sizes of the surgery and SBRT groups might have affected the robustness of the statistical analyses. Detailed data on adverse events were not available.
 

DISCLOSURES:

The study was supported by grants from the National Natural Science Foundation of China, Beijing Natural Science Foundation, and Beijing Municipal Administration of Hospital’s Ascent Plan. The authors did not declare any conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

 

TOPLINE:

In patients with pulmonary oligometastases from colorectal cancer (CRC), both stereotactic body radiotherapy (SBRT) and surgery led to similar overall survival rates at 5 years. However, those who received surgery had significantly better progression-free and disease-free survival rates, as well as a longer time to intrathoracic progression.
 

METHODOLOGY:

  • SBRT has been shown to provide effective local control and improve short-term survival for patients with pulmonary oligometastases from CRC and has become an alternative for these patients who are ineligible or reluctant to undergo surgery. It’s unclear, however, whether SBRT should be prioritized over surgery in patients with CRC pulmonary metastases, largely because of a lack of prospective data.
  • In the current analysis, researchers compared outcomes among 335 patients (median age, 61 years) with lung metastases from CRC who underwent surgery or SBRT, using data from the Peking University Cancer Hospital and Institute between March 2011 and September 2022.
  • A total of 251 patients were included in the final analysis after propensity score matching, 173 (68.9%) underwent surgery and 78 (31.1%) received SBRT. The median follow-up was 61.6 months in the surgery group and 54.4 months in the SBRT group.
  • The study outcomes were freedom from intrathoracic progression, progression-free survival, and overall survival.

TAKEAWAY:

  • At 5 years, rates of freedom from intrathoracic progression were more than twofold higher in the surgery group than in the SBRT group (53% vs 23.4%; hazard ratio [HR], 0.46; P < .001). Progression-free survival rates were also more than twofold higher in the surgery group vs the SBRT group (43.8% vs 18.5%; HR, 0.47; P < .001), respectively. In the SBRT group, a higher percentage of patients had a disease-free interval of less than 12 months compared with the surgery group, with rates of 48.7% and 32.9%, respectively (P = 0.025). 
  • Overall survival, however, was not significantly different between the two groups at 5 years (72.5% in the surgery group vs 63.7% in the SBRT group; P = .260). The number of pulmonary metastases (HR, 1.87; 95% CI, 1.11-3.14, P = .019 and tumor size (HR, 1.03; 95% CI, 1.00-1.05, P = .023) were significant prognostic factors for overall survival.
  • Local recurrence was more prevalent after SBRT (33.3%) than surgery (16.9%), while new intrathoracic tumors occurred more frequently after surgery than SBRT (71.8% vs 43.1%). Repeated local treatments were common among patients with intrathoracic progression, which might have contributed to favorable survival outcomes in both groups.
  • Both treatments were well-tolerated with no treatment-related mortality or grade ≥ 3 toxicities. In the surgery group, 14 patients experienced complications, including atrial fibrillation (n = 4) and prolonged air leaks (n = 7). In the SBRT group, radiation pneumonitis was the most common adverse event (n = 21).

IN PRACTICE:

SBRT yielded overall survival benefits similar to surgery despite a “higher likelihood of prior extrapulmonary metastases, a shorter disease-free interval, and a greater number of metastatic lesions,” the authors wrote. Still, SBRT should be regarded as an “effective alternative in cases in which surgical intervention is either unviable or declined by the patient,” the authors concluded.
 

SOURCE:

The study was co-led by Yaqi Wang and Xin Dong, Peking University Cancer Hospital & Institute, Beijing, China, and was published online in the International Journal of Radiation Oncology, Biology, Physics.
 

LIMITATIONS:

This single-center retrospective study had an inherent selection bias. The lack of balanced sample sizes of the surgery and SBRT groups might have affected the robustness of the statistical analyses. Detailed data on adverse events were not available.
 

DISCLOSURES:

The study was supported by grants from the National Natural Science Foundation of China, Beijing Natural Science Foundation, and Beijing Municipal Administration of Hospital’s Ascent Plan. The authors did not declare any conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Aspirin for CRC Prevention May Work Best in Adults With Unhealthy Lifestyles

Article Type
Changed
Wed, 08/28/2024 - 14:07

 

TOPLINE:

Aspirin provides greater protection against colorectal cancer (CRC) in people with unhealthy lifestyles, particularly smokers with higher body weight, new data suggest. 

METHODOLOGY:

  • Aspirin is an established agent for CRC prevention. Whether individuals with more lifestyle risk factors might derive greater benefit from aspirin remains unclear.
  • Researchers analyzed regular aspirin use (defined as taking two or more standard 325-mg tablets per week) using long-term follow-up data from 63,957 women in the Nurses’ Health Study and 43,698 men in the Health Professionals Follow-Up Study.
  • They calculated a healthy lifestyle score for each participant based on body mass index (BMI), alcohol intake, physical activity, diet, and smoking, with higher scores corresponding to healthier lifestyles.
  • Outcomes included multivariable-adjusted 10-year cumulative incidence of CRC, the absolute risk reduction (ARR) with aspirin use, and number needed to treat associated with regular aspirin use by lifestyle score.

TAKEAWAY:

  • During more than 3 million person-years of follow-up, 2544 new cases of CRC were documented.
  • The 10-year cumulative incidence of CRC was 1.98% among regular aspirin users compared with 2.95% among nonusers, corresponding to an ARR of 0.97%.
  • The ARR associated with aspirin use was greatest among individuals with the unhealthiest lifestyle scores and progressively decreased with healthier lifestyle scores (P < .001 for additive interaction).
  • Those with the unhealthiest lifestyle scores (0-1) had a 10-year ARR of 1.28% from aspirin use, whereas those with the healthiest lifestyle scores (4-5) had an ARR of 0.11%.
  • The number needed to treat with aspirin for 10 years to prevent one CRC case was 78 for those with the unhealthiest lifestyles, compared with 909 for those with the healthiest lifestyles.
  • Among the individual components of the healthy lifestyle score, higher BMI and smoking correlated with greater reductions in CRC risk from aspirin use.

IN PRACTICE:

“These results support the use of lifestyle risk factors to identify individuals who may have a more favorable risk-benefit profile for cancer prevention with aspirin,” the authors wrote. 

SOURCE:

The study, with first author Daniel R. Sikavi, MD, from Massachusetts General Hospital and Harvard Medical School in Boston, was published online in JAMA Oncology.

LIMITATIONS:

The study population consisted of health professionals who were predominantly White, which may limit generalizability of the findings. Lifestyle factors and aspirin use were self-reported, which may introduce measurement errors. The study did not systematically assess adverse outcomes potentially due to aspirin use or the presence of a known hereditary cancer syndrome. 

DISCLOSURES:

The study had no commercial funding. The authors had no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Aspirin provides greater protection against colorectal cancer (CRC) in people with unhealthy lifestyles, particularly smokers with higher body weight, new data suggest. 

METHODOLOGY:

  • Aspirin is an established agent for CRC prevention. Whether individuals with more lifestyle risk factors might derive greater benefit from aspirin remains unclear.
  • Researchers analyzed regular aspirin use (defined as taking two or more standard 325-mg tablets per week) using long-term follow-up data from 63,957 women in the Nurses’ Health Study and 43,698 men in the Health Professionals Follow-Up Study.
  • They calculated a healthy lifestyle score for each participant based on body mass index (BMI), alcohol intake, physical activity, diet, and smoking, with higher scores corresponding to healthier lifestyles.
  • Outcomes included multivariable-adjusted 10-year cumulative incidence of CRC, the absolute risk reduction (ARR) with aspirin use, and number needed to treat associated with regular aspirin use by lifestyle score.

TAKEAWAY:

  • During more than 3 million person-years of follow-up, 2544 new cases of CRC were documented.
  • The 10-year cumulative incidence of CRC was 1.98% among regular aspirin users compared with 2.95% among nonusers, corresponding to an ARR of 0.97%.
  • The ARR associated with aspirin use was greatest among individuals with the unhealthiest lifestyle scores and progressively decreased with healthier lifestyle scores (P < .001 for additive interaction).
  • Those with the unhealthiest lifestyle scores (0-1) had a 10-year ARR of 1.28% from aspirin use, whereas those with the healthiest lifestyle scores (4-5) had an ARR of 0.11%.
  • The number needed to treat with aspirin for 10 years to prevent one CRC case was 78 for those with the unhealthiest lifestyles, compared with 909 for those with the healthiest lifestyles.
  • Among the individual components of the healthy lifestyle score, higher BMI and smoking correlated with greater reductions in CRC risk from aspirin use.

IN PRACTICE:

“These results support the use of lifestyle risk factors to identify individuals who may have a more favorable risk-benefit profile for cancer prevention with aspirin,” the authors wrote. 

SOURCE:

The study, with first author Daniel R. Sikavi, MD, from Massachusetts General Hospital and Harvard Medical School in Boston, was published online in JAMA Oncology.

LIMITATIONS:

The study population consisted of health professionals who were predominantly White, which may limit generalizability of the findings. Lifestyle factors and aspirin use were self-reported, which may introduce measurement errors. The study did not systematically assess adverse outcomes potentially due to aspirin use or the presence of a known hereditary cancer syndrome. 

DISCLOSURES:

The study had no commercial funding. The authors had no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Aspirin provides greater protection against colorectal cancer (CRC) in people with unhealthy lifestyles, particularly smokers with higher body weight, new data suggest. 

METHODOLOGY:

  • Aspirin is an established agent for CRC prevention. Whether individuals with more lifestyle risk factors might derive greater benefit from aspirin remains unclear.
  • Researchers analyzed regular aspirin use (defined as taking two or more standard 325-mg tablets per week) using long-term follow-up data from 63,957 women in the Nurses’ Health Study and 43,698 men in the Health Professionals Follow-Up Study.
  • They calculated a healthy lifestyle score for each participant based on body mass index (BMI), alcohol intake, physical activity, diet, and smoking, with higher scores corresponding to healthier lifestyles.
  • Outcomes included multivariable-adjusted 10-year cumulative incidence of CRC, the absolute risk reduction (ARR) with aspirin use, and number needed to treat associated with regular aspirin use by lifestyle score.

TAKEAWAY:

  • During more than 3 million person-years of follow-up, 2544 new cases of CRC were documented.
  • The 10-year cumulative incidence of CRC was 1.98% among regular aspirin users compared with 2.95% among nonusers, corresponding to an ARR of 0.97%.
  • The ARR associated with aspirin use was greatest among individuals with the unhealthiest lifestyle scores and progressively decreased with healthier lifestyle scores (P < .001 for additive interaction).
  • Those with the unhealthiest lifestyle scores (0-1) had a 10-year ARR of 1.28% from aspirin use, whereas those with the healthiest lifestyle scores (4-5) had an ARR of 0.11%.
  • The number needed to treat with aspirin for 10 years to prevent one CRC case was 78 for those with the unhealthiest lifestyles, compared with 909 for those with the healthiest lifestyles.
  • Among the individual components of the healthy lifestyle score, higher BMI and smoking correlated with greater reductions in CRC risk from aspirin use.

IN PRACTICE:

“These results support the use of lifestyle risk factors to identify individuals who may have a more favorable risk-benefit profile for cancer prevention with aspirin,” the authors wrote. 

SOURCE:

The study, with first author Daniel R. Sikavi, MD, from Massachusetts General Hospital and Harvard Medical School in Boston, was published online in JAMA Oncology.

LIMITATIONS:

The study population consisted of health professionals who were predominantly White, which may limit generalizability of the findings. Lifestyle factors and aspirin use were self-reported, which may introduce measurement errors. The study did not systematically assess adverse outcomes potentially due to aspirin use or the presence of a known hereditary cancer syndrome. 

DISCLOSURES:

The study had no commercial funding. The authors had no relevant conflicts of interest.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Closing the Gap: Priority Zones Identified for CRC Screening in Hispanic/Latino Populations

Article Type
Changed
Wed, 08/28/2024 - 14:08

 

TOPLINE:

Researchers identified thousands of census tracts as priority zones where improving the screening of colorectal cancer (CRC) may benefit Hispanic or Latino communities.

METHODOLOGY:

  • Hispanic or Latino individuals have the lowest rate of CRC screening among the six broader census-designated racial or ethnic groups in the United States, while they face a high proportion of cancer deaths due to CRC.
  • Researchers performed a cross-sectional ecologic study using 2021 Centers for Disease Control and Prevention PLACES and 2019 American Community Survey data to identify priority zones for CRC screening where intervention programs may be targeted.
  • They analyzed a total of 72,136 US census tracts, representing 98.7% of all US census tracts.
  • Nine race and ethnic groups were selected on the basis of the population size and categorizations used in prior research on health or cancer disparity: non-Hispanic Black, non-Hispanic White, Asian, Mexican, Puerto Rican, Cuban, Dominican, Central or South American, and “other race.”
  • Geographically weighted regression and Getis-Ord Gi* hot spot procedures were used to identify the screening priority zones for all Hispanic or Latino groups.

TAKEAWAY:

  • The analysis identified 6519 hot spot tracts for Mexican, 3477 for Puerto Rican, 3522 for Central or South American, 1069 for Dominican, and 1424 for Cuban individuals. The average rates of screening for CRC were 57.2%, 59.9%, 59.3%, 58.9%, and 60.4%, respectively.
  • The percentage of Cuban individuals showed a positive association with the CRC screening rate, while the percentage of Mexican, Puerto Rican, Dominican, and Central or South American Hispanic or Latino individuals and of the uninsured showed a negative association with the CRC screening rate.
  • The priority zones for Mexican communities were primarily located in Texas and southwestern United States, while those for Puerto Rican, Central or South American, and other populations were located in southern Florida and the metro areas of New York City and Texas.

IN PRACTICE:

“Our findings and interactive web map may serve as a translational tool for public health authorities, policymakers, clinicians, and other stakeholders to target investment and interventions to increase guideline-concordant CRC screening uptake benefiting specific H/L [Hispanic or Latino] communities in the United States,” the authors wrote. “These data can inform more precise neighborhood-level interventions to increase CRC screening considering unique characteristics important for these H/L [Hispanic or Latino] groups.”

SOURCE:

The study, led by R. Blake Buchalter, PhD, MPH, Center for Populations Health Research, Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, was published online in the American Journal of Public Health.

LIMITATIONS: 

The study’s cross-sectional design limited the ability to infer causality. The use of census tract-level data did not capture individual-level screening behaviors. The study did not account for nativity status or years of migration owing to the lack of data. The Centers for Disease Control and Prevention PLACES dataset may not represent the actual screening delivered as it is based on survey data. 

DISCLOSURES:

The National Cancer Institute partially supported this study. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Researchers identified thousands of census tracts as priority zones where improving the screening of colorectal cancer (CRC) may benefit Hispanic or Latino communities.

METHODOLOGY:

  • Hispanic or Latino individuals have the lowest rate of CRC screening among the six broader census-designated racial or ethnic groups in the United States, while they face a high proportion of cancer deaths due to CRC.
  • Researchers performed a cross-sectional ecologic study using 2021 Centers for Disease Control and Prevention PLACES and 2019 American Community Survey data to identify priority zones for CRC screening where intervention programs may be targeted.
  • They analyzed a total of 72,136 US census tracts, representing 98.7% of all US census tracts.
  • Nine race and ethnic groups were selected on the basis of the population size and categorizations used in prior research on health or cancer disparity: non-Hispanic Black, non-Hispanic White, Asian, Mexican, Puerto Rican, Cuban, Dominican, Central or South American, and “other race.”
  • Geographically weighted regression and Getis-Ord Gi* hot spot procedures were used to identify the screening priority zones for all Hispanic or Latino groups.

TAKEAWAY:

  • The analysis identified 6519 hot spot tracts for Mexican, 3477 for Puerto Rican, 3522 for Central or South American, 1069 for Dominican, and 1424 for Cuban individuals. The average rates of screening for CRC were 57.2%, 59.9%, 59.3%, 58.9%, and 60.4%, respectively.
  • The percentage of Cuban individuals showed a positive association with the CRC screening rate, while the percentage of Mexican, Puerto Rican, Dominican, and Central or South American Hispanic or Latino individuals and of the uninsured showed a negative association with the CRC screening rate.
  • The priority zones for Mexican communities were primarily located in Texas and southwestern United States, while those for Puerto Rican, Central or South American, and other populations were located in southern Florida and the metro areas of New York City and Texas.

IN PRACTICE:

“Our findings and interactive web map may serve as a translational tool for public health authorities, policymakers, clinicians, and other stakeholders to target investment and interventions to increase guideline-concordant CRC screening uptake benefiting specific H/L [Hispanic or Latino] communities in the United States,” the authors wrote. “These data can inform more precise neighborhood-level interventions to increase CRC screening considering unique characteristics important for these H/L [Hispanic or Latino] groups.”

SOURCE:

The study, led by R. Blake Buchalter, PhD, MPH, Center for Populations Health Research, Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, was published online in the American Journal of Public Health.

LIMITATIONS: 

The study’s cross-sectional design limited the ability to infer causality. The use of census tract-level data did not capture individual-level screening behaviors. The study did not account for nativity status or years of migration owing to the lack of data. The Centers for Disease Control and Prevention PLACES dataset may not represent the actual screening delivered as it is based on survey data. 

DISCLOSURES:

The National Cancer Institute partially supported this study. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Researchers identified thousands of census tracts as priority zones where improving the screening of colorectal cancer (CRC) may benefit Hispanic or Latino communities.

METHODOLOGY:

  • Hispanic or Latino individuals have the lowest rate of CRC screening among the six broader census-designated racial or ethnic groups in the United States, while they face a high proportion of cancer deaths due to CRC.
  • Researchers performed a cross-sectional ecologic study using 2021 Centers for Disease Control and Prevention PLACES and 2019 American Community Survey data to identify priority zones for CRC screening where intervention programs may be targeted.
  • They analyzed a total of 72,136 US census tracts, representing 98.7% of all US census tracts.
  • Nine race and ethnic groups were selected on the basis of the population size and categorizations used in prior research on health or cancer disparity: non-Hispanic Black, non-Hispanic White, Asian, Mexican, Puerto Rican, Cuban, Dominican, Central or South American, and “other race.”
  • Geographically weighted regression and Getis-Ord Gi* hot spot procedures were used to identify the screening priority zones for all Hispanic or Latino groups.

TAKEAWAY:

  • The analysis identified 6519 hot spot tracts for Mexican, 3477 for Puerto Rican, 3522 for Central or South American, 1069 for Dominican, and 1424 for Cuban individuals. The average rates of screening for CRC were 57.2%, 59.9%, 59.3%, 58.9%, and 60.4%, respectively.
  • The percentage of Cuban individuals showed a positive association with the CRC screening rate, while the percentage of Mexican, Puerto Rican, Dominican, and Central or South American Hispanic or Latino individuals and of the uninsured showed a negative association with the CRC screening rate.
  • The priority zones for Mexican communities were primarily located in Texas and southwestern United States, while those for Puerto Rican, Central or South American, and other populations were located in southern Florida and the metro areas of New York City and Texas.

IN PRACTICE:

“Our findings and interactive web map may serve as a translational tool for public health authorities, policymakers, clinicians, and other stakeholders to target investment and interventions to increase guideline-concordant CRC screening uptake benefiting specific H/L [Hispanic or Latino] communities in the United States,” the authors wrote. “These data can inform more precise neighborhood-level interventions to increase CRC screening considering unique characteristics important for these H/L [Hispanic or Latino] groups.”

SOURCE:

The study, led by R. Blake Buchalter, PhD, MPH, Center for Populations Health Research, Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, was published online in the American Journal of Public Health.

LIMITATIONS: 

The study’s cross-sectional design limited the ability to infer causality. The use of census tract-level data did not capture individual-level screening behaviors. The study did not account for nativity status or years of migration owing to the lack of data. The Centers for Disease Control and Prevention PLACES dataset may not represent the actual screening delivered as it is based on survey data. 

DISCLOSURES:

The National Cancer Institute partially supported this study. The authors declared no conflicts of interest.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Is Your Patient Too Old for a Colonoscopy?

Article Type
Changed
Tue, 10/15/2024 - 09:12

 

Colonoscopy remains the gold standard method for detecting colorectal cancer (CRC) and removing precancerous polyps.

The recommended age for CRC screening in the United States spans 45-75 years, with the benefits of colonoscopy diminishing considerably after this point.

Older adults are much more likely to experience complications before, during, and after a colonoscopy. Bowel preps can cause dehydration or electrolyte problems in some, while bleeding and bowel perforation can occur perioperatively, and pulmonary or cardiovascular complications may arise postoperatively.

These risks often outweigh the benefits of catching a precancerous lesion or early-stage cancer, especially given the low rates of advanced neoplasia and CRC detected from screening and surveillance after age 75. Yet the research overall suggests that more than half of older individuals continue to receive screening and surveillance colonoscopies outside the recommended screening window.

So is there a point in time when a person is too old to receive a colonoscopy? The answer is not always clear-cut, but life expectancy should be a key consideration.

“Taking the most extreme example, if you have 6 months to live, finding early-stage cancer is not going to help you,” Michael Rothberg, MD, vice chair for research at Cleveland Clinic’s Medical Institute and director of the Center for Value-Based Care Research, told Medscape Medical News.

For those with more time, the benefits of continued screening and surveillance may outweigh the risks, but when that balance shifts from helpful to not helpful remains inexact, Dr. Rothberg noted.

What’s Recommended?

In May 2021, the US Preventive Services Task Force (USPSTF) lowered the CRC screening threshold to age 45, recommending all adults aged between 45 and 75 years receive screening.

For those aged between 76 and 85 years, the USPSTF upheld its 2016 recommendation of selective screening, noting that the “net benefit of screening all persons in this age group is small” and should be determined on an individual basis. The USPSTF, however, did not provide recommendations on surveillance colonoscopies among those with previously identified polyps.

In November 2023, the American Gastroenterological Association (AGA) issued a clinical practice update that provided advice on risk stratification for CRC screening and post-polypectomy surveillance. For adults older than 75 years specifically, the AGA recommended that the decision to continue CRC screening or perform post-polypectomy surveillance be based on risks, benefits, comorbidities, and screening history and decided on a case-by-case basis.

For instance, previously unscreened patients without comorbidities could benefit from screening beyond age 75 — up to age 80 for men and 90 for women — while those who have had regular colonoscopies, per recommended guidelines, but severe comorbidities that may limit life expectancy could stop sooner, even by age 65.

Although an individualized approach leaves room for variation, it’s essential to consider life expectancy and the time it takes for a polyp to progress to CRC, as well as the risks associated with the procedure itself. Certain older adults are “less likely to live long enough to benefit from surveillance colonoscopy, due to competing, non-CRC mortality risks,” and clinicians should discuss these risks with their patients, the experts explained.
 

When to Stop Screening Colonoscopies

Research shows that screening colonoscopies continue well after the recommended stop age.

A 2023 JAMA Internal Medicine study found, for instance, that a large proportion of screening colonoscopies occurred among the 7067 patients who were 75 years and older with a life expectancy < 10 years. Overall, 30% of patients aged between 76 and 80 years with a limited life expectancy had a colonoscopy. That percentage increased to 71% for those aged 81-85 years and to 100% for those older than 85 years.

But the benefits of screening were minimal. Overall, colonoscopies detected advanced neoplasia in 5.4% of patients aged 76-80 years, 6.2% of those aged 81-85 years, and 9.5% of those older than 85 years. Only 15 patients (0.2%) had CRC detected via colonoscopy, five of whom underwent cancer treatment. Of those five, four had a life expectancy ≥ 10 years, and one had a life expectancy < 10 years.

At the same time, adverse events requiring hospitalization were common 10 days post-colonoscopy (13.58 per 1000), and the risk for hospitalization increased with age.

“For all kinds of screening, we’re not that comfortable in America with the idea that people are eventually going to die, but as you get older, the potential benefits for screening decrease,” study author Dr. Rothberg told this news organization.

In general, life expectancy provides a good predictor of whether people should continue screening or receive treatment following a CRC diagnosis.

Patients aged 76-80 years in good health, for instance, could benefit from screening and, potentially, treatment, Dr. Rothberg said. And “if doctors don’t feel comfortable or confident about predicting life expectancy, taking comorbid illnesses into account can be helpful, especially for that age range.”
 

Weighing Surveillance Benefits

Surveillance colonoscopy is often recommended post-polypectomy to reduce the risk for CRC. But even in this higher-risk population, those older than 75 years may not benefit.

Recent evidence indicates that those with a history of one or two adenomas less than 1 cm in size have only a slightly (1.3-fold) increased risk for incident CRC — and no significant increased risk for fatal CRC.

Another recent study found that detecting CRC at surveillance colonoscopy was rare among older adults. In surveillance colonoscopies performed among 9601 individuals aged 70-85 years with prior adenomas, 12% had advanced neoplasia detected, and only 0.3% had CRC detected.

Similar rates of advanced polyps (7.8%) or CRC (0.2%) were reported in another recent analysis of more than 9800 adults older than 65 years receiving surveillance colonoscopies.

Despite the low rates of polyp and CRC detection, nearly 90% of patients with recommendation information available received advice to return for a future colonoscopy. Even among patients with no polyps or small ones, almost 60% who had life expectancy of less than 5 years were told to return.

Although someone with prior adenomas has a higher risk for CRC, that doesn’t tell the whole story for an individual patient, Samir Gupta, MD, professor of gastroenterology at the University of California San Diego, and co-lead of the Cancer Control Program at Moores Cancer Center, told this news organization. For older adults, it’s vital to consider the competing risks and how much time it might take for CRC to develop.

At Digestive Disease Week in May, Dr. Gupta presented new research that looked at cumulative risk among patients aged 75 years and older with prior precancerous polyps vs prior normal colonoscopies. Although those with prior adenomas had a higher risk for CRC overall, their cumulative CRC risk was low — about 0.3% at 5 years and 0.8% at 10 years. Cumulative CRC deaths were even lower — 0.2% at 5 years and 0.7% at 10 years — while the risk of dying from something other than CRC was 20% at 5 years and 40% at 10 years.

“What this means to me is that patients who are 75 and older should think really carefully about whether they want to do surveillance,” said Dr. Gupta, who coauthored the AGA’s clinical practice update. “Someone who is very healthy and doesn’t have obvious medical problems can look at that risk for developing colon cancer and the risk of dying and make a decision about whether there’s enough concern to go ahead with surveillance.”

Those with competing health priorities, on other hand, should likely concentrate on those instead, he said, and feel reassured that even if they choose not to do surveillance, they’re probably not doing themselves any harm.

“The bottom line is that referring older adults or frail adults for surveillance colonoscopy shouldn’t be a rubber stamp or check-the-box action,” Dr. Gupta said. “We need to think about it carefully and give ourselves — as clinicians and patients — the room to decide that it may not need to take high priority.”
 

 

 

What to Tell Patients

Overall, older adults who have had prior colonoscopies, no or low-risk polyps, and low CRC risk will likely face greater risks from the procedure than benefits.

“The more invasive the screening the test, the more dangerous it could be,” Dr. Rothberg noted.

Many patients, however, are open to stopping and often trust their primary care provider in the decision-making process, said Audrey Calderwood, MD, director of the Comprehensive Gastroenterology Center at Dartmouth Hitchcock Medical Center. “But the systems we have in place don’t optimally support that decision-making at the time it matters most.”

For example, at a prior colonoscopy, a gastroenterologist may recommend surveillance again in 5-7 years. But in the interim, the patient could have new medications or develop comorbidities and other health issues. Rather than defer to the gastroenterologist’s recommendations from years ago, clinicians and patients can reassess the pros and cons of screening or surveillance based on current circumstances, Dr. Calderwood said.

“There should be lines of communication and systems of support to allow primary care providers to decide whether it is still needed,” she said.

While some may be ready to stop, other patients are going to continue to want and ask about CRC screening or surveillance, Dr. Rothberg said.

In these instances, communication style matters.

“You don’t want to tell a patient that they’re not going to be screened because they’re not going to live long enough to benefit,” Dr. Rothberg said.

However, steering people toward less invasive tests or telling them it’s important to give other health problems priority may be more sensitive ways to communicate that it’s time to ramp down or halt screening.

“Sometimes when you say you’re going to stop cancer screening, older adults misperceive that you’re giving up on them,” Dr. Gupta said. “We spend 30-40 years driving home the message that prevention and screening are important, and then it feels like we’re taking it away, so we need to find the best way to discuss it and make the choice that’s comfortable for them.”

Dr. Rothberg, Dr. Gupta, and Dr. Calderwood disclosed no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

Colonoscopy remains the gold standard method for detecting colorectal cancer (CRC) and removing precancerous polyps.

The recommended age for CRC screening in the United States spans 45-75 years, with the benefits of colonoscopy diminishing considerably after this point.

Older adults are much more likely to experience complications before, during, and after a colonoscopy. Bowel preps can cause dehydration or electrolyte problems in some, while bleeding and bowel perforation can occur perioperatively, and pulmonary or cardiovascular complications may arise postoperatively.

These risks often outweigh the benefits of catching a precancerous lesion or early-stage cancer, especially given the low rates of advanced neoplasia and CRC detected from screening and surveillance after age 75. Yet the research overall suggests that more than half of older individuals continue to receive screening and surveillance colonoscopies outside the recommended screening window.

So is there a point in time when a person is too old to receive a colonoscopy? The answer is not always clear-cut, but life expectancy should be a key consideration.

“Taking the most extreme example, if you have 6 months to live, finding early-stage cancer is not going to help you,” Michael Rothberg, MD, vice chair for research at Cleveland Clinic’s Medical Institute and director of the Center for Value-Based Care Research, told Medscape Medical News.

For those with more time, the benefits of continued screening and surveillance may outweigh the risks, but when that balance shifts from helpful to not helpful remains inexact, Dr. Rothberg noted.

What’s Recommended?

In May 2021, the US Preventive Services Task Force (USPSTF) lowered the CRC screening threshold to age 45, recommending all adults aged between 45 and 75 years receive screening.

For those aged between 76 and 85 years, the USPSTF upheld its 2016 recommendation of selective screening, noting that the “net benefit of screening all persons in this age group is small” and should be determined on an individual basis. The USPSTF, however, did not provide recommendations on surveillance colonoscopies among those with previously identified polyps.

In November 2023, the American Gastroenterological Association (AGA) issued a clinical practice update that provided advice on risk stratification for CRC screening and post-polypectomy surveillance. For adults older than 75 years specifically, the AGA recommended that the decision to continue CRC screening or perform post-polypectomy surveillance be based on risks, benefits, comorbidities, and screening history and decided on a case-by-case basis.

For instance, previously unscreened patients without comorbidities could benefit from screening beyond age 75 — up to age 80 for men and 90 for women — while those who have had regular colonoscopies, per recommended guidelines, but severe comorbidities that may limit life expectancy could stop sooner, even by age 65.

Although an individualized approach leaves room for variation, it’s essential to consider life expectancy and the time it takes for a polyp to progress to CRC, as well as the risks associated with the procedure itself. Certain older adults are “less likely to live long enough to benefit from surveillance colonoscopy, due to competing, non-CRC mortality risks,” and clinicians should discuss these risks with their patients, the experts explained.
 

When to Stop Screening Colonoscopies

Research shows that screening colonoscopies continue well after the recommended stop age.

A 2023 JAMA Internal Medicine study found, for instance, that a large proportion of screening colonoscopies occurred among the 7067 patients who were 75 years and older with a life expectancy < 10 years. Overall, 30% of patients aged between 76 and 80 years with a limited life expectancy had a colonoscopy. That percentage increased to 71% for those aged 81-85 years and to 100% for those older than 85 years.

But the benefits of screening were minimal. Overall, colonoscopies detected advanced neoplasia in 5.4% of patients aged 76-80 years, 6.2% of those aged 81-85 years, and 9.5% of those older than 85 years. Only 15 patients (0.2%) had CRC detected via colonoscopy, five of whom underwent cancer treatment. Of those five, four had a life expectancy ≥ 10 years, and one had a life expectancy < 10 years.

At the same time, adverse events requiring hospitalization were common 10 days post-colonoscopy (13.58 per 1000), and the risk for hospitalization increased with age.

“For all kinds of screening, we’re not that comfortable in America with the idea that people are eventually going to die, but as you get older, the potential benefits for screening decrease,” study author Dr. Rothberg told this news organization.

In general, life expectancy provides a good predictor of whether people should continue screening or receive treatment following a CRC diagnosis.

Patients aged 76-80 years in good health, for instance, could benefit from screening and, potentially, treatment, Dr. Rothberg said. And “if doctors don’t feel comfortable or confident about predicting life expectancy, taking comorbid illnesses into account can be helpful, especially for that age range.”
 

Weighing Surveillance Benefits

Surveillance colonoscopy is often recommended post-polypectomy to reduce the risk for CRC. But even in this higher-risk population, those older than 75 years may not benefit.

Recent evidence indicates that those with a history of one or two adenomas less than 1 cm in size have only a slightly (1.3-fold) increased risk for incident CRC — and no significant increased risk for fatal CRC.

Another recent study found that detecting CRC at surveillance colonoscopy was rare among older adults. In surveillance colonoscopies performed among 9601 individuals aged 70-85 years with prior adenomas, 12% had advanced neoplasia detected, and only 0.3% had CRC detected.

Similar rates of advanced polyps (7.8%) or CRC (0.2%) were reported in another recent analysis of more than 9800 adults older than 65 years receiving surveillance colonoscopies.

Despite the low rates of polyp and CRC detection, nearly 90% of patients with recommendation information available received advice to return for a future colonoscopy. Even among patients with no polyps or small ones, almost 60% who had life expectancy of less than 5 years were told to return.

Although someone with prior adenomas has a higher risk for CRC, that doesn’t tell the whole story for an individual patient, Samir Gupta, MD, professor of gastroenterology at the University of California San Diego, and co-lead of the Cancer Control Program at Moores Cancer Center, told this news organization. For older adults, it’s vital to consider the competing risks and how much time it might take for CRC to develop.

At Digestive Disease Week in May, Dr. Gupta presented new research that looked at cumulative risk among patients aged 75 years and older with prior precancerous polyps vs prior normal colonoscopies. Although those with prior adenomas had a higher risk for CRC overall, their cumulative CRC risk was low — about 0.3% at 5 years and 0.8% at 10 years. Cumulative CRC deaths were even lower — 0.2% at 5 years and 0.7% at 10 years — while the risk of dying from something other than CRC was 20% at 5 years and 40% at 10 years.

“What this means to me is that patients who are 75 and older should think really carefully about whether they want to do surveillance,” said Dr. Gupta, who coauthored the AGA’s clinical practice update. “Someone who is very healthy and doesn’t have obvious medical problems can look at that risk for developing colon cancer and the risk of dying and make a decision about whether there’s enough concern to go ahead with surveillance.”

Those with competing health priorities, on other hand, should likely concentrate on those instead, he said, and feel reassured that even if they choose not to do surveillance, they’re probably not doing themselves any harm.

“The bottom line is that referring older adults or frail adults for surveillance colonoscopy shouldn’t be a rubber stamp or check-the-box action,” Dr. Gupta said. “We need to think about it carefully and give ourselves — as clinicians and patients — the room to decide that it may not need to take high priority.”
 

 

 

What to Tell Patients

Overall, older adults who have had prior colonoscopies, no or low-risk polyps, and low CRC risk will likely face greater risks from the procedure than benefits.

“The more invasive the screening the test, the more dangerous it could be,” Dr. Rothberg noted.

Many patients, however, are open to stopping and often trust their primary care provider in the decision-making process, said Audrey Calderwood, MD, director of the Comprehensive Gastroenterology Center at Dartmouth Hitchcock Medical Center. “But the systems we have in place don’t optimally support that decision-making at the time it matters most.”

For example, at a prior colonoscopy, a gastroenterologist may recommend surveillance again in 5-7 years. But in the interim, the patient could have new medications or develop comorbidities and other health issues. Rather than defer to the gastroenterologist’s recommendations from years ago, clinicians and patients can reassess the pros and cons of screening or surveillance based on current circumstances, Dr. Calderwood said.

“There should be lines of communication and systems of support to allow primary care providers to decide whether it is still needed,” she said.

While some may be ready to stop, other patients are going to continue to want and ask about CRC screening or surveillance, Dr. Rothberg said.

In these instances, communication style matters.

“You don’t want to tell a patient that they’re not going to be screened because they’re not going to live long enough to benefit,” Dr. Rothberg said.

However, steering people toward less invasive tests or telling them it’s important to give other health problems priority may be more sensitive ways to communicate that it’s time to ramp down or halt screening.

“Sometimes when you say you’re going to stop cancer screening, older adults misperceive that you’re giving up on them,” Dr. Gupta said. “We spend 30-40 years driving home the message that prevention and screening are important, and then it feels like we’re taking it away, so we need to find the best way to discuss it and make the choice that’s comfortable for them.”

Dr. Rothberg, Dr. Gupta, and Dr. Calderwood disclosed no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

 

Colonoscopy remains the gold standard method for detecting colorectal cancer (CRC) and removing precancerous polyps.

The recommended age for CRC screening in the United States spans 45-75 years, with the benefits of colonoscopy diminishing considerably after this point.

Older adults are much more likely to experience complications before, during, and after a colonoscopy. Bowel preps can cause dehydration or electrolyte problems in some, while bleeding and bowel perforation can occur perioperatively, and pulmonary or cardiovascular complications may arise postoperatively.

These risks often outweigh the benefits of catching a precancerous lesion or early-stage cancer, especially given the low rates of advanced neoplasia and CRC detected from screening and surveillance after age 75. Yet the research overall suggests that more than half of older individuals continue to receive screening and surveillance colonoscopies outside the recommended screening window.

So is there a point in time when a person is too old to receive a colonoscopy? The answer is not always clear-cut, but life expectancy should be a key consideration.

“Taking the most extreme example, if you have 6 months to live, finding early-stage cancer is not going to help you,” Michael Rothberg, MD, vice chair for research at Cleveland Clinic’s Medical Institute and director of the Center for Value-Based Care Research, told Medscape Medical News.

For those with more time, the benefits of continued screening and surveillance may outweigh the risks, but when that balance shifts from helpful to not helpful remains inexact, Dr. Rothberg noted.

What’s Recommended?

In May 2021, the US Preventive Services Task Force (USPSTF) lowered the CRC screening threshold to age 45, recommending all adults aged between 45 and 75 years receive screening.

For those aged between 76 and 85 years, the USPSTF upheld its 2016 recommendation of selective screening, noting that the “net benefit of screening all persons in this age group is small” and should be determined on an individual basis. The USPSTF, however, did not provide recommendations on surveillance colonoscopies among those with previously identified polyps.

In November 2023, the American Gastroenterological Association (AGA) issued a clinical practice update that provided advice on risk stratification for CRC screening and post-polypectomy surveillance. For adults older than 75 years specifically, the AGA recommended that the decision to continue CRC screening or perform post-polypectomy surveillance be based on risks, benefits, comorbidities, and screening history and decided on a case-by-case basis.

For instance, previously unscreened patients without comorbidities could benefit from screening beyond age 75 — up to age 80 for men and 90 for women — while those who have had regular colonoscopies, per recommended guidelines, but severe comorbidities that may limit life expectancy could stop sooner, even by age 65.

Although an individualized approach leaves room for variation, it’s essential to consider life expectancy and the time it takes for a polyp to progress to CRC, as well as the risks associated with the procedure itself. Certain older adults are “less likely to live long enough to benefit from surveillance colonoscopy, due to competing, non-CRC mortality risks,” and clinicians should discuss these risks with their patients, the experts explained.
 

When to Stop Screening Colonoscopies

Research shows that screening colonoscopies continue well after the recommended stop age.

A 2023 JAMA Internal Medicine study found, for instance, that a large proportion of screening colonoscopies occurred among the 7067 patients who were 75 years and older with a life expectancy < 10 years. Overall, 30% of patients aged between 76 and 80 years with a limited life expectancy had a colonoscopy. That percentage increased to 71% for those aged 81-85 years and to 100% for those older than 85 years.

But the benefits of screening were minimal. Overall, colonoscopies detected advanced neoplasia in 5.4% of patients aged 76-80 years, 6.2% of those aged 81-85 years, and 9.5% of those older than 85 years. Only 15 patients (0.2%) had CRC detected via colonoscopy, five of whom underwent cancer treatment. Of those five, four had a life expectancy ≥ 10 years, and one had a life expectancy < 10 years.

At the same time, adverse events requiring hospitalization were common 10 days post-colonoscopy (13.58 per 1000), and the risk for hospitalization increased with age.

“For all kinds of screening, we’re not that comfortable in America with the idea that people are eventually going to die, but as you get older, the potential benefits for screening decrease,” study author Dr. Rothberg told this news organization.

In general, life expectancy provides a good predictor of whether people should continue screening or receive treatment following a CRC diagnosis.

Patients aged 76-80 years in good health, for instance, could benefit from screening and, potentially, treatment, Dr. Rothberg said. And “if doctors don’t feel comfortable or confident about predicting life expectancy, taking comorbid illnesses into account can be helpful, especially for that age range.”
 

Weighing Surveillance Benefits

Surveillance colonoscopy is often recommended post-polypectomy to reduce the risk for CRC. But even in this higher-risk population, those older than 75 years may not benefit.

Recent evidence indicates that those with a history of one or two adenomas less than 1 cm in size have only a slightly (1.3-fold) increased risk for incident CRC — and no significant increased risk for fatal CRC.

Another recent study found that detecting CRC at surveillance colonoscopy was rare among older adults. In surveillance colonoscopies performed among 9601 individuals aged 70-85 years with prior adenomas, 12% had advanced neoplasia detected, and only 0.3% had CRC detected.

Similar rates of advanced polyps (7.8%) or CRC (0.2%) were reported in another recent analysis of more than 9800 adults older than 65 years receiving surveillance colonoscopies.

Despite the low rates of polyp and CRC detection, nearly 90% of patients with recommendation information available received advice to return for a future colonoscopy. Even among patients with no polyps or small ones, almost 60% who had life expectancy of less than 5 years were told to return.

Although someone with prior adenomas has a higher risk for CRC, that doesn’t tell the whole story for an individual patient, Samir Gupta, MD, professor of gastroenterology at the University of California San Diego, and co-lead of the Cancer Control Program at Moores Cancer Center, told this news organization. For older adults, it’s vital to consider the competing risks and how much time it might take for CRC to develop.

At Digestive Disease Week in May, Dr. Gupta presented new research that looked at cumulative risk among patients aged 75 years and older with prior precancerous polyps vs prior normal colonoscopies. Although those with prior adenomas had a higher risk for CRC overall, their cumulative CRC risk was low — about 0.3% at 5 years and 0.8% at 10 years. Cumulative CRC deaths were even lower — 0.2% at 5 years and 0.7% at 10 years — while the risk of dying from something other than CRC was 20% at 5 years and 40% at 10 years.

“What this means to me is that patients who are 75 and older should think really carefully about whether they want to do surveillance,” said Dr. Gupta, who coauthored the AGA’s clinical practice update. “Someone who is very healthy and doesn’t have obvious medical problems can look at that risk for developing colon cancer and the risk of dying and make a decision about whether there’s enough concern to go ahead with surveillance.”

Those with competing health priorities, on other hand, should likely concentrate on those instead, he said, and feel reassured that even if they choose not to do surveillance, they’re probably not doing themselves any harm.

“The bottom line is that referring older adults or frail adults for surveillance colonoscopy shouldn’t be a rubber stamp or check-the-box action,” Dr. Gupta said. “We need to think about it carefully and give ourselves — as clinicians and patients — the room to decide that it may not need to take high priority.”
 

 

 

What to Tell Patients

Overall, older adults who have had prior colonoscopies, no or low-risk polyps, and low CRC risk will likely face greater risks from the procedure than benefits.

“The more invasive the screening the test, the more dangerous it could be,” Dr. Rothberg noted.

Many patients, however, are open to stopping and often trust their primary care provider in the decision-making process, said Audrey Calderwood, MD, director of the Comprehensive Gastroenterology Center at Dartmouth Hitchcock Medical Center. “But the systems we have in place don’t optimally support that decision-making at the time it matters most.”

For example, at a prior colonoscopy, a gastroenterologist may recommend surveillance again in 5-7 years. But in the interim, the patient could have new medications or develop comorbidities and other health issues. Rather than defer to the gastroenterologist’s recommendations from years ago, clinicians and patients can reassess the pros and cons of screening or surveillance based on current circumstances, Dr. Calderwood said.

“There should be lines of communication and systems of support to allow primary care providers to decide whether it is still needed,” she said.

While some may be ready to stop, other patients are going to continue to want and ask about CRC screening or surveillance, Dr. Rothberg said.

In these instances, communication style matters.

“You don’t want to tell a patient that they’re not going to be screened because they’re not going to live long enough to benefit,” Dr. Rothberg said.

However, steering people toward less invasive tests or telling them it’s important to give other health problems priority may be more sensitive ways to communicate that it’s time to ramp down or halt screening.

“Sometimes when you say you’re going to stop cancer screening, older adults misperceive that you’re giving up on them,” Dr. Gupta said. “We spend 30-40 years driving home the message that prevention and screening are important, and then it feels like we’re taking it away, so we need to find the best way to discuss it and make the choice that’s comfortable for them.”

Dr. Rothberg, Dr. Gupta, and Dr. Calderwood disclosed no relevant conflicts of interest.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Cold Snare Resection Safe for Large Nonpedunculated Colorectal Polyps

Article Type
Changed
Tue, 08/27/2024 - 06:09

Cold snare endoscopic mucosal resection (EMR) may be a safe therapeutic option for selected large colorectal polyps, thanks to a safety profile superior to that of hot EMR.

In findings from Germany’s randomized controlled CHRONICLE trial, published in Gastroenterology , the cold technique almost eliminated major adverse events (AEs) — but at the cost of higher rates of recurrence and residual adenoma at first follow-up.

“The exact definition of the ideal lesions requires further research,” wrote investigators led by Ingo Steinbrück, MD, of the Department of Medicine and Gastroenterology at the Academic Teaching Hospital of the University of Freiburg, Freiburg im Breisgau, Germany. “Further studies have to confirm to what extent polyp size and histology can determine an individualized approach.”

Evangelisches Diakoniekrankenhaus Freiburg
Dr. Ingo Steinbrück


The researchers noted that while hot snare resection is the gold standard for larger nonpedunculated polyps of ≥ 2 cm, previous research has found the cold technique, which resects without cutting and cauterizing current, to be superior for small polyps .

“Our study suggests that sessile serrated lesions larger than 2 cm should be resected with the cold snare. Selected cases of lateral spreading tumors may also be good candidates for cold snare resection when safety concerns are paramount,” Dr. Steinbrück said in an interview. “Cold snare resection is standard of care in our center in these cases, but our data show no superiority over hot snare in terms of resection speed.”

Despite recommendations for its use, the cold snare method appears to be underused in the United States.
 

The Study

From June 2021 to July 2023, the 19-center intention-to-treat analysis enrolled 363 patients (48.2% women) with a total of 396 polyps and randomly assigned those with polyps of ≥ 20 mm to cold (n = 193) or hot EMR (n = 203). The primary outcome was major AEs such as perforation or post-endoscopic bleeding.

Major AEs occurred in 1.0% of the cold group and in 7.9% of the hot group (P = .001, odds ratio [OR], 0.12; 95% CI, 0.03-0.54).

Rates for perforation and post-endoscopic bleeding were significantly lower in the cold group, with 0 vs 8 (0% vs 3.9%, P = .007) perforations in the two groups, respectively, as well as 1.0% vs 4.4% (P = .040) for postprocedural bleeding.

Somewhat surprisingly, intraprocedural bleeding was also less common in the cold EMR group at 14% vs 23%.

Residual adenoma, however, was found more frequently in the cold group at 23.7% vs 13.8% (OR, 1.94; 95% CI,1.12-3.38; P = .020).

Commenting on the study but not involved in it, Seth Crockett, MD, MPH, AGAF, a professor of medicine in the Division of Gastroenterology and Hepatology at Oregon Health & Science University in Portland, Oregon, called the CHRONICLE findings very important.

Oregon Health &amp; Science University
Dr. Seth Crockett


“Interestingly, near identical results were found in a recent report from a multicenter US trial presented at DDW earlier this year by Pohl et al., which adds credence to their findings,” he said. “While this study helps move the needle toward using cold EMR for large polyps, it also highlights an Achilles heel of this approach, a higher risk of residual polyps during follow-up.”

In other study findings, postpolypectomy syndrome occurred with similar frequency in both groups (3.1% vs 4.4%, P = .490).

As to the size factor, multivariable analysis revealed that a lesion diameter of at least 4 cm was an independent predictor of major AEs (OR, 3.37), residual adenoma (OR, 2.47), and high-grade dysplasia/cancer for residual adenoma (OR, 2.92).

In the case of suspected sessile serrated lesions, the rate of residual neoplasia was 8.3% (n = 4 of 48; 95% CI, 3.3-19.5) in the cold group and 4.8% (n = 2 of 42; 95% CI, 1.3-15.8) in the hot group (P = .681).

As for laterally spreading tumors (LSTs), Dr. Steinbrück said, “The higher recurrence rate after cold snare resection of LST nodular mixed types is unacceptable, and therefore, hot snare EMR with margin coagulation should be the treatment of choice.

“For LST granular type homogeneous and LST nongranular type without suspicion of malignancy, cold snare EMR with additional measures such as margin coagulation may be an option in selected cases — for example, when the risk of delayed bleeding is high,” he said.
 

 

 

Implications

This study has several implications, Dr. Crockett said. First, more research and innovation are needed to develop techniques to maximize complete resection during cold EMR and minimize residual polyp rates. “Ideally, this would involve other cold techniques so as not to offset the safety benefits of cold EMR,” he noted.

Second, patient selection is important, as cold EMR is likely more suitable for those with serrated lesions and for those in whom follow-up can be assured, he added. “For patients who have the largest polyps, particularly lesions of the laterally spreading tumor, nodular mixed type, and those who do not wish to participate in surveillance, hot EMR may be preferable, at least at this point.”

The authors agreed that new technical development that improves the outcomes and cost-effectiveness of cold snare polypectomy and combines its demonstrated safety with recurrence reduction is necessary, as are studies to identify optimal candidate lesions.

“The next step is to evaluate whether cold snare EMR with additional measures leads to a recurrence rate comparable to hot snare EMR with margin coagulation,” Dr. Steinbrück said. “If this is the case, cold snare resection may be the future treatment of choice for all large nonpedunculated polyps without suspected malignancy in the colorectum.”

This work was supported by the Gastroenterology Foundation, Küsnacht, Switzerland. Dr. Steinbrück reported lecture fees and travel grants from Olympus Medical, a polypectomy device maker, and Falk Pharma. Numerous coauthors disclosed financial relationships with pharmaceutical and medical device companies, including Olympus Medical. Dr. Crockett disclosed no competing interests relevant to his comments.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

Cold snare endoscopic mucosal resection (EMR) may be a safe therapeutic option for selected large colorectal polyps, thanks to a safety profile superior to that of hot EMR.

In findings from Germany’s randomized controlled CHRONICLE trial, published in Gastroenterology , the cold technique almost eliminated major adverse events (AEs) — but at the cost of higher rates of recurrence and residual adenoma at first follow-up.

“The exact definition of the ideal lesions requires further research,” wrote investigators led by Ingo Steinbrück, MD, of the Department of Medicine and Gastroenterology at the Academic Teaching Hospital of the University of Freiburg, Freiburg im Breisgau, Germany. “Further studies have to confirm to what extent polyp size and histology can determine an individualized approach.”

Evangelisches Diakoniekrankenhaus Freiburg
Dr. Ingo Steinbrück


The researchers noted that while hot snare resection is the gold standard for larger nonpedunculated polyps of ≥ 2 cm, previous research has found the cold technique, which resects without cutting and cauterizing current, to be superior for small polyps .

“Our study suggests that sessile serrated lesions larger than 2 cm should be resected with the cold snare. Selected cases of lateral spreading tumors may also be good candidates for cold snare resection when safety concerns are paramount,” Dr. Steinbrück said in an interview. “Cold snare resection is standard of care in our center in these cases, but our data show no superiority over hot snare in terms of resection speed.”

Despite recommendations for its use, the cold snare method appears to be underused in the United States.
 

The Study

From June 2021 to July 2023, the 19-center intention-to-treat analysis enrolled 363 patients (48.2% women) with a total of 396 polyps and randomly assigned those with polyps of ≥ 20 mm to cold (n = 193) or hot EMR (n = 203). The primary outcome was major AEs such as perforation or post-endoscopic bleeding.

Major AEs occurred in 1.0% of the cold group and in 7.9% of the hot group (P = .001, odds ratio [OR], 0.12; 95% CI, 0.03-0.54).

Rates for perforation and post-endoscopic bleeding were significantly lower in the cold group, with 0 vs 8 (0% vs 3.9%, P = .007) perforations in the two groups, respectively, as well as 1.0% vs 4.4% (P = .040) for postprocedural bleeding.

Somewhat surprisingly, intraprocedural bleeding was also less common in the cold EMR group at 14% vs 23%.

Residual adenoma, however, was found more frequently in the cold group at 23.7% vs 13.8% (OR, 1.94; 95% CI,1.12-3.38; P = .020).

Commenting on the study but not involved in it, Seth Crockett, MD, MPH, AGAF, a professor of medicine in the Division of Gastroenterology and Hepatology at Oregon Health & Science University in Portland, Oregon, called the CHRONICLE findings very important.

Oregon Health &amp; Science University
Dr. Seth Crockett


“Interestingly, near identical results were found in a recent report from a multicenter US trial presented at DDW earlier this year by Pohl et al., which adds credence to their findings,” he said. “While this study helps move the needle toward using cold EMR for large polyps, it also highlights an Achilles heel of this approach, a higher risk of residual polyps during follow-up.”

In other study findings, postpolypectomy syndrome occurred with similar frequency in both groups (3.1% vs 4.4%, P = .490).

As to the size factor, multivariable analysis revealed that a lesion diameter of at least 4 cm was an independent predictor of major AEs (OR, 3.37), residual adenoma (OR, 2.47), and high-grade dysplasia/cancer for residual adenoma (OR, 2.92).

In the case of suspected sessile serrated lesions, the rate of residual neoplasia was 8.3% (n = 4 of 48; 95% CI, 3.3-19.5) in the cold group and 4.8% (n = 2 of 42; 95% CI, 1.3-15.8) in the hot group (P = .681).

As for laterally spreading tumors (LSTs), Dr. Steinbrück said, “The higher recurrence rate after cold snare resection of LST nodular mixed types is unacceptable, and therefore, hot snare EMR with margin coagulation should be the treatment of choice.

“For LST granular type homogeneous and LST nongranular type without suspicion of malignancy, cold snare EMR with additional measures such as margin coagulation may be an option in selected cases — for example, when the risk of delayed bleeding is high,” he said.
 

 

 

Implications

This study has several implications, Dr. Crockett said. First, more research and innovation are needed to develop techniques to maximize complete resection during cold EMR and minimize residual polyp rates. “Ideally, this would involve other cold techniques so as not to offset the safety benefits of cold EMR,” he noted.

Second, patient selection is important, as cold EMR is likely more suitable for those with serrated lesions and for those in whom follow-up can be assured, he added. “For patients who have the largest polyps, particularly lesions of the laterally spreading tumor, nodular mixed type, and those who do not wish to participate in surveillance, hot EMR may be preferable, at least at this point.”

The authors agreed that new technical development that improves the outcomes and cost-effectiveness of cold snare polypectomy and combines its demonstrated safety with recurrence reduction is necessary, as are studies to identify optimal candidate lesions.

“The next step is to evaluate whether cold snare EMR with additional measures leads to a recurrence rate comparable to hot snare EMR with margin coagulation,” Dr. Steinbrück said. “If this is the case, cold snare resection may be the future treatment of choice for all large nonpedunculated polyps without suspected malignancy in the colorectum.”

This work was supported by the Gastroenterology Foundation, Küsnacht, Switzerland. Dr. Steinbrück reported lecture fees and travel grants from Olympus Medical, a polypectomy device maker, and Falk Pharma. Numerous coauthors disclosed financial relationships with pharmaceutical and medical device companies, including Olympus Medical. Dr. Crockett disclosed no competing interests relevant to his comments.

A version of this article appeared on Medscape.com.

Cold snare endoscopic mucosal resection (EMR) may be a safe therapeutic option for selected large colorectal polyps, thanks to a safety profile superior to that of hot EMR.

In findings from Germany’s randomized controlled CHRONICLE trial, published in Gastroenterology , the cold technique almost eliminated major adverse events (AEs) — but at the cost of higher rates of recurrence and residual adenoma at first follow-up.

“The exact definition of the ideal lesions requires further research,” wrote investigators led by Ingo Steinbrück, MD, of the Department of Medicine and Gastroenterology at the Academic Teaching Hospital of the University of Freiburg, Freiburg im Breisgau, Germany. “Further studies have to confirm to what extent polyp size and histology can determine an individualized approach.”

Evangelisches Diakoniekrankenhaus Freiburg
Dr. Ingo Steinbrück


The researchers noted that while hot snare resection is the gold standard for larger nonpedunculated polyps of ≥ 2 cm, previous research has found the cold technique, which resects without cutting and cauterizing current, to be superior for small polyps .

“Our study suggests that sessile serrated lesions larger than 2 cm should be resected with the cold snare. Selected cases of lateral spreading tumors may also be good candidates for cold snare resection when safety concerns are paramount,” Dr. Steinbrück said in an interview. “Cold snare resection is standard of care in our center in these cases, but our data show no superiority over hot snare in terms of resection speed.”

Despite recommendations for its use, the cold snare method appears to be underused in the United States.
 

The Study

From June 2021 to July 2023, the 19-center intention-to-treat analysis enrolled 363 patients (48.2% women) with a total of 396 polyps and randomly assigned those with polyps of ≥ 20 mm to cold (n = 193) or hot EMR (n = 203). The primary outcome was major AEs such as perforation or post-endoscopic bleeding.

Major AEs occurred in 1.0% of the cold group and in 7.9% of the hot group (P = .001, odds ratio [OR], 0.12; 95% CI, 0.03-0.54).

Rates for perforation and post-endoscopic bleeding were significantly lower in the cold group, with 0 vs 8 (0% vs 3.9%, P = .007) perforations in the two groups, respectively, as well as 1.0% vs 4.4% (P = .040) for postprocedural bleeding.

Somewhat surprisingly, intraprocedural bleeding was also less common in the cold EMR group at 14% vs 23%.

Residual adenoma, however, was found more frequently in the cold group at 23.7% vs 13.8% (OR, 1.94; 95% CI,1.12-3.38; P = .020).

Commenting on the study but not involved in it, Seth Crockett, MD, MPH, AGAF, a professor of medicine in the Division of Gastroenterology and Hepatology at Oregon Health & Science University in Portland, Oregon, called the CHRONICLE findings very important.

Oregon Health &amp; Science University
Dr. Seth Crockett


“Interestingly, near identical results were found in a recent report from a multicenter US trial presented at DDW earlier this year by Pohl et al., which adds credence to their findings,” he said. “While this study helps move the needle toward using cold EMR for large polyps, it also highlights an Achilles heel of this approach, a higher risk of residual polyps during follow-up.”

In other study findings, postpolypectomy syndrome occurred with similar frequency in both groups (3.1% vs 4.4%, P = .490).

As to the size factor, multivariable analysis revealed that a lesion diameter of at least 4 cm was an independent predictor of major AEs (OR, 3.37), residual adenoma (OR, 2.47), and high-grade dysplasia/cancer for residual adenoma (OR, 2.92).

In the case of suspected sessile serrated lesions, the rate of residual neoplasia was 8.3% (n = 4 of 48; 95% CI, 3.3-19.5) in the cold group and 4.8% (n = 2 of 42; 95% CI, 1.3-15.8) in the hot group (P = .681).

As for laterally spreading tumors (LSTs), Dr. Steinbrück said, “The higher recurrence rate after cold snare resection of LST nodular mixed types is unacceptable, and therefore, hot snare EMR with margin coagulation should be the treatment of choice.

“For LST granular type homogeneous and LST nongranular type without suspicion of malignancy, cold snare EMR with additional measures such as margin coagulation may be an option in selected cases — for example, when the risk of delayed bleeding is high,” he said.
 

 

 

Implications

This study has several implications, Dr. Crockett said. First, more research and innovation are needed to develop techniques to maximize complete resection during cold EMR and minimize residual polyp rates. “Ideally, this would involve other cold techniques so as not to offset the safety benefits of cold EMR,” he noted.

Second, patient selection is important, as cold EMR is likely more suitable for those with serrated lesions and for those in whom follow-up can be assured, he added. “For patients who have the largest polyps, particularly lesions of the laterally spreading tumor, nodular mixed type, and those who do not wish to participate in surveillance, hot EMR may be preferable, at least at this point.”

The authors agreed that new technical development that improves the outcomes and cost-effectiveness of cold snare polypectomy and combines its demonstrated safety with recurrence reduction is necessary, as are studies to identify optimal candidate lesions.

“The next step is to evaluate whether cold snare EMR with additional measures leads to a recurrence rate comparable to hot snare EMR with margin coagulation,” Dr. Steinbrück said. “If this is the case, cold snare resection may be the future treatment of choice for all large nonpedunculated polyps without suspected malignancy in the colorectum.”

This work was supported by the Gastroenterology Foundation, Küsnacht, Switzerland. Dr. Steinbrück reported lecture fees and travel grants from Olympus Medical, a polypectomy device maker, and Falk Pharma. Numerous coauthors disclosed financial relationships with pharmaceutical and medical device companies, including Olympus Medical. Dr. Crockett disclosed no competing interests relevant to his comments.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM GASTROENTEROLOGY

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Liver Transplant Delays Progression in Colorectal Metastasis

Article Type
Changed
Tue, 08/27/2024 - 06:11

 

TOPLINE:

Liver transplant improved progression-free survival (PFS) in carefully selected patients with unresectable colorectal liver metastasis; however, the overall survival and recurrence rate benefits did not reach statistical significance.

METHODOLOGY:

  • Research has shown promising results for well-selected patients with unresectable colorectal liver metastasis undergoing liver transplant; however, the absence of a suitable comparison group makes it difficult to evaluate the overall effectiveness of this treatment method. 
  • Researchers evaluated 33 patients with colorectal cancer and unresectable liver metastasis (mean age, 43.5 years; 52% women) who were eligible for liver transplants, according to validated selection criteria. 
  • Of these, 20 patients (61%) underwent a liver transplant, while 13 (39%) declined transplantation and received alternative therapy. 
  • Patients who received liver transplants did not undergo regular chemotherapy until recurrence, whereas those in the alternative therapy group continued systemic chemotherapy, with hepatic artery infusion pump placement (n = 5), liver resections (n = 6), and locoregional therapies (n = 6). 
  • The main outcomes of the study were overall survival and PFS. 

TAKEAWAY:

  • The median follow-up duration was 986 days in the liver transplant group and 657 days in the alternative therapy group. 
  • Patients who underwent liver transplant showed higher PFS rates at 1 year (90.0% vs 41.7%), 2 years (72.7% vs 10.4%), and 3 years (36.4% vs 10.4%). The PFS gains were statistically significant (P < .01). 
  • Overall survival was also higher in the transplant group — 100% vs 83.9% at 1 year, and 90.0% vs 73.4% at both 2 and 3 years. The differences, however, did not reach significance (P = .12). 
  • Liver transplant was associated with a lower recurrence rate (5% vs 23%), which also did not reach significance (P = .28) possibly because of the small patient population. 

IN PRACTICE:

“This study represents the best available data for evaluating alternatives to [liver transplant],” the authors wrote, adding that the patients should be “referred for multidisciplinary evaluation to transplant oncology centers with strict criteria.”

SOURCE:

The study was led by Matthew M. Byrne, MD, Department of Surgery, University of Rochester Medical Center, Rochester, New York, and was published online in JAMA Surgery.

LIMITATIONS:

The patient population was small, making it difficult to interpret statistical significance. The inclusion of patients with financial and social support might limit generalizability. The survival was calculated from the date of transplant or dropout. Additionally, the study did not explore sex-based differences in treatment choice.

DISCLOSURES:

The authors did not disclose any funding information. One author reported holding shares with HistoSonics, not related to the submitted work.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Liver transplant improved progression-free survival (PFS) in carefully selected patients with unresectable colorectal liver metastasis; however, the overall survival and recurrence rate benefits did not reach statistical significance.

METHODOLOGY:

  • Research has shown promising results for well-selected patients with unresectable colorectal liver metastasis undergoing liver transplant; however, the absence of a suitable comparison group makes it difficult to evaluate the overall effectiveness of this treatment method. 
  • Researchers evaluated 33 patients with colorectal cancer and unresectable liver metastasis (mean age, 43.5 years; 52% women) who were eligible for liver transplants, according to validated selection criteria. 
  • Of these, 20 patients (61%) underwent a liver transplant, while 13 (39%) declined transplantation and received alternative therapy. 
  • Patients who received liver transplants did not undergo regular chemotherapy until recurrence, whereas those in the alternative therapy group continued systemic chemotherapy, with hepatic artery infusion pump placement (n = 5), liver resections (n = 6), and locoregional therapies (n = 6). 
  • The main outcomes of the study were overall survival and PFS. 

TAKEAWAY:

  • The median follow-up duration was 986 days in the liver transplant group and 657 days in the alternative therapy group. 
  • Patients who underwent liver transplant showed higher PFS rates at 1 year (90.0% vs 41.7%), 2 years (72.7% vs 10.4%), and 3 years (36.4% vs 10.4%). The PFS gains were statistically significant (P < .01). 
  • Overall survival was also higher in the transplant group — 100% vs 83.9% at 1 year, and 90.0% vs 73.4% at both 2 and 3 years. The differences, however, did not reach significance (P = .12). 
  • Liver transplant was associated with a lower recurrence rate (5% vs 23%), which also did not reach significance (P = .28) possibly because of the small patient population. 

IN PRACTICE:

“This study represents the best available data for evaluating alternatives to [liver transplant],” the authors wrote, adding that the patients should be “referred for multidisciplinary evaluation to transplant oncology centers with strict criteria.”

SOURCE:

The study was led by Matthew M. Byrne, MD, Department of Surgery, University of Rochester Medical Center, Rochester, New York, and was published online in JAMA Surgery.

LIMITATIONS:

The patient population was small, making it difficult to interpret statistical significance. The inclusion of patients with financial and social support might limit generalizability. The survival was calculated from the date of transplant or dropout. Additionally, the study did not explore sex-based differences in treatment choice.

DISCLOSURES:

The authors did not disclose any funding information. One author reported holding shares with HistoSonics, not related to the submitted work.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

 

TOPLINE:

Liver transplant improved progression-free survival (PFS) in carefully selected patients with unresectable colorectal liver metastasis; however, the overall survival and recurrence rate benefits did not reach statistical significance.

METHODOLOGY:

  • Research has shown promising results for well-selected patients with unresectable colorectal liver metastasis undergoing liver transplant; however, the absence of a suitable comparison group makes it difficult to evaluate the overall effectiveness of this treatment method. 
  • Researchers evaluated 33 patients with colorectal cancer and unresectable liver metastasis (mean age, 43.5 years; 52% women) who were eligible for liver transplants, according to validated selection criteria. 
  • Of these, 20 patients (61%) underwent a liver transplant, while 13 (39%) declined transplantation and received alternative therapy. 
  • Patients who received liver transplants did not undergo regular chemotherapy until recurrence, whereas those in the alternative therapy group continued systemic chemotherapy, with hepatic artery infusion pump placement (n = 5), liver resections (n = 6), and locoregional therapies (n = 6). 
  • The main outcomes of the study were overall survival and PFS. 

TAKEAWAY:

  • The median follow-up duration was 986 days in the liver transplant group and 657 days in the alternative therapy group. 
  • Patients who underwent liver transplant showed higher PFS rates at 1 year (90.0% vs 41.7%), 2 years (72.7% vs 10.4%), and 3 years (36.4% vs 10.4%). The PFS gains were statistically significant (P < .01). 
  • Overall survival was also higher in the transplant group — 100% vs 83.9% at 1 year, and 90.0% vs 73.4% at both 2 and 3 years. The differences, however, did not reach significance (P = .12). 
  • Liver transplant was associated with a lower recurrence rate (5% vs 23%), which also did not reach significance (P = .28) possibly because of the small patient population. 

IN PRACTICE:

“This study represents the best available data for evaluating alternatives to [liver transplant],” the authors wrote, adding that the patients should be “referred for multidisciplinary evaluation to transplant oncology centers with strict criteria.”

SOURCE:

The study was led by Matthew M. Byrne, MD, Department of Surgery, University of Rochester Medical Center, Rochester, New York, and was published online in JAMA Surgery.

LIMITATIONS:

The patient population was small, making it difficult to interpret statistical significance. The inclusion of patients with financial and social support might limit generalizability. The survival was calculated from the date of transplant or dropout. Additionally, the study did not explore sex-based differences in treatment choice.

DISCLOSURES:

The authors did not disclose any funding information. One author reported holding shares with HistoSonics, not related to the submitted work.

This article was created using several editorial tools, including AI, as part of the process. Human editors reviewed this content before publication. A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Clinical Controversy: Watch-and-Wait or Surgery in Rectal Cancer Near Complete Responders?

Article Type
Changed
Thu, 08/22/2024 - 02:58

Having an ostomy is a dreaded prospect for many patients with rectal cancer.

To defer, and potentially avoid, this life-altering surgery, the watch-and-wait approach has become increasingly common among patients with locally advanced disease who have a complete response to neoadjuvant chemoradiation.

About 80% of these patients who have a complete clinical response — a perfectly healed scar where the tumor used to be and other favorable features — can forgo total mesorectal excision and preserve their rectum.

The success of watch-and-wait among complete responders has led some centers to offer the approach in patients with near-complete responses to neoadjuvant chemoradiation.

But watch-and-wait for near-complete clinical responders “is very controversial,” Alan P. Venook, MD, a gastrointestinal oncologist at the University of California, San Francisco (UCSF), told this news organization.

“You sure as hell don’t want to miss a chance to cure a patient,” Dr. Venook said.

A near-complete clinical response essentially means there is no sign of the tumor 8 weeks after total neoadjuvant therapy, but the tumor bed hasn’t completely healed.

The goal of watch-and-wait in this scenario is to give near-complete response lesions time to become complete responses.

But there’s no clear way to predict which tumors will evolve into a clinical complete response.

Recent studies evaluating the conversion rate have reported that anywhere from 39% to about 90% of near-complete responders became complete responders. Some of the variation likely comes down to differences in the clinical stage of patients evaluated in each study as well as the limited number of patients who achieve a near-complete response overall.

Other concerns have emerged that waiting for near-complete responses to become complete leaves extra time for some tumors to metastasize and that tumor regrowth is much higher compared with complete responders.

A recent study found that 13% of near-complete responders who preserved their rectum on watch-and-wait developed distant metastases vs about 5% of long-term complete responders. The study also found that just over half of near-complete responders have tumor regrowth compared with about one in five complete responders.

But even with regrowth, “surgery is still curative,” explained Julio Garcia-Aguilar, MD, PhD, a pioneer of watch-and-wait for rectal cancer.

And overall, around 50%-60% of patients with a near-complete response can avoid surgery and preserve their rectum.
 

Selecting Patients for Watch-and-Wait

The key to deciding which patients are right for watch-and-wait is to understand how a near-complete clinical response was defined in the OPRA trial, a landmark randomized trial led by Dr. Garcia-Aguilar that helped establish watch-and-wait as an option in rectal cancer.

OPRA defined a near-complete response as no visible tumor but, in the tumor bed, mild erythema, superficial ulceration, minor mucosal abnormality or small nodules, and an irregular mucosa. The criteria also included no palpable tumor with smooth induration or a minor mucosal abnormality on the digital rectal exam.

The National Comprehensive Cancer Network mirrored the definition when, for the first time, it recommended watch-and-wait as an option for near-complete response in its 2023 rectal cancer guidelines. The group also added a few MRI requirements.

UCSF offers the watch-and-wait option to some patients with near-complete responses, but each decision is made on a case-by-case basis by a tumor board considering numerous measures of tumor aggressiveness.

Even then, “we have, in many cases, struggled to figure out what the right choices are,” Dr. Venook said.

For those chosen for watch-and-wait, Dr. Venook noted that UCSF has top-notch surgeons, radiation oncologists, medical oncologists, and pathologists who have the resources to follow patients closely.

For community practices without the resources of a major cancer center, watch-and-wait for near-complete response to rectal cancer “is really asking a lot,” Dr. Venook said.

Dr. Garcia-Aguilar, a colorectal surgeon at Memorial Sloan Kettering Cancer Center in New York City, explained that after years of studying the issue, he is comfortable with watch-and-wait in near-complete responders as long as it’s done carefully and in patients who will comply with ongoing surveillance.

Dr. Garcia-Aguilar explained that, after diagnosing a near-complete response 8 weeks following total neoadjuvant therapy, the patient needs to come back 6 weeks later. At that point, it’s time to assess whether that near-complete response is evolving into a complete response or not evolving into a complete response.

If it’s evolving into a complete response, surveillance continues about every 8 weeks, but if the tumor has stopped responding, “you take [the patient] to the operating room,” Dr. Garcia-Aguilar said.

As for the bigger safety concern — that near clinical complete response tumors will metastasize — Dr. Garcia-Aguilar’s opinion is that micrometastases are probably already there when the rectal cancer is first diagnosed and will manifest themselves “no matter what happens to the primary tumor.”

Because of that, he noted, “I don’t think the risk is very high” when surgery is delayed a few months to give near-complete response patients a chance to keep their rectum.

The way to answer the metastasis question is to do a randomized trial pitting surgery against watch-and-wait in patients with near-clinical complete response rectal cancer.

However, Dr. Garcia-Aguilar doesn’t think that trial will ever happen. Patients won’t allow themselves to be randomized to surgery once they find out they might be able to avoid a permanent ostomy, he said.

Dr. Venook had no disclosures. Dr. Garcia-Aguilar reported personal fees from Medtronic, Johnson & Johnson, and Intuitive Surgical.
 

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Having an ostomy is a dreaded prospect for many patients with rectal cancer.

To defer, and potentially avoid, this life-altering surgery, the watch-and-wait approach has become increasingly common among patients with locally advanced disease who have a complete response to neoadjuvant chemoradiation.

About 80% of these patients who have a complete clinical response — a perfectly healed scar where the tumor used to be and other favorable features — can forgo total mesorectal excision and preserve their rectum.

The success of watch-and-wait among complete responders has led some centers to offer the approach in patients with near-complete responses to neoadjuvant chemoradiation.

But watch-and-wait for near-complete clinical responders “is very controversial,” Alan P. Venook, MD, a gastrointestinal oncologist at the University of California, San Francisco (UCSF), told this news organization.

“You sure as hell don’t want to miss a chance to cure a patient,” Dr. Venook said.

A near-complete clinical response essentially means there is no sign of the tumor 8 weeks after total neoadjuvant therapy, but the tumor bed hasn’t completely healed.

The goal of watch-and-wait in this scenario is to give near-complete response lesions time to become complete responses.

But there’s no clear way to predict which tumors will evolve into a clinical complete response.

Recent studies evaluating the conversion rate have reported that anywhere from 39% to about 90% of near-complete responders became complete responders. Some of the variation likely comes down to differences in the clinical stage of patients evaluated in each study as well as the limited number of patients who achieve a near-complete response overall.

Other concerns have emerged that waiting for near-complete responses to become complete leaves extra time for some tumors to metastasize and that tumor regrowth is much higher compared with complete responders.

A recent study found that 13% of near-complete responders who preserved their rectum on watch-and-wait developed distant metastases vs about 5% of long-term complete responders. The study also found that just over half of near-complete responders have tumor regrowth compared with about one in five complete responders.

But even with regrowth, “surgery is still curative,” explained Julio Garcia-Aguilar, MD, PhD, a pioneer of watch-and-wait for rectal cancer.

And overall, around 50%-60% of patients with a near-complete response can avoid surgery and preserve their rectum.
 

Selecting Patients for Watch-and-Wait

The key to deciding which patients are right for watch-and-wait is to understand how a near-complete clinical response was defined in the OPRA trial, a landmark randomized trial led by Dr. Garcia-Aguilar that helped establish watch-and-wait as an option in rectal cancer.

OPRA defined a near-complete response as no visible tumor but, in the tumor bed, mild erythema, superficial ulceration, minor mucosal abnormality or small nodules, and an irregular mucosa. The criteria also included no palpable tumor with smooth induration or a minor mucosal abnormality on the digital rectal exam.

The National Comprehensive Cancer Network mirrored the definition when, for the first time, it recommended watch-and-wait as an option for near-complete response in its 2023 rectal cancer guidelines. The group also added a few MRI requirements.

UCSF offers the watch-and-wait option to some patients with near-complete responses, but each decision is made on a case-by-case basis by a tumor board considering numerous measures of tumor aggressiveness.

Even then, “we have, in many cases, struggled to figure out what the right choices are,” Dr. Venook said.

For those chosen for watch-and-wait, Dr. Venook noted that UCSF has top-notch surgeons, radiation oncologists, medical oncologists, and pathologists who have the resources to follow patients closely.

For community practices without the resources of a major cancer center, watch-and-wait for near-complete response to rectal cancer “is really asking a lot,” Dr. Venook said.

Dr. Garcia-Aguilar, a colorectal surgeon at Memorial Sloan Kettering Cancer Center in New York City, explained that after years of studying the issue, he is comfortable with watch-and-wait in near-complete responders as long as it’s done carefully and in patients who will comply with ongoing surveillance.

Dr. Garcia-Aguilar explained that, after diagnosing a near-complete response 8 weeks following total neoadjuvant therapy, the patient needs to come back 6 weeks later. At that point, it’s time to assess whether that near-complete response is evolving into a complete response or not evolving into a complete response.

If it’s evolving into a complete response, surveillance continues about every 8 weeks, but if the tumor has stopped responding, “you take [the patient] to the operating room,” Dr. Garcia-Aguilar said.

As for the bigger safety concern — that near clinical complete response tumors will metastasize — Dr. Garcia-Aguilar’s opinion is that micrometastases are probably already there when the rectal cancer is first diagnosed and will manifest themselves “no matter what happens to the primary tumor.”

Because of that, he noted, “I don’t think the risk is very high” when surgery is delayed a few months to give near-complete response patients a chance to keep their rectum.

The way to answer the metastasis question is to do a randomized trial pitting surgery against watch-and-wait in patients with near-clinical complete response rectal cancer.

However, Dr. Garcia-Aguilar doesn’t think that trial will ever happen. Patients won’t allow themselves to be randomized to surgery once they find out they might be able to avoid a permanent ostomy, he said.

Dr. Venook had no disclosures. Dr. Garcia-Aguilar reported personal fees from Medtronic, Johnson & Johnson, and Intuitive Surgical.
 

A version of this article first appeared on Medscape.com.

Having an ostomy is a dreaded prospect for many patients with rectal cancer.

To defer, and potentially avoid, this life-altering surgery, the watch-and-wait approach has become increasingly common among patients with locally advanced disease who have a complete response to neoadjuvant chemoradiation.

About 80% of these patients who have a complete clinical response — a perfectly healed scar where the tumor used to be and other favorable features — can forgo total mesorectal excision and preserve their rectum.

The success of watch-and-wait among complete responders has led some centers to offer the approach in patients with near-complete responses to neoadjuvant chemoradiation.

But watch-and-wait for near-complete clinical responders “is very controversial,” Alan P. Venook, MD, a gastrointestinal oncologist at the University of California, San Francisco (UCSF), told this news organization.

“You sure as hell don’t want to miss a chance to cure a patient,” Dr. Venook said.

A near-complete clinical response essentially means there is no sign of the tumor 8 weeks after total neoadjuvant therapy, but the tumor bed hasn’t completely healed.

The goal of watch-and-wait in this scenario is to give near-complete response lesions time to become complete responses.

But there’s no clear way to predict which tumors will evolve into a clinical complete response.

Recent studies evaluating the conversion rate have reported that anywhere from 39% to about 90% of near-complete responders became complete responders. Some of the variation likely comes down to differences in the clinical stage of patients evaluated in each study as well as the limited number of patients who achieve a near-complete response overall.

Other concerns have emerged that waiting for near-complete responses to become complete leaves extra time for some tumors to metastasize and that tumor regrowth is much higher compared with complete responders.

A recent study found that 13% of near-complete responders who preserved their rectum on watch-and-wait developed distant metastases vs about 5% of long-term complete responders. The study also found that just over half of near-complete responders have tumor regrowth compared with about one in five complete responders.

But even with regrowth, “surgery is still curative,” explained Julio Garcia-Aguilar, MD, PhD, a pioneer of watch-and-wait for rectal cancer.

And overall, around 50%-60% of patients with a near-complete response can avoid surgery and preserve their rectum.
 

Selecting Patients for Watch-and-Wait

The key to deciding which patients are right for watch-and-wait is to understand how a near-complete clinical response was defined in the OPRA trial, a landmark randomized trial led by Dr. Garcia-Aguilar that helped establish watch-and-wait as an option in rectal cancer.

OPRA defined a near-complete response as no visible tumor but, in the tumor bed, mild erythema, superficial ulceration, minor mucosal abnormality or small nodules, and an irregular mucosa. The criteria also included no palpable tumor with smooth induration or a minor mucosal abnormality on the digital rectal exam.

The National Comprehensive Cancer Network mirrored the definition when, for the first time, it recommended watch-and-wait as an option for near-complete response in its 2023 rectal cancer guidelines. The group also added a few MRI requirements.

UCSF offers the watch-and-wait option to some patients with near-complete responses, but each decision is made on a case-by-case basis by a tumor board considering numerous measures of tumor aggressiveness.

Even then, “we have, in many cases, struggled to figure out what the right choices are,” Dr. Venook said.

For those chosen for watch-and-wait, Dr. Venook noted that UCSF has top-notch surgeons, radiation oncologists, medical oncologists, and pathologists who have the resources to follow patients closely.

For community practices without the resources of a major cancer center, watch-and-wait for near-complete response to rectal cancer “is really asking a lot,” Dr. Venook said.

Dr. Garcia-Aguilar, a colorectal surgeon at Memorial Sloan Kettering Cancer Center in New York City, explained that after years of studying the issue, he is comfortable with watch-and-wait in near-complete responders as long as it’s done carefully and in patients who will comply with ongoing surveillance.

Dr. Garcia-Aguilar explained that, after diagnosing a near-complete response 8 weeks following total neoadjuvant therapy, the patient needs to come back 6 weeks later. At that point, it’s time to assess whether that near-complete response is evolving into a complete response or not evolving into a complete response.

If it’s evolving into a complete response, surveillance continues about every 8 weeks, but if the tumor has stopped responding, “you take [the patient] to the operating room,” Dr. Garcia-Aguilar said.

As for the bigger safety concern — that near clinical complete response tumors will metastasize — Dr. Garcia-Aguilar’s opinion is that micrometastases are probably already there when the rectal cancer is first diagnosed and will manifest themselves “no matter what happens to the primary tumor.”

Because of that, he noted, “I don’t think the risk is very high” when surgery is delayed a few months to give near-complete response patients a chance to keep their rectum.

The way to answer the metastasis question is to do a randomized trial pitting surgery against watch-and-wait in patients with near-clinical complete response rectal cancer.

However, Dr. Garcia-Aguilar doesn’t think that trial will ever happen. Patients won’t allow themselves to be randomized to surgery once they find out they might be able to avoid a permanent ostomy, he said.

Dr. Venook had no disclosures. Dr. Garcia-Aguilar reported personal fees from Medtronic, Johnson & Johnson, and Intuitive Surgical.
 

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article