Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
Triple therapy in hospitalized patients: Facts and controversies

Dual antiplatelet therapy (DAPT) (aspirin plus a thienopyridine: clopidogrel or prasugrel) has become the standard treatment for patients with acute coronary syndromes (ACS) and after coronary stent placement (Table 1). Anticoagulant therapy with warfarin is indicated for stroke prevention in atrial fibrillation (AF), profound left ventricular dysfunction, and after mechanical heart valve replacement, as well as for treatment of deep venous thrombosis and pulmonary embolism (Table 2). It is estimated that 41% of the U.S. population over age 40 years is on some form of antiplatelet therapy,6 and 2.5 million patients, mostly elderly, are on long‐term warfarin therapy.7 More specifically, 5% of patients undergoing percutaneous coronary interventions (PCIs) also have an indication for warfarin.8 With widespread use of drug‐eluting stents (DES), the need for a longer duration of DAPT, and the increased age and complexity of hospitalized patients, the safety and challenges of triple therapy (combined DAPT and warfarin) have become more important to the practice of hospital medicine. Triple therapy may increase hospitalization rates, as the risk of major bleeding is four to five times higher than with DAPT.911 In contrast, DAPT is much less effective than warfarin alone in preventing embolic events in AF,12 and warfarin alone or in combination with aspirin (ASA) is inadequate therapy to prevent stent thrombosis. Even fewer data exist on the efficacy and safety of triple therapy in patients with mechanical valves or left ventricular dysfunction.

ACC/AHA/SCAI Recommendations for the Use of DAPT After PCI and UA/NSTEMIa
Class Recommendations Level of Evidence
  • Abbreviations: ACC/AHA/SCAI, The American College of Cardiology/American Heart Association/ Society for Cardiac Angiography and Interventions; DAPT, dual antiplatelet therapy; PCI, percutaneous coronary intervention; UA/NSTEMI, unstable angina/nonST‐elevation myocardial infarction; ASA, aspirin; BMS, bare metal stents; DES, drug eluting stents; ACS, acute coronary syndrome.

  • Superscript numbers refer to references.

  • Class I: conditions for which there is evidence for and/or general agreement that a given procedure or treatment is beneficial, useful, and effective.

  • Class II: conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.

  • Class IIa: weight of evidence/opinion is in favor of usefulness/efficacy; Class IIb, usefulness/efficacy is less well established by evidence/opinion.

  • Class III: conditions for which there is evidence and/or general agreement that a procedure/treatment is not useful/effective and in some cases may be harmful.

  • Level of evidence A: data derived from multiple randomized clinical trials or meta‐analyses.

  • Level of evidence B: data derived from a single randomized trial or nonrandomized studies.

  • Level of evidence C: only consensus opinion of experts, case studies, or standard‐of‐care.

DAPT after PCI/stenting1
ASA
Class I ASA 325 mg/d after PCI for 1 mo (up to 6 mo depending on type of stent implanted) and then 7562 mg/d indefinitely B
Class IIa ASA 75‐325 mg/d indefinitely after brachytherapy unless risk of bleeding is significant C
In patients at risk of bleeding, a lower dose of 75‐162 mg/d is reasonable after stent implantation C
Thienopyridine
Class I Clopidogrel 75 mg/d after BMS for at least 1 mo and ideally up to 12 mo unless increased risk of bleeding (at least 2 wk) B
Clopidogrel 75 mg/d after DES for at least 12 mo if not at high risk for bleeding B
2009 focus update2: Clopidogrel 75 mg daily or prasugrel 10 mg daily for at least 12 mo after BMS or DES for ACS B
Class IIa Clopidogrel 75 mg/d indefinitely after brachytherapy unless risk of bleeding is significant C
Class IIb In patients with potential for lethal or catastrophic stent thrombosis, consider platelet aggregation studies and increase clopidogrel dose to 150 mg/d if <50% inhibition of platelet aggregation is seen C
Continuation of clopidogrel 75 mg/day beyond 12 mo is reasonable after DES C
2009 focus update2: consider continuation of clopidogrel or prasugrel beyond 15 mo after DES placement C
DAPT for UA/NSTEMI without stenting3
ASA
Class I Continue ASA (75 to 162 mg/d) indefinitely A
Clopidogrel
Class 1 Clopidogrel (75 mg/d) for at least 1 mo (A) and ideally for up to 1 y B
Dipyridamole
Class III Dipyridamole is not recommended because it has not been shown to be effective A
Risk of Thromboembolic Events per Year for Patients With Atrial Fibrillation or Mechanical Valvea
  • Abbreviation: CHADS2, congestive heart failure, hypertension, age, diabetes, prior stroke or transient ischemic attack; ASA, aspirin.

  • Superscript numbers refer to references.

  • The risk of thromboembolic events are highest for caged ball valves, followed by tilting disc valves, followed by bileaflet valves.

  • This category includes all reported valve thrombosis, major embolism, and minor embolism.

Condition Risk (%)
Atrial fibrillation (without anticoagulation)4
Low‐risk atrial fibrillation (CHADS2 score 0) 1.9
Intermediate‐risk atrial fibrillation (CHADS2 score 1) 2.8
High‐risk atrial fibrillation (CHADS2 score 2‐6) 418
Mechanical heart valve5b
Mechanical heart valve (without anticoagulation) 8.6c
Mechanical heart valve (treated with ASA alone) 7.5c
Mechanical heart valve (treated with warfarin) 1.8c
Mechanical aortic valve (treated with warfarin) 1.1c
Mechanical mitral valve (treated with warfarin) 2.7c

Hospitalists commonly care for patients on triple therapy; certain indications are appropriate and supported from the available literature while others lack evidence. Knowledge of existing practice guidelines and of supporting research studies leads to optimal management of these complicated patients, and minimizes excessive morbidity from bleeding complications or thromboembolic events such as strokes and stent thrombosis.

In the first part of this article, we present the evidence that supports current recommendations for DAPT or warfarin in specific medical conditions. We also address controversies and unanswered questions. The second part of this review focuses on the available data and provides guidance on the optimal care of patients on triple therapy.

Dual Antiplatelet Therapy Following Acute Coronary Syndromes

Table 3 summarizes key randomized trials of DAPT versus ASA alone in several clinical scenarios. The addition of clopidogrel to ASA in patients with nonST‐elevation ACS reduced the risk of adverse ischemic outcomes in the clopidogrel in unstable angina to prevent recurrent events (CURE) trial,15 as well as in its substudy, the PCI‐CURE (patients with ACS who have undergone stenting).17 In the main CURE study, the study groups diverged within the first 30 days after randomization and the benefit of DAPT persisted throughout the 12 months of the study period. DAPT is also superior to ASA in patients with ST‐elevation myocardial infarction (MI) (CLARITYTIMI 28 and COMMIT trials).13, 14 On the basis of these findings, DAPT has become the standard of care for patients with ACS. The American College of Cardiology (ACC)/American Heart Association (AHA)3 and the European Society of Cardiology18 recommend ASA treatment indefinitely for patients with ACS whether or not they underwent PCI. Clopidogrel is recommended for at least 12 months following ACS, especially for patients who receive a coronary stent.

Randomized Clinical Trials of Dual Antiplatelet Therapy With Clopidogrel Plus Aspirin Versus Aspirin Alonea
Trial Endpoints Results
  • Abbreviations: MI, myocardial infarction; CLARITYTIMI 28, Clopidogrel as Adjunctive Reperfusion TherapyThrombolysis in Myocardial Infarction; CI, confidence interval; COMMIT, Clopidogrel and Metoprolol in Myocardial Infarction; ACS, acute coronary syndromes; CURE, Clopidogrel in Unstable Angina to Prevent Recurrent Events; RR, relative risk; CREDO, Clopidogrel for the Reduction of Events During Observation; PCICURE, Analysis of CURE patients who underwent a percutaneous coronary intervention; TVR, target vessel revascularization.

  • Superscript numbers refer to references.

ST elevation MI
CLARITY‐TIMI13 Incidence of death, infarct‐related artery occlusion, or recurrent MI 36% reduction (95% CI 2447); P < .001
COMMIT14 Incidence of death, MI, or stroke 9% reduction (95% CI 314); P < .002
ACS without ST elevation
CURE15 Incidence of death, MI, or stroke 20% reduction (RR 0.80 [0.720.90]); P < .001
Bare‐metal stent placement
CREDO16 Incidence of death, MI, or stroke 27% reduction (95% CI 3.944.4); P < .02
PCI‐CURE17 Incidence of death, MI, or urgent TVR 30% reduction (RR 0.70 [0.500.97]); P < .03

Despite the proven efficacy of DAPT in ACS, about 15% of patients die or experience reinfarction within 30 days of diagnosis.19 The continued risk for thrombotic events could be due to delayed onset of platelet inhibition and to patient heterogeneity in responsiveness to therapy with ASA and/or clopidogrel.20 Consequently, the optimum dose for clopidogrel and ASA following ACS is uncertain. The CURRENT‐OASIS 7 trial evaluated the efficacy and safety of high‐dose clopidogrel (600‐mg loading dose, 150 mg once daily for 7 days, followed by 75 mg/d) versus standard‐dose clopidogrel (300‐mg loading dose, followed by 75 mg/d) and ASA (75‐100 mg versus 300‐325 mg/d) in patients with ACS who were treated medically, with or without stenting.21 In the overall study population as well as in patients who did not receive stenting, there was no significant difference in the combined rate of death from cardiovascular causes, MI, and stroke between patients receiving the high‐dose and the standard‐dose clopidogrel (4.2% vs 4.4%; P = .37) and high‐dose versus low‐dose ASA (4.2% vs 4.4%; P = .47). There were no significant differences in bleeding complications between the two clopidogrel treatment arms or between the high‐dose and low‐dose ASA groups.

The ACC/AHA guidelines recommend ASA, 75‐162 mg/d indefinitely after medical therapy without stenting (class I, level of evidence: A)3 and clopidogrel 75 mg/d for at least 1 month (class IA) and optimally for 1 year (class IB). Clopidogrel monotherapy is appropriate for patients with ACS who are unable to tolerate ASA due to either hypersensitivity or recent significant gastrointestinal bleeding.

As is the case after coronary stenting, interruption of DAPT soon after ACS may subject patients to high recurrence of cardiovascular events, although few data are available to support this observation. Interruption of DAPT due to bleeding complications or surgical procedures more than 1 month after ACS may be reasonable for a patient who did not receive a stent. Clinicians should restart DAPT after the surgical procedure once the bleeding risk becomes acceptable.

Dual Antiplatelet Therapy Following Coronary Stenting

Following Bare Metal Stents

Stent thrombosis occurs in approximately 20% of patients who receive bare metal stents (BMS) without DAPT22; the risk is highest in the first 30 days after implantation. The clinical presentation of stent thrombosis is often catastrophic: MI or sudden death occurs in over 60% of cases. DAPT reduces the incidence of stent thrombosis to a clinically acceptable level.22

In the ISAR trial of 517 patients treated with BMS for MI, suboptimal angioplasty, or other high‐risk clinical and anatomic features,23 patients were randomly assigned to treatment with ASA plus ticlopidine or ASA plus anticoagulation with heparin and warfarin. The primary endpoint of cardiac death, MI, coronary bypass surgery, or repeat angioplasty occurred in 1.5% of patients assigned to DAPT and 6.2% of those assigned to anticoagulant therapy (relative risk [RR], 0.25; 95% confidence interval [CI], 0.06‐0.77). The PCI‐CURE study evaluated patients who received BMS after ACS.17 The primary endpoint was a composite of cardiovascular death, MI, or urgent target‐vessel revascularization within 30 days of PCI. Long‐term administration of clopidogrel (8 months) conferred a lower rate of cardiovascular death, MI, or any revascularization (P = .03), with no significant difference in major bleeding between the groups (P = .64). In the CREDO trial,16 investigators evaluated 2116 patients undergoing PCI at 99 North American centers. Subjects received either a 300‐mg loading dose of clopidogrel or placebo 3‐24 hours before PCI. All patients then received clopidogrel 75 mg/d through day 28. For the following 12 months, patients in the loading dose group received clopidogrel, and those in the control group received placebo. All patients received ASA throughout the study. At 1 year, loading dose plus long‐term clopidogrel therapy conferred a 27% RR reduction (3% absolute risk reduction) in the combined endpoint of death, MI, or stroke (P = .02).

Based on these trials, the ACC and AHA recommend clopidogrel (75 mg/d) for a minimum of 1 month and optimally 12 months after BMS (class 1B).2 For patients at increased risk of bleeding, the ACC/AHA recommends a minimum of 2 weeks of clopidogrel. Although lifelong therapy with ASA is recommended, the optimal dose of ASA after BMS is unknown. However, on the basis of clinical trial protocols (no randomized data), guidelines recommend ASA 162 mg‐325 mg/d for at least 1 month, followed by indefinite use at a dose of 75‐162 mg. In patients for whom there is concern about bleeding, lower doses of ASA (75‐162 mg) are acceptable for the initial period after stent implantation.

Following Drug‐Eluting Stents

Drug‐eluting stents have become the standard percutaneous treatment for patients with symptomatic coronary artery disease. In 2005, a sampling of 140 US hospitals indicated that 94% of patients treated with a stent received at least one DES.24 Compared with BMS, restenosis and the need for revascularization are significantly less frequent. In contrast, unanticipated high rates of very late (>1 year) stent thrombosis have complicated DES.25 Because of the potentially lethal consequences of stent thrombosis, several authors have questioned the long‐term safety of DES2635 and examined the role of extended DAPT in reducing this delayed complication.27, 31, 36 Although the initial pivotal randomized trials of DES mandated clopidogrel use for only 3 months after sirolimus‐eluting stent and 6 months after paclitaxel‐eluting stent,37, 38 current guidelines recommend DAPT for at least 12 months after DES placement for patients who are not at high risk of bleeding.1

Although multiple studies have confirmed the benefit of DAPT, controversy remains regarding the extended use for more than 1 year. The only randomized trial that addressed this issue was nonblinded and underpowered.39 In this study of patients from two ongoing trials, the REAL‐LATE and ZEST‐LATE, extended duration DAPT (>12 months, median duration 19.2 months), did not reduce the incidence of MI and cardiac death.39 The rate of the primary endpoint was less than 25% of that expected (underpowered), and patients had already received clopidogrel for up to 24 months before enrollment.

The results from small, nonrandomized trials regarding this issue have been contradictory. Banerjee and colleagues studied 530 consecutive patients who underwent PCI (85% received a DES), were free of cardiovascular events for 6 months after PCI, and had follow‐up available for >12 months.26 In a multivariate analysis, clopidogrel use for 1 year was associated with lower mortality (hazard ratio [HR], 0.28; 95% CI, 0.140.59); this effect was independent of traditional cardiovascular risk factors, clinical presentation, and DES use. In a study at the Duke Heart Center40 among patients with DES (n = 528) who were event‐free at 12 months, continued clopidogrel use conferred lower rates of death (0% versus 3.5%; difference, 3.5%; 95% CI, 5.9% to 1.1%; P = .004) and death or MI (0% versus 4.5%; difference, 4.5%; 95% CI, 7.1% to 1.9%; P < .001) at 24 months. In the TYCOON registry,35 patients with DES receiving clopidogrel for 2 years had a rate of stent thrombosis (0.4%) that was similar to those with BMS (0.7%) but significantly lower than patients with DES and 1‐year DAPT (2.9%).

In contrast, Roy and colleagues33 found that clopidogrel cessation at 12 months did not predict stent thrombosis, and Park and colleagues32 reported that clopidogrel continuation beyond 1 year did not appear to decrease stent thrombosis or clinical events after DES implantation. Similarly, Stone et al.34 performed a landmark analysis on the basis of the prospective, double‐blind TAXUS‐II SR, TAXUS‐IV, and TAXUS‐V trials. The authors found that thienopyridine use beyond 1 year after DES may reduce stent thrombosis over the subsequent 12‐month period, but did not reduce rates of death and MI at 2 and 5 years after either DES or BMS.

Current guidelines recommend ASA 162‐325 mg/d for at least 3‐6 months, followed by treatment indefinitely at a dose of 75‐162 mg daily. Clopidogrel, on the other hand, is given at 75 mg/d for at least 12 months.

Warfarin After Acute Coronary Syndromes

Warfarin with different international normalized ratio (INR) goals alone or in combination with ASA has been evaluated after ACS. In an early trial, patients with recent (mean interval 27 days) MI were treated with warfarin alone versus placebo.41 Warfarin conferred a relative risk reduction in mortality of 24% (95% CI, 4‐44%; P = .027) at the expense of major bleeding rates of 0.6%/y. In the ASPECT trial,42 moderate to high intensity anticoagulation after MI resulted in a 53% and 40% reduction in the relative risk of reinfarction (annual incidence 2.3% versus 5.1%) and cerebrovascular events (annual incidence 0.7% versus 1.2%), respectively. In the WARIS II43 and ASPECT‐244 trials, moderate intensity warfarin (INR 2.0‐2.5) in combination with low‐dose ASA, compared with ASA alone, reduced the composite occurrence of death or nonfatal reinfarction, as well as recurrent coronary occlusion after ST‐segment elevation MI. High‐intensity warfarin therapy alone (INR 3.0‐4.0 for ASPECT, 2.8‐4.2 for WARISII) reduced ischemic vascular events compared with ASA alone. Not unexpectedly, major bleeding episodes were more common among patients receiving warfarin.

No randomized trials have compared DAPT with warfarin plus ASA for patients with ACS who did not receive stents. The ACC/AHA guidelines recommend warfarin for secondary prevention following ACS (class IIb). High‐intensity warfarin alone (INR 2.5‐3.5) or moderate intensity (INR 2.0‐2.5) with low‐dose ASA (75‐81 mg/d) may be reasonable for patients at high ischemic and low bleeding risk who are intolerant of clopidogrel (level of evidence: B). Fixed dose warfarin is not recommended by the ACC/AHA primarily on the basis of the Coumadin Aspirin Reinfarction Study (CARS) results. This study of patients following MI was discontinued prematurely because of a lack of incremental benefit of reduced‐dose ASA (80 mg/d) combined with either 1 or 3 mg of warfarin daily when compared with 160 mg/d of ASA alone.

Triple Therapy for PCI and Atrial Fibrillation

AF is the most frequent indication (70%) for long‐term therapy with warfarin in patients scheduled for stent placement.10 Clinical trials have shown that warfarin alone is superior to ASA, clopidogrel, or DAPT for prevention of stroke in patients with AF.45, 46 Although warfarin is indispensable in these settings, DAPT is similarly necessary after stent implantation. As triple therapy increases the risk of bleeding, the management of patients with AF and who have received stents remains controversial. This situation is particularly problematic among patients who have received DES and may benefit from extended DAPT. No randomized trials exist to clarify the optimal treatment in these patients; and the feasibility of such studies is questionable. Small, mostly retrospective, studies (Table 4) provide limited guidance on this issue; most studies focus on bleeding events rather than the cardiovascular efficacy of triple therapy. Because of these limitations, cardiovascular societies give IIb recommendation for either triple therapy or the combination of warfarin and clopidogrel in this setting and the level of evidence is C.1, 59, 60

Studies of Triple Therapy for Patients With Atrial Fibrillation and Coronary Stents
Author Year Type No. Major Bleeding, % (range) Thrombotic Events Comments
  • Abbreviations: Obs, observational; Pros, prospective; INR, international normalized ratio; GI, gastrointestinal; TT, triple therapy; PCI, percutaneous coronary intervention; MI, myocardial infarction; DAPT, dual antiplatelet therapy; ASA, aspirin; OR, odds ratio; BMI, body mass index; DM, diabetes mellitus; MACE, major adverse cardiovascular events; MACCE, major adverse cardiac and cerebral events; WAA, warfarin plus single antiplatelet agent; EB, early bleeding; LB, late (>48‐h) bleeding.

  • Transfusions.

  • Dual antiplatelet therapy vs triple therapy.

  • Warfarin versus nonwarfarin.

  • Triple therapy versus nontriple therapy.

  • Triple therapy versus dual antiplatelet therapy vs warfarin and single antiplatelet agent.

Studies of one group (triple therapy group)
Orford et al.47 2004 Obs 66 4.5 (0.211.2) N/A Bleeding occurred only with suboptimal control of INR and/or pre‐existing GI disease.
Porter et al.48 2006 Obs 180 1.6 (0.04.2) N/A Bleeding rates were acceptable with short‐term TT after PCI.
Rubboli et al.49 2007 Obs 49 18 (4.436.9) N/A Most hemorrhages occurred during TT.
Rogacka et al.50 2008 Obs 127 4.7 N/A One‐half of bleeding episodes were lethal and 67% occurred within the first month.
Studies comparing triple therapy with dual antiplatelet therapy
Mattichak et al.51 2005 Obs 82 21 vs. 3.5 (P = .028)a Reinfarction (29% vs. 9%, P = .15) TT did not reduce reinfarction after stenting for MI but increased rates of GI bleeding and transfusions.
Khurram et al.11 2006 Matched cohort 214 6.6 vs. 0 (P = .03) N/A Higher bleeding rates for TT than DAPT. INR range or ASA dosage did not influence the bleeding risk.
DeEugenio et al.9 2007 Matched cohort 194 OR 5.0 (1.417.8, P = .012) N/A ASA dose, age, sex, BMI, DM, hypertension, and procedural anticoagulant type or use did not influence risk of major bleeding.
Ruiz‐Nodar et al.52 2008 Obs 426 14.9 vs. 9.0 (P = .19) Mortality: OR 3.43 (1.617.54, P = .002)b MACE: OR 4.9 (2.1711.1, P < .01)b TT was associated with a nonsignificant increase in major bleeding but lower all‐cause mortality and fewer MACE.
Sarafoff et al.53 2008 Prosp 515 1.4 vs. 3.1 (P = .34). MACCE: OR 0.76 (0.481.21, P = .25) No difference in MACCE or bleeding at 2 y. Stent thrombosis did not differ between groups.
Rossini et al.54 2008 Prosp 204 10.8 vs. 4.9 (P = .1) MACE: 5.8% vs. 4.9% (P = .7) INR was targeted to the lower range (2.0‐2.5). No significant difference in bleeding rates for TT versus DAPT at 18 mo. Less bleeding for patients whose INR was within target (4.9 versus 33%, P = .00019). No significant differences in MACE between groups.
Uchida et al.55 2010 Obs 575 18 vs. 2.7 (P < .001) MACE (P = .108) No differences in MACE rates. More bleeding for patients on TT.
Studies comparing triple therapy versus dual antiplatelet therapy versus wararin and single antiplatelet agent
Karjalainen et al.10 2007 Matched cohort 239 OR 3.3 (1.38.6, P = .014)c MACE: OR 1.7 (1.0‐3.0, P = 0.05)c This study compared patients on warfarin at baseline with those not on warfarinall undergoing stenting. Patients on warfarin at baseline were treated with a variety of strategies. Baseline warfarin use increased both major bleeding and MACE at 1 y. ASA plus warfarin was inadequate to prevent stent thrombosis, and premature warfarin cessation was associated with stroke.
Manzano‐Fernandez et al.56 2008 Obs 104 EB (5.8 vs. 11.3, P = .33) LB (21.6 vs. 3.8, P = .006)d MACE: 25.5% vs. 21.0% (P = .53)d No difference in MACE rates between TT and non‐TT (WAA or DAPT). TT conferred higher late bleeding (>48 h).
Gao et al.57 2010 Prosp 622 2.9 vs. 1.8 vs. 2.5 (P = .725)e MACCE: 8.8% vs. 20.1% vs. 14.9% (P = .010)e Target INR was set as 1.8‐2.5. Lower stroke and MACCE rates for TT as compared with DAPT or WAA; no difference in bleeding.
Studies comparing triple therapy with warfarin and single antiplatelet agent
Nguyen et al.58 2007 Obs 800 5.9 vs. 46 (P = .46) Death: 5.1% vs. 6.5% (P = .47) Stroke: 0.7% vs. 3.4% (P = .02) MI: 3.3% vs. 4.5% (P = .49) TT and WAA lead to similar 6‐mo bleeding, death, and MI. Fewer strokes with TT (caveat: low event rate).

In the largest study to date, Nguyen et al.58 evaluated 800 patients who underwent stenting for ACS and were discharged on warfarin plus single antiplatelet agent or triple therapy as part of the GRACE registry. At 6 months, triple therapy conferred a significant reduction in stroke (0.7% versus 3.4%, P = .02) but not in death or MI. There were no differences in in‐hospital major bleeding events between the two groups (5.9% versus 4.6%; P = .46). Similarly, Sarafoff et al.53 reported no significant differences in the combined endpoint (death, MI, stent thrombosis or stroke) or bleeding complications among patients who received triple therapy or DAPT at 2 years of follow‐up. In contrast, Ruiz‐Nodar et al.52 showed that triple therapy, compared with DAPT, at discharge reduced the incidence of death (17.8% versus 27.8%; adjusted HR = 3.43; 95% CI, 1.617.54; P = .002) and major adverse cardiac events (26.5% versus 38.7%; adjusted HR = 4.9; 95% CI, 2.1711.1; P = .01), without a substantial increase in major bleeding events.

The value of combination antiplatelet therapy to prevent stent thrombosis in these patients is clearer in the study reported by Karjalainen et al.10 This case‐control study of 239 patients receiving warfarin at baseline who underwent PCI evaluated a primary endpoint of death, MI, target‐vessel revascularization, or stent thrombosis and a secondary endpoint of major bleeding and stroke to 12 months of follow‐up. Forty‐eight percent of patients received triple therapy, whereas 15.5% were discharged on DAPT. The remaining patients received warfarin plus a single antiplatelet agent. Stent thrombosis occurred more frequently among patients receiving warfarin plus ASA (15.2%) than among those receiving triple therapy (1.9%). As expected, stroke was more frequent in patients treated with DAPT (8.8%) than among those receiving triple therapy (2.8%). Major bleeding was similar between groups. Therapy with warfarin was an independent predictor of both major bleeding and major cardiac events at 1 year. This observation illustrates that the outcome of PCI in patients on chronic warfarin therapy is unsatisfactory irrespective of the antithrombotic combinations used, highlighting the need for better strategies to treat these patients.

Choice of Therapy and Management of Patients Eligible for Triple Therapy

Current guidelines for PCI do not provide guidance for patients with an indication for triple therapy due to a paucity of published evidence. Several ongoing prospective trials aim to address the management of these patients (AFCAS, ISAR‐TRIPLE). Pending further study, clinicians should consider the embolic risk (CHADS2 score), target INR, type of stent, bleeding risk, and duration of treatment when determining the appropriate antiplatelet/anticoagulant combinations. The CHADS2 score (Table 2) stratifies the risk for stroke among patients with AF,4 while the Outpatient Bleeding Risk Index (OBRI) allows estimation of bleeding risk.12, 61 The OBRI considers age > 65 years, prior stroke, prior gastrointestinal bleeding, and any of four comorbidities (recent MI, anemia, diabetes, or renal insufficiency) in order to stratify patients into three risk groups.61 Patients with three to four risk factors have a high risk of bleeding (23% at 3 months and 48% at 12 months) whereas patients with no risk factors have only a 3% risk of bleeding at 12 months. Unfortunately, advanced age and prior stroke appear in both OBRI and CHADS.

For patients with AF who are at high risk for embolic stroke (>3% per year), we recommend triple therapy for the shortest time possible, followed by warfarin and ASA indefinitely. In case of BMS, it is acceptable to shorten triple therapy duration to 1 month. The optimal duration of triple therapy for patients with DES is uncertain; recommended durations range from 3 months to 1 year.62 If the potential consequences of stent thrombosis are high due to a large amount of myocardium at risk, an extended period of triple therapy might be justified. For patients whose stroke risk is lower (CHADS2 score of 0‐1), the risk for bleeding likely outweighs any benefit from stroke prevention. In this instance, it is reasonable to use DAPT with ASA and clopidogrel for 1 month after BMS and 12 months after DES, followed by ASA, with or without warfarin, indefinitely. In a recently published study, patients with AF and a CHADS2 score of 1 had a yearly stroke risk of 1.25% while taking DAPT63; the risk of major bleeding for triple therapy is 6.1% per year.64

For patients who have a high bleeding risk, BMS are the preferred stent type as the duration of triple therapy might be limited to 4 weeks. To our knowledge, no randomized study has evaluated the outcome of patients with BMS compared with DES who also have an indication for warfarin. Because studies have suggested that clopidogrel is more effective than aspirin in preventing stent thrombosis and in reducing death or MI after coronary stenting,40, 65 warfarin and single antiplatelet therapy with clopidogrel might be a reasonable treatment option in patients with high bleeding risk. The WOEST study (NCT00769938), currently recruiting participants, is the first randomized study specifically designed to test this hypothesis.

Since gastrointestinal bleeding accounts for approximately 30‐40% of hemorrhagic events in patients on combined ASA and anticoagulant therapy, an expert consensus document recommended concomitant treatment with proton pump inhibitors (PPIs) to reduce this risk.66 In contrast, the 2009 Focused Updates of the ACC/AHA/SCAI Guidelines did not recommend the use of PPIs with DAPT in the setting of ACS.2 This is because of studies that show inhibition of platelet activation,67 and potential clinical harm,68 when clopidogrel is combined with certain PPIs that inhibit the CYP2C19 enzyme. However, to date there are no convincing randomized clinical trial data documenting an important clinical drug‐drug interaction. The U.S. Food and Drug Administration (FDA) advises that physicians avoid the use of clopidogrel in patients with impaired CYP2C19 function due to known genetic variation or due to concomitant use of drugs that inhibit CYP2C19 activity. More specifically, the FDA recommends avoiding the use of omeprazole and esomeprazole in patients taking clopidogrel.69

In particular, elderly patients have an increased risk of bleeding while receiving triple therapy. In a study of patients over age 65, 2.5% were hospitalized for bleeding in the first year after PCI, and the use of triple therapy was the strongest predictor of bleeding (more than threefold increase).70 One in five patients suffered death or MI at 1 year after hospitalization for bleeding.70 The basis for poor outcomes after hospitalization for bleeding in this population is multifactorial and may be due to the location of bleeding, associated hypercoagulable state, potential adverse impact of blood transfusion, withdrawal of warfarin therapy in patients with AF and PCI, and the premature discontinuation of DAPT. The use of nonsteroidal anti‐inflammatory drugs (NSAIDs) is common among the elderly and conferred a doubling of bleeding risk.70 Limiting the use of NSAID, the use of low‐dose ASA beyond 30 days after stent implantation, greater use of BMS, and maintaining INR at the lowest possible level (INR of 22.5) will reduce the risk for bleeding.57, 71

New Anticoagulants

Due to the high risk for bleeding with warfarin and the challenges inherent in INR monitoring, researchers have developed several novel anticoagulants whose advantages include fixed daily dosing and no need for monitoring. Dabigatran is a direct oral thrombin inhibitor that is already licensed in Europe and Canada for thromboprophylaxis after hip or knee surgery. It has also been studied in patients with AF. In the RE‐LY trial, patients with AF who received dabigatran 110 mg daily had rates of stroke and systemic embolism that were similar to those with warfarin, as well as lower rates of major hemorrhage.72 The randomized ReDEEM trial, reported at the AHA 2009 Scientific Sessions, was aimed at finding a dosage of dabigatran that achieves a good balance between clinical effectiveness and bleeding risk when combined with aspirin and clopidogrel after acute MI. Dosages ranging from 50 mg twice daily to 150 mg twice daily were all associated with 6‐month rates of bleeding lower than 2%. Hospitalists should view these encouraging results cautiously until the publication of ReDEEM trial results in a peer‐reviewed journal.

A variety of oral Xa antagonists are also being evaluated in patients with AF or ACS. These trials offer insight into triple therapy regimens that include ASA, clopidogrel, and an Xa antagonist. In a recent study of the oral Xa antagonist rivaroxaban, investigators stratified 3491 subjects with ACS according to whether they received concomitant ASA alone or ASA and clopidogrel.73 Subjects receiving ASA plus rivaroxaban had a modest increase in bleeding. Triple therapy, however, increased the composite bleeding rate from 3.5% in the DAPT group to approximately 6‐15% (low‐dose or high‐dose rivaroxaban, respectively). Rivaroxaban is currently under review by the FDA.

These novel agents might eventually replace warfarin for many or most indications for anticoagulation. It is imperative that future research compare the efficacy and risk of bleeding between triple therapy using these new agents and triple therapy with warfarin.

Conclusions

The management of patients on long‐term anticoagulation who require DAPT because of ACS or coronary stenting is challenging. DAPT may safely substitute for warfarin only for patients at low risk for a thromboembolic event (ie, low‐risk AF with low CHADS2 score). Clinicians should not interrupt warfarin in patients at higher risk (ie, intermediate to high‐risk AF, mechanical valves, or recent venous thromboembolism), even in the presence of DAPT. In these patients, triple therapy is the optimal approach following coronary stenting (and possibly during the initial period after ACS without stenting). As this approach confers a fivefold increase in bleeding complications compared with DAPT, careful monitoring of the INR, the addition of PPIs, and the exclusion of elderly patients who are at the highest risk for bleeding complications74 is recommended. The preferred duration of triple therapy after BMS in patients who require long‐term anticoagulation is 1 month, whereas the optimal duration after ACS or DES remains unresolved.

Files
References
  1. King SB,Smith SC,Hirshfeld JW, et al.2007 Focused Update of the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention, Writing on Behalf of the 2005 Writing Committee.Circulation2008;117:261295.
  2. Kushner FG,Hand M,Smith SC, et al.2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST‐Elevation Myocardial Infarction (updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (updating the 2005 Guideline and 2007 Focused Update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.Circulation2009;120:22712306.
  3. Anderson JL,Adams CD,Antman EM, et al.ACC/AHA 2007 guidelines for the management of patients with unstable angina/non‐ST‐Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non‐ST‐Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine.J Am Coll Cardiol2007;50:e1e157.
  4. Gage BF,van Walraven C,Pearce L, et al.Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin.Circulation2004;110:22872292.
  5. Cannegieter SC,Rosendaal FR,Briet E.Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses.Circulation1994;89:635641.
  6. Pignone M,Anderson GK,Binns K,Tilson HH,Weisman SM.Aspirin use among adults aged 40 and older in the United States: results of a national survey.Am J Prev Med2007;32:403407.
  7. Douketis JD,Berger PB,Dunn AS, et al.The perioperative management of antithrombotic therapy: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th Edition).Chest2008;133:299S339S.
  8. Wang TY,Robinson LA,Ou FS, et al.Discharge antithrombotic strategies among patients with acute coronary syndrome previously on warfarin anticoagulation: physician practice in the CRUSADE registry.Am Heart J2008;155:361368.
  9. DeEugenio D,Kolman L,DeCaro M, et al.Risk of major bleeding with concomitant dual antiplatelet therapy after percutaneous coronary intervention in patients receiving long‐term warfarin therapy.Pharmacotherapy2007;27:691696.
  10. Karjalainen PP,Porela P,Ylitalo A, et al.Safety and efficacy of combined antiplatelet‐warfarin therapy after coronary stenting.Eur Heart J2007;28:726732.
  11. Khurram Z,Chou E,Minutello R, et al.Combination therapy with aspirin, clopidogrel and warfarin following coronary stenting is associated with a significant risk of bleeding.J Invasive Cardiol2006;18:162164.
  12. Shireman TI,Mahnken JD,Howard PA,Kresowik TF,Hou Q,Ellerbeck EF.Development of a contemporary bleeding risk model for elderly warfarin recipients.Chest2006;130:13901396.
  13. Sabatine MS,Cannon CP,Gibson CM, et al.Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST‐segment elevation.N Engl J Med2005;352:11791189.
  14. Chen ZM,Jiang LX,Chen YP, et al.Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo‐controlled trial.Lancet2005;366:16071621.
  15. Yusuf S,Zhao F,Mehta SR,Chrolavicius S,Tognoni G,Fox KK.Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST‐segment elevation.N Engl J Med2001;345:494502.
  16. Steinhubl SR,Berger PB,Mann JT, et al.Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial.JAMA2002;288:24112420.
  17. Mehta SR,Yusuf S,Peters RJ, et al.Effects of pretreatment with clopidogrel and aspirin followed by long‐term therapy in patients undergoing percutaneous coronary intervention: the PCI‐CURE study.Lancet2001;358:527533.
  18. Bassand JP,Hamm CW,Ardissino D, et al.Guidelines for the diagnosis and treatment of non‐ST‐segment elevation acute coronary syndromes.Eur Heart J2007;28:15981660.
  19. Turpie AG.Burden of disease: medical and economic impact of acute coronary syndromes.Am J Manag Care2006;12:S430S434.
  20. Serebruany VL,Steinhubl SR,Berger PB,Malinin AI,Bhatt DL,Topol EJ.Variability in platelet responsiveness to clopidogrel among 544 individuals.J Am Coll Cardiol2005;45:246251.
  21. Mehta SR,Bassand JP,Chrolavicius S, et al.Dose comparisons of clopidogrel and aspirin in acute coronary syndromes.N Engl J Med2010;363:930942.
  22. Leon MB,Baim DS,Popma JJ, et al.A clinical trial comparing three antithrombotic‐drug regimens after coronary‐artery stenting. Stent Anticoagulation Restenosis Study Investigators.N Engl J Med1998;339:16651671.
  23. Schomig A,Neumann FJ,Kastrati A, et al.A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary‐artery stents.N Engl J Med1996;334:10841089.
  24. Williams DO,Abbott JD,Kip KE.Outcomes of 6906 patients undergoing percutaneous coronary intervention in the era of drug‐eluting stents: report of the DEScover Registry.Circulation2006;114:21542162.
  25. Stone GW,Moses JW,Ellis SG, et al.Safety and efficacy of sirolimus‐ and paclitaxel‐eluting coronary stents.N Engl J Med2007;356:9981008.
  26. Banerjee S,Varghese C,Samuel J, et al.Comparison of the impact of short (<1 year) and long‐term (> or =1 year) clopidogrel use following percutaneous coronary intervention on mortality.Am J Cardiol2008;102:11591162.
  27. Camenzind E,Steg PG,Wijns W.Stent thrombosis late after implantation of first‐generation drug‐eluting stents: a cause for concern.Circulation2007;115:14401455; discussion 55.
  28. Daemen J,Wenaweser P,Tsuchida K, et al.Early and late coronary stent thrombosis of sirolimus‐eluting and paclitaxel‐eluting stents in routine clinical practice: data from a large two‐institutional cohort study.Lancet2007;369:667678.
  29. Kastrati A,Mehilli J,Pache J, et al.Analysis of 14 trials comparing sirolimus‐eluting stents with bare‐metal stents.N Engl J Med2007;356:10301039.
  30. Lagerqvist B,James SK,Stenestrand U,Lindback J,Nilsson T,Wallentin L.Long‐term outcomes with drug‐eluting stents versus bare‐metal stents in Sweden.N Engl J Med2007;356:10091019.
  31. Mauri L,Hsieh WH,Massaro JM,Ho KK,D'Agostino R,Cutlip DE.Stent thrombosis in randomized clinical trials of drug‐eluting stents.N Engl J Med2007;356:10201029.
  32. Park DW,Yun SC,Lee SW, et al.Stent thrombosis, clinical events, and influence of prolonged clopidogrel use after placement of drug‐eluting stent data from an observational cohort study of drug‐eluting versus bare‐metal stents.JACC Cardiovasc Interv2008;1:494503.
  33. Roy P,Bonello L,Torguson R, et al.Temporal relation between Clopidogrel cessation and stent thrombosis after drug‐eluting stent implantation.Am J Cardiol2009;103:801805.
  34. Stone GW,Ellis SG,Colombo A, et al.Effect of prolonged thienopyridine use after drug‐eluting stent implantation (from the TAXUS landmark trials data).Am J Cardiol2008;102:10171022.
  35. Tanzilli G,Greco C,Pelliccia F, et al.Effectiveness of two‐year clopidogrel + aspirin in abolishing the risk of very late thrombosis after drug‐eluting stent implantation (from the TYCOON [two‐year ClOpidOgrel need] study).Am J Cardiol2009;104:13571361.
  36. Nordmann AJ,Briel M,Bucher HC.Mortality in randomized controlled trials comparing drug‐eluting vs. bare metal stents in coronary artery disease: a meta‐analysis.Eur Heart J2006;27:27842814.
  37. Moses JW,Leon MB,Popma JJ, et al.Sirolimus‐eluting stents versus standard stents in patients with stenosis in a native coronary artery.N Engl J Med2003;349:13151323.
  38. Stone GW,Ellis SG,Cox DA, et al.A polymer‐based, paclitaxel‐eluting stent in patients with coronary artery disease.N Engl J Med2004;350:221231.
  39. Park SJ,Park DW,Kim YH, et al.Duration of dual antiplatelet therapy after implantation of drug‐eluting stents.N Engl J Med2010;362:13741382.
  40. Eisenstein EL,Anstrom KJ,Kong DF, et al.Clopidogrel use and long‐term clinical outcomes after drug‐eluting stent implantation.JAMA2007;297:159168.
  41. Smith P,Arnesen H,Holme I.The effect of warfarin on mortality and reinfarction after myocardial infarction.N Engl J Med1990;323:147152.
  42. Effect of long‐term oral anticoagulant treatment on mortality and cardiovascular morbidity after myocardial infarction.Anticoagulants in the Secondary Prevention of Events in Coronary Thrombosis (ASPECT) Research Group.Lancet1994;343:499503.
  43. Hurlen M,Abdelnoor M,Smith P,Erikssen J,Arnesen H.Warfarin, aspirin, or both after myocardial infarction.N Engl J Med2002;347:969974.
  44. van Es RF,Jonker JJ,Verheugt FW,Deckers JW,Grobbee DE.Aspirin and coumadin after acute coronary syndromes (the ASPECT‐2 study): a randomised controlled trial.Lancet2002;360:109113.
  45. Connolly S,Pogue J,Hart R, et al.Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial.Lancet2006;367:19031912.
  46. Hart RG,Benavente O,McBride R,Pearce LA.Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta‐analysis.Ann Intern Med1999;131:492501.
  47. Orford JL,Fasseas P,Melby S, et al.Safety and efficacy of aspirin, clopidogrel, and warfarin after coronary stent placement in patients with an indication for anticoagulation.Am Heart J2004;147:463467.
  48. Porter A,Konstantino Y,Iakobishvili Z,Shachar L,Battler A,Hasdai D.Short‐term triple therapy with aspirin, warfarin, and a thienopyridine among patients undergoing percutaneous coronary intervention.Catheter Cardiovasc Interv2006;68:5661.
  49. Rubboli A,Colletta M,Herzfeld J,Sangiorgio P,Di Pasquale G.Periprocedural and medium‐term antithrombotic strategies in patients with an indication for long‐term anticoagulation undergoing coronary angiography and intervention.Coron Artery Dis2007;18:193199.
  50. Rogacka R,Chieffo A,Michev I, et al.Dual antiplatelet therapy after percutaneous coronary intervention with stent implantation in patients taking chronic oral anticoagulation.JACC Cardiovasc Interv2008;1:5661.
  51. Mattichak SJ,Reed PS,Gallagher MJ,Boura JA,O'Neill WW,Kahn JK.Evaluation of safety of warfarin in combination with antiplatelet therapy for patients treated with coronary stents for acute myocardial infarction.J Interv Cardiol2005;18:163166.
  52. Ruiz‐Nodar JM,Marin F,Hurtado JA, et al.Anticoagulant and antiplatelet therapy use in 426 patients with atrial fibrillation undergoing percutaneous coronary intervention and stent implantation implications for bleeding risk and prognosis.J Am Coll Cardiol2008;51:818825.
  53. Sarafoff N,Ndrepepa G,Mehilli J, et al.Aspirin and clopidogrel with or without phenprocoumon after drug eluting coronary stent placement in patients on chronic oral anticoagulation.J Intern Med2008;264:472480.
  54. Rossini R,Musumeci G,Lettieri C, et al.Long‐term outcomes in patients undergoing coronary stenting on dual oral antiplatelet treatment requiring oral anticoagulant therapy.Am J Cardiol2008;102:16181623.
  55. Uchida Y,Mori F,Ogawa H,Takagi A,Hagiwara N.Impact of anticoagulant therapy with dual antiplatelet therapy on prognosis after treatment with drug‐eluting coronary stents.J Cardiol2010;55:362369.
  56. Manzano‐Fernandez S,Pastor FJ,Marin F, et al.Increased major bleeding complications related to triple antithrombotic therapy usage in patients with atrial fibrillation undergoing percutaneous coronary artery stenting.Chest2008;134:559567.
  57. Gao F,Zhou YJ,Wang ZJ, et al.Comparison of different antithrombotic regimens for patients with atrial fibrillation undergoing drug‐eluting stent implantation.Circ J2010;74:701708.
  58. Nguyen MC,Lim YL,Walton A, et al.Combining warfarin and antiplatelet therapy after coronary stenting in the Global Registry of Acute Coronary Events: is it safe and effective to use just one antiplatelet agent?Eur Heart J2007;28:17171722.
  59. Antman EM,Hand M,Armstrong PW, et al.2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST‐elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.J Am Coll Cardiol2008;51:210247.
  60. Silber S,Albertsson P,Aviles FF, et al.Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology.Eur Heart J2005;26:804847.
  61. Beyth RJ,Quinn LM,Landefeld CS.Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin.Am J Med1998;105:9199.
  62. Sourgounis A,Lipiecki J,Lo TS,Hamon M.Coronary stents and chronic anticoagulation.Circulation2009;119:16821688.
  63. Healey JS,Hart RG,Pogue J, et al.Risks and benefits of oral anticoagulation compared with clopidogrel plus aspirin in patients with atrial fibrillation according to stroke risk: the atrial fibrillation clopidogrel trial with irbesartan for prevention of vascular events (ACTIVE‐W).Stroke2008;39:1482–1486.
  64. Halg C,Brunner‐La Rocca HP,Kaiser C, et al.Early and late increased bleeding rates after angioplasty and stenting due to combined antiplatelet and anticoagulanttherapy.EuroIntervention2009;5:425431.
  65. Pfisterer M,Brunner‐La Rocca HP,Buser PT, et al.Late clinical events after clopidogrel discontinuation may limit the benefit of drug‐eluting stents: an observational study of drug‐eluting versus bare‐metal stents.J Am Coll Cardiol2006;48:25842591.
  66. Bhatt DL,Scheiman J,Abraham NS, et al.ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents.Circulation2008;118:18941909.
  67. Gilard M,Arnaud B,Cornily JC, et al.Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double‐blind OCLA (Omeprazole CLopidogrel Aspirin) study.J Am Coll Cardiol2008;51:256260.
  68. Ho PM,Maddox TM,Wang L, et al.Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome.JAMA2009;301:937944.
  69. Follow‐Up to the January 26,2009, Early Communication about an Ongoing Safety Review of Clopidogrel Bisulfate (marketed as Plavix) and Omeprazole (marketed as Prilosec and Prilosec OTC). 11/17/2009. (Accessed at http://www.fda.gov/Drugs/DrugSafety/Postmarket DrugSafetyInformationforPatientsandProviders/DrugSafetyInformationfor HeathcareProfessionals/ucm190784.htm.)
  70. Ko DT,Yun L,Wijeysundera HC, et al.Incidence, predictors, and prognostic implications of hospitalization for late bleeding after percutaneous coronary intervention for patients older than 65 years.Circ Cardiovasc Interv2010;3:140147.
  71. Rubboli A,Halperin JL,Airaksinen KE, et al.Antithrombotic therapy in patients treated with oral anticoagulation undergoing coronary artery stenting. An expert consensus document with focus on atrial fibrillation.Ann Med2008;40:428436.
  72. Connolly SJ,Ezekowitz MD,Yusuf S, et al.Dabigatran versus warfarin in patients with atrial fibrillation.N Engl J Med2009;361:11391151.
  73. Mega JL,Braunwald E,Mohanavelu S, et al.Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACS‐TIMI 46): a randomised, double‐blind, phase II trial.Lancet2009;374:2938.
  74. Buresly K,Eisenberg MJ,Zhang X,Pilote L.Bleeding complications associated with combinations of aspirin, thienopyridine derivatives, and warfarin in elderly patients following acute myocardial infarction.Arch Intern Med2005;165:784789.
Article PDF
Issue
Journal of Hospital Medicine - 6(9)
Publications
Page Number
537-545
Legacy Keywords
Acute coronary syndromes, atrial fibrillation, dual antiplatelet therapy, stent, triple therapy, warfarin
Sections
Files
Files
Article PDF
Article PDF

Dual antiplatelet therapy (DAPT) (aspirin plus a thienopyridine: clopidogrel or prasugrel) has become the standard treatment for patients with acute coronary syndromes (ACS) and after coronary stent placement (Table 1). Anticoagulant therapy with warfarin is indicated for stroke prevention in atrial fibrillation (AF), profound left ventricular dysfunction, and after mechanical heart valve replacement, as well as for treatment of deep venous thrombosis and pulmonary embolism (Table 2). It is estimated that 41% of the U.S. population over age 40 years is on some form of antiplatelet therapy,6 and 2.5 million patients, mostly elderly, are on long‐term warfarin therapy.7 More specifically, 5% of patients undergoing percutaneous coronary interventions (PCIs) also have an indication for warfarin.8 With widespread use of drug‐eluting stents (DES), the need for a longer duration of DAPT, and the increased age and complexity of hospitalized patients, the safety and challenges of triple therapy (combined DAPT and warfarin) have become more important to the practice of hospital medicine. Triple therapy may increase hospitalization rates, as the risk of major bleeding is four to five times higher than with DAPT.911 In contrast, DAPT is much less effective than warfarin alone in preventing embolic events in AF,12 and warfarin alone or in combination with aspirin (ASA) is inadequate therapy to prevent stent thrombosis. Even fewer data exist on the efficacy and safety of triple therapy in patients with mechanical valves or left ventricular dysfunction.

ACC/AHA/SCAI Recommendations for the Use of DAPT After PCI and UA/NSTEMIa
Class Recommendations Level of Evidence
  • Abbreviations: ACC/AHA/SCAI, The American College of Cardiology/American Heart Association/ Society for Cardiac Angiography and Interventions; DAPT, dual antiplatelet therapy; PCI, percutaneous coronary intervention; UA/NSTEMI, unstable angina/nonST‐elevation myocardial infarction; ASA, aspirin; BMS, bare metal stents; DES, drug eluting stents; ACS, acute coronary syndrome.

  • Superscript numbers refer to references.

  • Class I: conditions for which there is evidence for and/or general agreement that a given procedure or treatment is beneficial, useful, and effective.

  • Class II: conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.

  • Class IIa: weight of evidence/opinion is in favor of usefulness/efficacy; Class IIb, usefulness/efficacy is less well established by evidence/opinion.

  • Class III: conditions for which there is evidence and/or general agreement that a procedure/treatment is not useful/effective and in some cases may be harmful.

  • Level of evidence A: data derived from multiple randomized clinical trials or meta‐analyses.

  • Level of evidence B: data derived from a single randomized trial or nonrandomized studies.

  • Level of evidence C: only consensus opinion of experts, case studies, or standard‐of‐care.

DAPT after PCI/stenting1
ASA
Class I ASA 325 mg/d after PCI for 1 mo (up to 6 mo depending on type of stent implanted) and then 7562 mg/d indefinitely B
Class IIa ASA 75‐325 mg/d indefinitely after brachytherapy unless risk of bleeding is significant C
In patients at risk of bleeding, a lower dose of 75‐162 mg/d is reasonable after stent implantation C
Thienopyridine
Class I Clopidogrel 75 mg/d after BMS for at least 1 mo and ideally up to 12 mo unless increased risk of bleeding (at least 2 wk) B
Clopidogrel 75 mg/d after DES for at least 12 mo if not at high risk for bleeding B
2009 focus update2: Clopidogrel 75 mg daily or prasugrel 10 mg daily for at least 12 mo after BMS or DES for ACS B
Class IIa Clopidogrel 75 mg/d indefinitely after brachytherapy unless risk of bleeding is significant C
Class IIb In patients with potential for lethal or catastrophic stent thrombosis, consider platelet aggregation studies and increase clopidogrel dose to 150 mg/d if <50% inhibition of platelet aggregation is seen C
Continuation of clopidogrel 75 mg/day beyond 12 mo is reasonable after DES C
2009 focus update2: consider continuation of clopidogrel or prasugrel beyond 15 mo after DES placement C
DAPT for UA/NSTEMI without stenting3
ASA
Class I Continue ASA (75 to 162 mg/d) indefinitely A
Clopidogrel
Class 1 Clopidogrel (75 mg/d) for at least 1 mo (A) and ideally for up to 1 y B
Dipyridamole
Class III Dipyridamole is not recommended because it has not been shown to be effective A
Risk of Thromboembolic Events per Year for Patients With Atrial Fibrillation or Mechanical Valvea
  • Abbreviation: CHADS2, congestive heart failure, hypertension, age, diabetes, prior stroke or transient ischemic attack; ASA, aspirin.

  • Superscript numbers refer to references.

  • The risk of thromboembolic events are highest for caged ball valves, followed by tilting disc valves, followed by bileaflet valves.

  • This category includes all reported valve thrombosis, major embolism, and minor embolism.

Condition Risk (%)
Atrial fibrillation (without anticoagulation)4
Low‐risk atrial fibrillation (CHADS2 score 0) 1.9
Intermediate‐risk atrial fibrillation (CHADS2 score 1) 2.8
High‐risk atrial fibrillation (CHADS2 score 2‐6) 418
Mechanical heart valve5b
Mechanical heart valve (without anticoagulation) 8.6c
Mechanical heart valve (treated with ASA alone) 7.5c
Mechanical heart valve (treated with warfarin) 1.8c
Mechanical aortic valve (treated with warfarin) 1.1c
Mechanical mitral valve (treated with warfarin) 2.7c

Hospitalists commonly care for patients on triple therapy; certain indications are appropriate and supported from the available literature while others lack evidence. Knowledge of existing practice guidelines and of supporting research studies leads to optimal management of these complicated patients, and minimizes excessive morbidity from bleeding complications or thromboembolic events such as strokes and stent thrombosis.

In the first part of this article, we present the evidence that supports current recommendations for DAPT or warfarin in specific medical conditions. We also address controversies and unanswered questions. The second part of this review focuses on the available data and provides guidance on the optimal care of patients on triple therapy.

Dual Antiplatelet Therapy Following Acute Coronary Syndromes

Table 3 summarizes key randomized trials of DAPT versus ASA alone in several clinical scenarios. The addition of clopidogrel to ASA in patients with nonST‐elevation ACS reduced the risk of adverse ischemic outcomes in the clopidogrel in unstable angina to prevent recurrent events (CURE) trial,15 as well as in its substudy, the PCI‐CURE (patients with ACS who have undergone stenting).17 In the main CURE study, the study groups diverged within the first 30 days after randomization and the benefit of DAPT persisted throughout the 12 months of the study period. DAPT is also superior to ASA in patients with ST‐elevation myocardial infarction (MI) (CLARITYTIMI 28 and COMMIT trials).13, 14 On the basis of these findings, DAPT has become the standard of care for patients with ACS. The American College of Cardiology (ACC)/American Heart Association (AHA)3 and the European Society of Cardiology18 recommend ASA treatment indefinitely for patients with ACS whether or not they underwent PCI. Clopidogrel is recommended for at least 12 months following ACS, especially for patients who receive a coronary stent.

Randomized Clinical Trials of Dual Antiplatelet Therapy With Clopidogrel Plus Aspirin Versus Aspirin Alonea
Trial Endpoints Results
  • Abbreviations: MI, myocardial infarction; CLARITYTIMI 28, Clopidogrel as Adjunctive Reperfusion TherapyThrombolysis in Myocardial Infarction; CI, confidence interval; COMMIT, Clopidogrel and Metoprolol in Myocardial Infarction; ACS, acute coronary syndromes; CURE, Clopidogrel in Unstable Angina to Prevent Recurrent Events; RR, relative risk; CREDO, Clopidogrel for the Reduction of Events During Observation; PCICURE, Analysis of CURE patients who underwent a percutaneous coronary intervention; TVR, target vessel revascularization.

  • Superscript numbers refer to references.

ST elevation MI
CLARITY‐TIMI13 Incidence of death, infarct‐related artery occlusion, or recurrent MI 36% reduction (95% CI 2447); P < .001
COMMIT14 Incidence of death, MI, or stroke 9% reduction (95% CI 314); P < .002
ACS without ST elevation
CURE15 Incidence of death, MI, or stroke 20% reduction (RR 0.80 [0.720.90]); P < .001
Bare‐metal stent placement
CREDO16 Incidence of death, MI, or stroke 27% reduction (95% CI 3.944.4); P < .02
PCI‐CURE17 Incidence of death, MI, or urgent TVR 30% reduction (RR 0.70 [0.500.97]); P < .03

Despite the proven efficacy of DAPT in ACS, about 15% of patients die or experience reinfarction within 30 days of diagnosis.19 The continued risk for thrombotic events could be due to delayed onset of platelet inhibition and to patient heterogeneity in responsiveness to therapy with ASA and/or clopidogrel.20 Consequently, the optimum dose for clopidogrel and ASA following ACS is uncertain. The CURRENT‐OASIS 7 trial evaluated the efficacy and safety of high‐dose clopidogrel (600‐mg loading dose, 150 mg once daily for 7 days, followed by 75 mg/d) versus standard‐dose clopidogrel (300‐mg loading dose, followed by 75 mg/d) and ASA (75‐100 mg versus 300‐325 mg/d) in patients with ACS who were treated medically, with or without stenting.21 In the overall study population as well as in patients who did not receive stenting, there was no significant difference in the combined rate of death from cardiovascular causes, MI, and stroke between patients receiving the high‐dose and the standard‐dose clopidogrel (4.2% vs 4.4%; P = .37) and high‐dose versus low‐dose ASA (4.2% vs 4.4%; P = .47). There were no significant differences in bleeding complications between the two clopidogrel treatment arms or between the high‐dose and low‐dose ASA groups.

The ACC/AHA guidelines recommend ASA, 75‐162 mg/d indefinitely after medical therapy without stenting (class I, level of evidence: A)3 and clopidogrel 75 mg/d for at least 1 month (class IA) and optimally for 1 year (class IB). Clopidogrel monotherapy is appropriate for patients with ACS who are unable to tolerate ASA due to either hypersensitivity or recent significant gastrointestinal bleeding.

As is the case after coronary stenting, interruption of DAPT soon after ACS may subject patients to high recurrence of cardiovascular events, although few data are available to support this observation. Interruption of DAPT due to bleeding complications or surgical procedures more than 1 month after ACS may be reasonable for a patient who did not receive a stent. Clinicians should restart DAPT after the surgical procedure once the bleeding risk becomes acceptable.

Dual Antiplatelet Therapy Following Coronary Stenting

Following Bare Metal Stents

Stent thrombosis occurs in approximately 20% of patients who receive bare metal stents (BMS) without DAPT22; the risk is highest in the first 30 days after implantation. The clinical presentation of stent thrombosis is often catastrophic: MI or sudden death occurs in over 60% of cases. DAPT reduces the incidence of stent thrombosis to a clinically acceptable level.22

In the ISAR trial of 517 patients treated with BMS for MI, suboptimal angioplasty, or other high‐risk clinical and anatomic features,23 patients were randomly assigned to treatment with ASA plus ticlopidine or ASA plus anticoagulation with heparin and warfarin. The primary endpoint of cardiac death, MI, coronary bypass surgery, or repeat angioplasty occurred in 1.5% of patients assigned to DAPT and 6.2% of those assigned to anticoagulant therapy (relative risk [RR], 0.25; 95% confidence interval [CI], 0.06‐0.77). The PCI‐CURE study evaluated patients who received BMS after ACS.17 The primary endpoint was a composite of cardiovascular death, MI, or urgent target‐vessel revascularization within 30 days of PCI. Long‐term administration of clopidogrel (8 months) conferred a lower rate of cardiovascular death, MI, or any revascularization (P = .03), with no significant difference in major bleeding between the groups (P = .64). In the CREDO trial,16 investigators evaluated 2116 patients undergoing PCI at 99 North American centers. Subjects received either a 300‐mg loading dose of clopidogrel or placebo 3‐24 hours before PCI. All patients then received clopidogrel 75 mg/d through day 28. For the following 12 months, patients in the loading dose group received clopidogrel, and those in the control group received placebo. All patients received ASA throughout the study. At 1 year, loading dose plus long‐term clopidogrel therapy conferred a 27% RR reduction (3% absolute risk reduction) in the combined endpoint of death, MI, or stroke (P = .02).

Based on these trials, the ACC and AHA recommend clopidogrel (75 mg/d) for a minimum of 1 month and optimally 12 months after BMS (class 1B).2 For patients at increased risk of bleeding, the ACC/AHA recommends a minimum of 2 weeks of clopidogrel. Although lifelong therapy with ASA is recommended, the optimal dose of ASA after BMS is unknown. However, on the basis of clinical trial protocols (no randomized data), guidelines recommend ASA 162 mg‐325 mg/d for at least 1 month, followed by indefinite use at a dose of 75‐162 mg. In patients for whom there is concern about bleeding, lower doses of ASA (75‐162 mg) are acceptable for the initial period after stent implantation.

Following Drug‐Eluting Stents

Drug‐eluting stents have become the standard percutaneous treatment for patients with symptomatic coronary artery disease. In 2005, a sampling of 140 US hospitals indicated that 94% of patients treated with a stent received at least one DES.24 Compared with BMS, restenosis and the need for revascularization are significantly less frequent. In contrast, unanticipated high rates of very late (>1 year) stent thrombosis have complicated DES.25 Because of the potentially lethal consequences of stent thrombosis, several authors have questioned the long‐term safety of DES2635 and examined the role of extended DAPT in reducing this delayed complication.27, 31, 36 Although the initial pivotal randomized trials of DES mandated clopidogrel use for only 3 months after sirolimus‐eluting stent and 6 months after paclitaxel‐eluting stent,37, 38 current guidelines recommend DAPT for at least 12 months after DES placement for patients who are not at high risk of bleeding.1

Although multiple studies have confirmed the benefit of DAPT, controversy remains regarding the extended use for more than 1 year. The only randomized trial that addressed this issue was nonblinded and underpowered.39 In this study of patients from two ongoing trials, the REAL‐LATE and ZEST‐LATE, extended duration DAPT (>12 months, median duration 19.2 months), did not reduce the incidence of MI and cardiac death.39 The rate of the primary endpoint was less than 25% of that expected (underpowered), and patients had already received clopidogrel for up to 24 months before enrollment.

The results from small, nonrandomized trials regarding this issue have been contradictory. Banerjee and colleagues studied 530 consecutive patients who underwent PCI (85% received a DES), were free of cardiovascular events for 6 months after PCI, and had follow‐up available for >12 months.26 In a multivariate analysis, clopidogrel use for 1 year was associated with lower mortality (hazard ratio [HR], 0.28; 95% CI, 0.140.59); this effect was independent of traditional cardiovascular risk factors, clinical presentation, and DES use. In a study at the Duke Heart Center40 among patients with DES (n = 528) who were event‐free at 12 months, continued clopidogrel use conferred lower rates of death (0% versus 3.5%; difference, 3.5%; 95% CI, 5.9% to 1.1%; P = .004) and death or MI (0% versus 4.5%; difference, 4.5%; 95% CI, 7.1% to 1.9%; P < .001) at 24 months. In the TYCOON registry,35 patients with DES receiving clopidogrel for 2 years had a rate of stent thrombosis (0.4%) that was similar to those with BMS (0.7%) but significantly lower than patients with DES and 1‐year DAPT (2.9%).

In contrast, Roy and colleagues33 found that clopidogrel cessation at 12 months did not predict stent thrombosis, and Park and colleagues32 reported that clopidogrel continuation beyond 1 year did not appear to decrease stent thrombosis or clinical events after DES implantation. Similarly, Stone et al.34 performed a landmark analysis on the basis of the prospective, double‐blind TAXUS‐II SR, TAXUS‐IV, and TAXUS‐V trials. The authors found that thienopyridine use beyond 1 year after DES may reduce stent thrombosis over the subsequent 12‐month period, but did not reduce rates of death and MI at 2 and 5 years after either DES or BMS.

Current guidelines recommend ASA 162‐325 mg/d for at least 3‐6 months, followed by treatment indefinitely at a dose of 75‐162 mg daily. Clopidogrel, on the other hand, is given at 75 mg/d for at least 12 months.

Warfarin After Acute Coronary Syndromes

Warfarin with different international normalized ratio (INR) goals alone or in combination with ASA has been evaluated after ACS. In an early trial, patients with recent (mean interval 27 days) MI were treated with warfarin alone versus placebo.41 Warfarin conferred a relative risk reduction in mortality of 24% (95% CI, 4‐44%; P = .027) at the expense of major bleeding rates of 0.6%/y. In the ASPECT trial,42 moderate to high intensity anticoagulation after MI resulted in a 53% and 40% reduction in the relative risk of reinfarction (annual incidence 2.3% versus 5.1%) and cerebrovascular events (annual incidence 0.7% versus 1.2%), respectively. In the WARIS II43 and ASPECT‐244 trials, moderate intensity warfarin (INR 2.0‐2.5) in combination with low‐dose ASA, compared with ASA alone, reduced the composite occurrence of death or nonfatal reinfarction, as well as recurrent coronary occlusion after ST‐segment elevation MI. High‐intensity warfarin therapy alone (INR 3.0‐4.0 for ASPECT, 2.8‐4.2 for WARISII) reduced ischemic vascular events compared with ASA alone. Not unexpectedly, major bleeding episodes were more common among patients receiving warfarin.

No randomized trials have compared DAPT with warfarin plus ASA for patients with ACS who did not receive stents. The ACC/AHA guidelines recommend warfarin for secondary prevention following ACS (class IIb). High‐intensity warfarin alone (INR 2.5‐3.5) or moderate intensity (INR 2.0‐2.5) with low‐dose ASA (75‐81 mg/d) may be reasonable for patients at high ischemic and low bleeding risk who are intolerant of clopidogrel (level of evidence: B). Fixed dose warfarin is not recommended by the ACC/AHA primarily on the basis of the Coumadin Aspirin Reinfarction Study (CARS) results. This study of patients following MI was discontinued prematurely because of a lack of incremental benefit of reduced‐dose ASA (80 mg/d) combined with either 1 or 3 mg of warfarin daily when compared with 160 mg/d of ASA alone.

Triple Therapy for PCI and Atrial Fibrillation

AF is the most frequent indication (70%) for long‐term therapy with warfarin in patients scheduled for stent placement.10 Clinical trials have shown that warfarin alone is superior to ASA, clopidogrel, or DAPT for prevention of stroke in patients with AF.45, 46 Although warfarin is indispensable in these settings, DAPT is similarly necessary after stent implantation. As triple therapy increases the risk of bleeding, the management of patients with AF and who have received stents remains controversial. This situation is particularly problematic among patients who have received DES and may benefit from extended DAPT. No randomized trials exist to clarify the optimal treatment in these patients; and the feasibility of such studies is questionable. Small, mostly retrospective, studies (Table 4) provide limited guidance on this issue; most studies focus on bleeding events rather than the cardiovascular efficacy of triple therapy. Because of these limitations, cardiovascular societies give IIb recommendation for either triple therapy or the combination of warfarin and clopidogrel in this setting and the level of evidence is C.1, 59, 60

Studies of Triple Therapy for Patients With Atrial Fibrillation and Coronary Stents
Author Year Type No. Major Bleeding, % (range) Thrombotic Events Comments
  • Abbreviations: Obs, observational; Pros, prospective; INR, international normalized ratio; GI, gastrointestinal; TT, triple therapy; PCI, percutaneous coronary intervention; MI, myocardial infarction; DAPT, dual antiplatelet therapy; ASA, aspirin; OR, odds ratio; BMI, body mass index; DM, diabetes mellitus; MACE, major adverse cardiovascular events; MACCE, major adverse cardiac and cerebral events; WAA, warfarin plus single antiplatelet agent; EB, early bleeding; LB, late (>48‐h) bleeding.

  • Transfusions.

  • Dual antiplatelet therapy vs triple therapy.

  • Warfarin versus nonwarfarin.

  • Triple therapy versus nontriple therapy.

  • Triple therapy versus dual antiplatelet therapy vs warfarin and single antiplatelet agent.

Studies of one group (triple therapy group)
Orford et al.47 2004 Obs 66 4.5 (0.211.2) N/A Bleeding occurred only with suboptimal control of INR and/or pre‐existing GI disease.
Porter et al.48 2006 Obs 180 1.6 (0.04.2) N/A Bleeding rates were acceptable with short‐term TT after PCI.
Rubboli et al.49 2007 Obs 49 18 (4.436.9) N/A Most hemorrhages occurred during TT.
Rogacka et al.50 2008 Obs 127 4.7 N/A One‐half of bleeding episodes were lethal and 67% occurred within the first month.
Studies comparing triple therapy with dual antiplatelet therapy
Mattichak et al.51 2005 Obs 82 21 vs. 3.5 (P = .028)a Reinfarction (29% vs. 9%, P = .15) TT did not reduce reinfarction after stenting for MI but increased rates of GI bleeding and transfusions.
Khurram et al.11 2006 Matched cohort 214 6.6 vs. 0 (P = .03) N/A Higher bleeding rates for TT than DAPT. INR range or ASA dosage did not influence the bleeding risk.
DeEugenio et al.9 2007 Matched cohort 194 OR 5.0 (1.417.8, P = .012) N/A ASA dose, age, sex, BMI, DM, hypertension, and procedural anticoagulant type or use did not influence risk of major bleeding.
Ruiz‐Nodar et al.52 2008 Obs 426 14.9 vs. 9.0 (P = .19) Mortality: OR 3.43 (1.617.54, P = .002)b MACE: OR 4.9 (2.1711.1, P < .01)b TT was associated with a nonsignificant increase in major bleeding but lower all‐cause mortality and fewer MACE.
Sarafoff et al.53 2008 Prosp 515 1.4 vs. 3.1 (P = .34). MACCE: OR 0.76 (0.481.21, P = .25) No difference in MACCE or bleeding at 2 y. Stent thrombosis did not differ between groups.
Rossini et al.54 2008 Prosp 204 10.8 vs. 4.9 (P = .1) MACE: 5.8% vs. 4.9% (P = .7) INR was targeted to the lower range (2.0‐2.5). No significant difference in bleeding rates for TT versus DAPT at 18 mo. Less bleeding for patients whose INR was within target (4.9 versus 33%, P = .00019). No significant differences in MACE between groups.
Uchida et al.55 2010 Obs 575 18 vs. 2.7 (P < .001) MACE (P = .108) No differences in MACE rates. More bleeding for patients on TT.
Studies comparing triple therapy versus dual antiplatelet therapy versus wararin and single antiplatelet agent
Karjalainen et al.10 2007 Matched cohort 239 OR 3.3 (1.38.6, P = .014)c MACE: OR 1.7 (1.0‐3.0, P = 0.05)c This study compared patients on warfarin at baseline with those not on warfarinall undergoing stenting. Patients on warfarin at baseline were treated with a variety of strategies. Baseline warfarin use increased both major bleeding and MACE at 1 y. ASA plus warfarin was inadequate to prevent stent thrombosis, and premature warfarin cessation was associated with stroke.
Manzano‐Fernandez et al.56 2008 Obs 104 EB (5.8 vs. 11.3, P = .33) LB (21.6 vs. 3.8, P = .006)d MACE: 25.5% vs. 21.0% (P = .53)d No difference in MACE rates between TT and non‐TT (WAA or DAPT). TT conferred higher late bleeding (>48 h).
Gao et al.57 2010 Prosp 622 2.9 vs. 1.8 vs. 2.5 (P = .725)e MACCE: 8.8% vs. 20.1% vs. 14.9% (P = .010)e Target INR was set as 1.8‐2.5. Lower stroke and MACCE rates for TT as compared with DAPT or WAA; no difference in bleeding.
Studies comparing triple therapy with warfarin and single antiplatelet agent
Nguyen et al.58 2007 Obs 800 5.9 vs. 46 (P = .46) Death: 5.1% vs. 6.5% (P = .47) Stroke: 0.7% vs. 3.4% (P = .02) MI: 3.3% vs. 4.5% (P = .49) TT and WAA lead to similar 6‐mo bleeding, death, and MI. Fewer strokes with TT (caveat: low event rate).

In the largest study to date, Nguyen et al.58 evaluated 800 patients who underwent stenting for ACS and were discharged on warfarin plus single antiplatelet agent or triple therapy as part of the GRACE registry. At 6 months, triple therapy conferred a significant reduction in stroke (0.7% versus 3.4%, P = .02) but not in death or MI. There were no differences in in‐hospital major bleeding events between the two groups (5.9% versus 4.6%; P = .46). Similarly, Sarafoff et al.53 reported no significant differences in the combined endpoint (death, MI, stent thrombosis or stroke) or bleeding complications among patients who received triple therapy or DAPT at 2 years of follow‐up. In contrast, Ruiz‐Nodar et al.52 showed that triple therapy, compared with DAPT, at discharge reduced the incidence of death (17.8% versus 27.8%; adjusted HR = 3.43; 95% CI, 1.617.54; P = .002) and major adverse cardiac events (26.5% versus 38.7%; adjusted HR = 4.9; 95% CI, 2.1711.1; P = .01), without a substantial increase in major bleeding events.

The value of combination antiplatelet therapy to prevent stent thrombosis in these patients is clearer in the study reported by Karjalainen et al.10 This case‐control study of 239 patients receiving warfarin at baseline who underwent PCI evaluated a primary endpoint of death, MI, target‐vessel revascularization, or stent thrombosis and a secondary endpoint of major bleeding and stroke to 12 months of follow‐up. Forty‐eight percent of patients received triple therapy, whereas 15.5% were discharged on DAPT. The remaining patients received warfarin plus a single antiplatelet agent. Stent thrombosis occurred more frequently among patients receiving warfarin plus ASA (15.2%) than among those receiving triple therapy (1.9%). As expected, stroke was more frequent in patients treated with DAPT (8.8%) than among those receiving triple therapy (2.8%). Major bleeding was similar between groups. Therapy with warfarin was an independent predictor of both major bleeding and major cardiac events at 1 year. This observation illustrates that the outcome of PCI in patients on chronic warfarin therapy is unsatisfactory irrespective of the antithrombotic combinations used, highlighting the need for better strategies to treat these patients.

Choice of Therapy and Management of Patients Eligible for Triple Therapy

Current guidelines for PCI do not provide guidance for patients with an indication for triple therapy due to a paucity of published evidence. Several ongoing prospective trials aim to address the management of these patients (AFCAS, ISAR‐TRIPLE). Pending further study, clinicians should consider the embolic risk (CHADS2 score), target INR, type of stent, bleeding risk, and duration of treatment when determining the appropriate antiplatelet/anticoagulant combinations. The CHADS2 score (Table 2) stratifies the risk for stroke among patients with AF,4 while the Outpatient Bleeding Risk Index (OBRI) allows estimation of bleeding risk.12, 61 The OBRI considers age > 65 years, prior stroke, prior gastrointestinal bleeding, and any of four comorbidities (recent MI, anemia, diabetes, or renal insufficiency) in order to stratify patients into three risk groups.61 Patients with three to four risk factors have a high risk of bleeding (23% at 3 months and 48% at 12 months) whereas patients with no risk factors have only a 3% risk of bleeding at 12 months. Unfortunately, advanced age and prior stroke appear in both OBRI and CHADS.

For patients with AF who are at high risk for embolic stroke (>3% per year), we recommend triple therapy for the shortest time possible, followed by warfarin and ASA indefinitely. In case of BMS, it is acceptable to shorten triple therapy duration to 1 month. The optimal duration of triple therapy for patients with DES is uncertain; recommended durations range from 3 months to 1 year.62 If the potential consequences of stent thrombosis are high due to a large amount of myocardium at risk, an extended period of triple therapy might be justified. For patients whose stroke risk is lower (CHADS2 score of 0‐1), the risk for bleeding likely outweighs any benefit from stroke prevention. In this instance, it is reasonable to use DAPT with ASA and clopidogrel for 1 month after BMS and 12 months after DES, followed by ASA, with or without warfarin, indefinitely. In a recently published study, patients with AF and a CHADS2 score of 1 had a yearly stroke risk of 1.25% while taking DAPT63; the risk of major bleeding for triple therapy is 6.1% per year.64

For patients who have a high bleeding risk, BMS are the preferred stent type as the duration of triple therapy might be limited to 4 weeks. To our knowledge, no randomized study has evaluated the outcome of patients with BMS compared with DES who also have an indication for warfarin. Because studies have suggested that clopidogrel is more effective than aspirin in preventing stent thrombosis and in reducing death or MI after coronary stenting,40, 65 warfarin and single antiplatelet therapy with clopidogrel might be a reasonable treatment option in patients with high bleeding risk. The WOEST study (NCT00769938), currently recruiting participants, is the first randomized study specifically designed to test this hypothesis.

Since gastrointestinal bleeding accounts for approximately 30‐40% of hemorrhagic events in patients on combined ASA and anticoagulant therapy, an expert consensus document recommended concomitant treatment with proton pump inhibitors (PPIs) to reduce this risk.66 In contrast, the 2009 Focused Updates of the ACC/AHA/SCAI Guidelines did not recommend the use of PPIs with DAPT in the setting of ACS.2 This is because of studies that show inhibition of platelet activation,67 and potential clinical harm,68 when clopidogrel is combined with certain PPIs that inhibit the CYP2C19 enzyme. However, to date there are no convincing randomized clinical trial data documenting an important clinical drug‐drug interaction. The U.S. Food and Drug Administration (FDA) advises that physicians avoid the use of clopidogrel in patients with impaired CYP2C19 function due to known genetic variation or due to concomitant use of drugs that inhibit CYP2C19 activity. More specifically, the FDA recommends avoiding the use of omeprazole and esomeprazole in patients taking clopidogrel.69

In particular, elderly patients have an increased risk of bleeding while receiving triple therapy. In a study of patients over age 65, 2.5% were hospitalized for bleeding in the first year after PCI, and the use of triple therapy was the strongest predictor of bleeding (more than threefold increase).70 One in five patients suffered death or MI at 1 year after hospitalization for bleeding.70 The basis for poor outcomes after hospitalization for bleeding in this population is multifactorial and may be due to the location of bleeding, associated hypercoagulable state, potential adverse impact of blood transfusion, withdrawal of warfarin therapy in patients with AF and PCI, and the premature discontinuation of DAPT. The use of nonsteroidal anti‐inflammatory drugs (NSAIDs) is common among the elderly and conferred a doubling of bleeding risk.70 Limiting the use of NSAID, the use of low‐dose ASA beyond 30 days after stent implantation, greater use of BMS, and maintaining INR at the lowest possible level (INR of 22.5) will reduce the risk for bleeding.57, 71

New Anticoagulants

Due to the high risk for bleeding with warfarin and the challenges inherent in INR monitoring, researchers have developed several novel anticoagulants whose advantages include fixed daily dosing and no need for monitoring. Dabigatran is a direct oral thrombin inhibitor that is already licensed in Europe and Canada for thromboprophylaxis after hip or knee surgery. It has also been studied in patients with AF. In the RE‐LY trial, patients with AF who received dabigatran 110 mg daily had rates of stroke and systemic embolism that were similar to those with warfarin, as well as lower rates of major hemorrhage.72 The randomized ReDEEM trial, reported at the AHA 2009 Scientific Sessions, was aimed at finding a dosage of dabigatran that achieves a good balance between clinical effectiveness and bleeding risk when combined with aspirin and clopidogrel after acute MI. Dosages ranging from 50 mg twice daily to 150 mg twice daily were all associated with 6‐month rates of bleeding lower than 2%. Hospitalists should view these encouraging results cautiously until the publication of ReDEEM trial results in a peer‐reviewed journal.

A variety of oral Xa antagonists are also being evaluated in patients with AF or ACS. These trials offer insight into triple therapy regimens that include ASA, clopidogrel, and an Xa antagonist. In a recent study of the oral Xa antagonist rivaroxaban, investigators stratified 3491 subjects with ACS according to whether they received concomitant ASA alone or ASA and clopidogrel.73 Subjects receiving ASA plus rivaroxaban had a modest increase in bleeding. Triple therapy, however, increased the composite bleeding rate from 3.5% in the DAPT group to approximately 6‐15% (low‐dose or high‐dose rivaroxaban, respectively). Rivaroxaban is currently under review by the FDA.

These novel agents might eventually replace warfarin for many or most indications for anticoagulation. It is imperative that future research compare the efficacy and risk of bleeding between triple therapy using these new agents and triple therapy with warfarin.

Conclusions

The management of patients on long‐term anticoagulation who require DAPT because of ACS or coronary stenting is challenging. DAPT may safely substitute for warfarin only for patients at low risk for a thromboembolic event (ie, low‐risk AF with low CHADS2 score). Clinicians should not interrupt warfarin in patients at higher risk (ie, intermediate to high‐risk AF, mechanical valves, or recent venous thromboembolism), even in the presence of DAPT. In these patients, triple therapy is the optimal approach following coronary stenting (and possibly during the initial period after ACS without stenting). As this approach confers a fivefold increase in bleeding complications compared with DAPT, careful monitoring of the INR, the addition of PPIs, and the exclusion of elderly patients who are at the highest risk for bleeding complications74 is recommended. The preferred duration of triple therapy after BMS in patients who require long‐term anticoagulation is 1 month, whereas the optimal duration after ACS or DES remains unresolved.

Dual antiplatelet therapy (DAPT) (aspirin plus a thienopyridine: clopidogrel or prasugrel) has become the standard treatment for patients with acute coronary syndromes (ACS) and after coronary stent placement (Table 1). Anticoagulant therapy with warfarin is indicated for stroke prevention in atrial fibrillation (AF), profound left ventricular dysfunction, and after mechanical heart valve replacement, as well as for treatment of deep venous thrombosis and pulmonary embolism (Table 2). It is estimated that 41% of the U.S. population over age 40 years is on some form of antiplatelet therapy,6 and 2.5 million patients, mostly elderly, are on long‐term warfarin therapy.7 More specifically, 5% of patients undergoing percutaneous coronary interventions (PCIs) also have an indication for warfarin.8 With widespread use of drug‐eluting stents (DES), the need for a longer duration of DAPT, and the increased age and complexity of hospitalized patients, the safety and challenges of triple therapy (combined DAPT and warfarin) have become more important to the practice of hospital medicine. Triple therapy may increase hospitalization rates, as the risk of major bleeding is four to five times higher than with DAPT.911 In contrast, DAPT is much less effective than warfarin alone in preventing embolic events in AF,12 and warfarin alone or in combination with aspirin (ASA) is inadequate therapy to prevent stent thrombosis. Even fewer data exist on the efficacy and safety of triple therapy in patients with mechanical valves or left ventricular dysfunction.

ACC/AHA/SCAI Recommendations for the Use of DAPT After PCI and UA/NSTEMIa
Class Recommendations Level of Evidence
  • Abbreviations: ACC/AHA/SCAI, The American College of Cardiology/American Heart Association/ Society for Cardiac Angiography and Interventions; DAPT, dual antiplatelet therapy; PCI, percutaneous coronary intervention; UA/NSTEMI, unstable angina/nonST‐elevation myocardial infarction; ASA, aspirin; BMS, bare metal stents; DES, drug eluting stents; ACS, acute coronary syndrome.

  • Superscript numbers refer to references.

  • Class I: conditions for which there is evidence for and/or general agreement that a given procedure or treatment is beneficial, useful, and effective.

  • Class II: conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness/efficacy of a procedure or treatment.

  • Class IIa: weight of evidence/opinion is in favor of usefulness/efficacy; Class IIb, usefulness/efficacy is less well established by evidence/opinion.

  • Class III: conditions for which there is evidence and/or general agreement that a procedure/treatment is not useful/effective and in some cases may be harmful.

  • Level of evidence A: data derived from multiple randomized clinical trials or meta‐analyses.

  • Level of evidence B: data derived from a single randomized trial or nonrandomized studies.

  • Level of evidence C: only consensus opinion of experts, case studies, or standard‐of‐care.

DAPT after PCI/stenting1
ASA
Class I ASA 325 mg/d after PCI for 1 mo (up to 6 mo depending on type of stent implanted) and then 7562 mg/d indefinitely B
Class IIa ASA 75‐325 mg/d indefinitely after brachytherapy unless risk of bleeding is significant C
In patients at risk of bleeding, a lower dose of 75‐162 mg/d is reasonable after stent implantation C
Thienopyridine
Class I Clopidogrel 75 mg/d after BMS for at least 1 mo and ideally up to 12 mo unless increased risk of bleeding (at least 2 wk) B
Clopidogrel 75 mg/d after DES for at least 12 mo if not at high risk for bleeding B
2009 focus update2: Clopidogrel 75 mg daily or prasugrel 10 mg daily for at least 12 mo after BMS or DES for ACS B
Class IIa Clopidogrel 75 mg/d indefinitely after brachytherapy unless risk of bleeding is significant C
Class IIb In patients with potential for lethal or catastrophic stent thrombosis, consider platelet aggregation studies and increase clopidogrel dose to 150 mg/d if <50% inhibition of platelet aggregation is seen C
Continuation of clopidogrel 75 mg/day beyond 12 mo is reasonable after DES C
2009 focus update2: consider continuation of clopidogrel or prasugrel beyond 15 mo after DES placement C
DAPT for UA/NSTEMI without stenting3
ASA
Class I Continue ASA (75 to 162 mg/d) indefinitely A
Clopidogrel
Class 1 Clopidogrel (75 mg/d) for at least 1 mo (A) and ideally for up to 1 y B
Dipyridamole
Class III Dipyridamole is not recommended because it has not been shown to be effective A
Risk of Thromboembolic Events per Year for Patients With Atrial Fibrillation or Mechanical Valvea
  • Abbreviation: CHADS2, congestive heart failure, hypertension, age, diabetes, prior stroke or transient ischemic attack; ASA, aspirin.

  • Superscript numbers refer to references.

  • The risk of thromboembolic events are highest for caged ball valves, followed by tilting disc valves, followed by bileaflet valves.

  • This category includes all reported valve thrombosis, major embolism, and minor embolism.

Condition Risk (%)
Atrial fibrillation (without anticoagulation)4
Low‐risk atrial fibrillation (CHADS2 score 0) 1.9
Intermediate‐risk atrial fibrillation (CHADS2 score 1) 2.8
High‐risk atrial fibrillation (CHADS2 score 2‐6) 418
Mechanical heart valve5b
Mechanical heart valve (without anticoagulation) 8.6c
Mechanical heart valve (treated with ASA alone) 7.5c
Mechanical heart valve (treated with warfarin) 1.8c
Mechanical aortic valve (treated with warfarin) 1.1c
Mechanical mitral valve (treated with warfarin) 2.7c

Hospitalists commonly care for patients on triple therapy; certain indications are appropriate and supported from the available literature while others lack evidence. Knowledge of existing practice guidelines and of supporting research studies leads to optimal management of these complicated patients, and minimizes excessive morbidity from bleeding complications or thromboembolic events such as strokes and stent thrombosis.

In the first part of this article, we present the evidence that supports current recommendations for DAPT or warfarin in specific medical conditions. We also address controversies and unanswered questions. The second part of this review focuses on the available data and provides guidance on the optimal care of patients on triple therapy.

Dual Antiplatelet Therapy Following Acute Coronary Syndromes

Table 3 summarizes key randomized trials of DAPT versus ASA alone in several clinical scenarios. The addition of clopidogrel to ASA in patients with nonST‐elevation ACS reduced the risk of adverse ischemic outcomes in the clopidogrel in unstable angina to prevent recurrent events (CURE) trial,15 as well as in its substudy, the PCI‐CURE (patients with ACS who have undergone stenting).17 In the main CURE study, the study groups diverged within the first 30 days after randomization and the benefit of DAPT persisted throughout the 12 months of the study period. DAPT is also superior to ASA in patients with ST‐elevation myocardial infarction (MI) (CLARITYTIMI 28 and COMMIT trials).13, 14 On the basis of these findings, DAPT has become the standard of care for patients with ACS. The American College of Cardiology (ACC)/American Heart Association (AHA)3 and the European Society of Cardiology18 recommend ASA treatment indefinitely for patients with ACS whether or not they underwent PCI. Clopidogrel is recommended for at least 12 months following ACS, especially for patients who receive a coronary stent.

Randomized Clinical Trials of Dual Antiplatelet Therapy With Clopidogrel Plus Aspirin Versus Aspirin Alonea
Trial Endpoints Results
  • Abbreviations: MI, myocardial infarction; CLARITYTIMI 28, Clopidogrel as Adjunctive Reperfusion TherapyThrombolysis in Myocardial Infarction; CI, confidence interval; COMMIT, Clopidogrel and Metoprolol in Myocardial Infarction; ACS, acute coronary syndromes; CURE, Clopidogrel in Unstable Angina to Prevent Recurrent Events; RR, relative risk; CREDO, Clopidogrel for the Reduction of Events During Observation; PCICURE, Analysis of CURE patients who underwent a percutaneous coronary intervention; TVR, target vessel revascularization.

  • Superscript numbers refer to references.

ST elevation MI
CLARITY‐TIMI13 Incidence of death, infarct‐related artery occlusion, or recurrent MI 36% reduction (95% CI 2447); P < .001
COMMIT14 Incidence of death, MI, or stroke 9% reduction (95% CI 314); P < .002
ACS without ST elevation
CURE15 Incidence of death, MI, or stroke 20% reduction (RR 0.80 [0.720.90]); P < .001
Bare‐metal stent placement
CREDO16 Incidence of death, MI, or stroke 27% reduction (95% CI 3.944.4); P < .02
PCI‐CURE17 Incidence of death, MI, or urgent TVR 30% reduction (RR 0.70 [0.500.97]); P < .03

Despite the proven efficacy of DAPT in ACS, about 15% of patients die or experience reinfarction within 30 days of diagnosis.19 The continued risk for thrombotic events could be due to delayed onset of platelet inhibition and to patient heterogeneity in responsiveness to therapy with ASA and/or clopidogrel.20 Consequently, the optimum dose for clopidogrel and ASA following ACS is uncertain. The CURRENT‐OASIS 7 trial evaluated the efficacy and safety of high‐dose clopidogrel (600‐mg loading dose, 150 mg once daily for 7 days, followed by 75 mg/d) versus standard‐dose clopidogrel (300‐mg loading dose, followed by 75 mg/d) and ASA (75‐100 mg versus 300‐325 mg/d) in patients with ACS who were treated medically, with or without stenting.21 In the overall study population as well as in patients who did not receive stenting, there was no significant difference in the combined rate of death from cardiovascular causes, MI, and stroke between patients receiving the high‐dose and the standard‐dose clopidogrel (4.2% vs 4.4%; P = .37) and high‐dose versus low‐dose ASA (4.2% vs 4.4%; P = .47). There were no significant differences in bleeding complications between the two clopidogrel treatment arms or between the high‐dose and low‐dose ASA groups.

The ACC/AHA guidelines recommend ASA, 75‐162 mg/d indefinitely after medical therapy without stenting (class I, level of evidence: A)3 and clopidogrel 75 mg/d for at least 1 month (class IA) and optimally for 1 year (class IB). Clopidogrel monotherapy is appropriate for patients with ACS who are unable to tolerate ASA due to either hypersensitivity or recent significant gastrointestinal bleeding.

As is the case after coronary stenting, interruption of DAPT soon after ACS may subject patients to high recurrence of cardiovascular events, although few data are available to support this observation. Interruption of DAPT due to bleeding complications or surgical procedures more than 1 month after ACS may be reasonable for a patient who did not receive a stent. Clinicians should restart DAPT after the surgical procedure once the bleeding risk becomes acceptable.

Dual Antiplatelet Therapy Following Coronary Stenting

Following Bare Metal Stents

Stent thrombosis occurs in approximately 20% of patients who receive bare metal stents (BMS) without DAPT22; the risk is highest in the first 30 days after implantation. The clinical presentation of stent thrombosis is often catastrophic: MI or sudden death occurs in over 60% of cases. DAPT reduces the incidence of stent thrombosis to a clinically acceptable level.22

In the ISAR trial of 517 patients treated with BMS for MI, suboptimal angioplasty, or other high‐risk clinical and anatomic features,23 patients were randomly assigned to treatment with ASA plus ticlopidine or ASA plus anticoagulation with heparin and warfarin. The primary endpoint of cardiac death, MI, coronary bypass surgery, or repeat angioplasty occurred in 1.5% of patients assigned to DAPT and 6.2% of those assigned to anticoagulant therapy (relative risk [RR], 0.25; 95% confidence interval [CI], 0.06‐0.77). The PCI‐CURE study evaluated patients who received BMS after ACS.17 The primary endpoint was a composite of cardiovascular death, MI, or urgent target‐vessel revascularization within 30 days of PCI. Long‐term administration of clopidogrel (8 months) conferred a lower rate of cardiovascular death, MI, or any revascularization (P = .03), with no significant difference in major bleeding between the groups (P = .64). In the CREDO trial,16 investigators evaluated 2116 patients undergoing PCI at 99 North American centers. Subjects received either a 300‐mg loading dose of clopidogrel or placebo 3‐24 hours before PCI. All patients then received clopidogrel 75 mg/d through day 28. For the following 12 months, patients in the loading dose group received clopidogrel, and those in the control group received placebo. All patients received ASA throughout the study. At 1 year, loading dose plus long‐term clopidogrel therapy conferred a 27% RR reduction (3% absolute risk reduction) in the combined endpoint of death, MI, or stroke (P = .02).

Based on these trials, the ACC and AHA recommend clopidogrel (75 mg/d) for a minimum of 1 month and optimally 12 months after BMS (class 1B).2 For patients at increased risk of bleeding, the ACC/AHA recommends a minimum of 2 weeks of clopidogrel. Although lifelong therapy with ASA is recommended, the optimal dose of ASA after BMS is unknown. However, on the basis of clinical trial protocols (no randomized data), guidelines recommend ASA 162 mg‐325 mg/d for at least 1 month, followed by indefinite use at a dose of 75‐162 mg. In patients for whom there is concern about bleeding, lower doses of ASA (75‐162 mg) are acceptable for the initial period after stent implantation.

Following Drug‐Eluting Stents

Drug‐eluting stents have become the standard percutaneous treatment for patients with symptomatic coronary artery disease. In 2005, a sampling of 140 US hospitals indicated that 94% of patients treated with a stent received at least one DES.24 Compared with BMS, restenosis and the need for revascularization are significantly less frequent. In contrast, unanticipated high rates of very late (>1 year) stent thrombosis have complicated DES.25 Because of the potentially lethal consequences of stent thrombosis, several authors have questioned the long‐term safety of DES2635 and examined the role of extended DAPT in reducing this delayed complication.27, 31, 36 Although the initial pivotal randomized trials of DES mandated clopidogrel use for only 3 months after sirolimus‐eluting stent and 6 months after paclitaxel‐eluting stent,37, 38 current guidelines recommend DAPT for at least 12 months after DES placement for patients who are not at high risk of bleeding.1

Although multiple studies have confirmed the benefit of DAPT, controversy remains regarding the extended use for more than 1 year. The only randomized trial that addressed this issue was nonblinded and underpowered.39 In this study of patients from two ongoing trials, the REAL‐LATE and ZEST‐LATE, extended duration DAPT (>12 months, median duration 19.2 months), did not reduce the incidence of MI and cardiac death.39 The rate of the primary endpoint was less than 25% of that expected (underpowered), and patients had already received clopidogrel for up to 24 months before enrollment.

The results from small, nonrandomized trials regarding this issue have been contradictory. Banerjee and colleagues studied 530 consecutive patients who underwent PCI (85% received a DES), were free of cardiovascular events for 6 months after PCI, and had follow‐up available for >12 months.26 In a multivariate analysis, clopidogrel use for 1 year was associated with lower mortality (hazard ratio [HR], 0.28; 95% CI, 0.140.59); this effect was independent of traditional cardiovascular risk factors, clinical presentation, and DES use. In a study at the Duke Heart Center40 among patients with DES (n = 528) who were event‐free at 12 months, continued clopidogrel use conferred lower rates of death (0% versus 3.5%; difference, 3.5%; 95% CI, 5.9% to 1.1%; P = .004) and death or MI (0% versus 4.5%; difference, 4.5%; 95% CI, 7.1% to 1.9%; P < .001) at 24 months. In the TYCOON registry,35 patients with DES receiving clopidogrel for 2 years had a rate of stent thrombosis (0.4%) that was similar to those with BMS (0.7%) but significantly lower than patients with DES and 1‐year DAPT (2.9%).

In contrast, Roy and colleagues33 found that clopidogrel cessation at 12 months did not predict stent thrombosis, and Park and colleagues32 reported that clopidogrel continuation beyond 1 year did not appear to decrease stent thrombosis or clinical events after DES implantation. Similarly, Stone et al.34 performed a landmark analysis on the basis of the prospective, double‐blind TAXUS‐II SR, TAXUS‐IV, and TAXUS‐V trials. The authors found that thienopyridine use beyond 1 year after DES may reduce stent thrombosis over the subsequent 12‐month period, but did not reduce rates of death and MI at 2 and 5 years after either DES or BMS.

Current guidelines recommend ASA 162‐325 mg/d for at least 3‐6 months, followed by treatment indefinitely at a dose of 75‐162 mg daily. Clopidogrel, on the other hand, is given at 75 mg/d for at least 12 months.

Warfarin After Acute Coronary Syndromes

Warfarin with different international normalized ratio (INR) goals alone or in combination with ASA has been evaluated after ACS. In an early trial, patients with recent (mean interval 27 days) MI were treated with warfarin alone versus placebo.41 Warfarin conferred a relative risk reduction in mortality of 24% (95% CI, 4‐44%; P = .027) at the expense of major bleeding rates of 0.6%/y. In the ASPECT trial,42 moderate to high intensity anticoagulation after MI resulted in a 53% and 40% reduction in the relative risk of reinfarction (annual incidence 2.3% versus 5.1%) and cerebrovascular events (annual incidence 0.7% versus 1.2%), respectively. In the WARIS II43 and ASPECT‐244 trials, moderate intensity warfarin (INR 2.0‐2.5) in combination with low‐dose ASA, compared with ASA alone, reduced the composite occurrence of death or nonfatal reinfarction, as well as recurrent coronary occlusion after ST‐segment elevation MI. High‐intensity warfarin therapy alone (INR 3.0‐4.0 for ASPECT, 2.8‐4.2 for WARISII) reduced ischemic vascular events compared with ASA alone. Not unexpectedly, major bleeding episodes were more common among patients receiving warfarin.

No randomized trials have compared DAPT with warfarin plus ASA for patients with ACS who did not receive stents. The ACC/AHA guidelines recommend warfarin for secondary prevention following ACS (class IIb). High‐intensity warfarin alone (INR 2.5‐3.5) or moderate intensity (INR 2.0‐2.5) with low‐dose ASA (75‐81 mg/d) may be reasonable for patients at high ischemic and low bleeding risk who are intolerant of clopidogrel (level of evidence: B). Fixed dose warfarin is not recommended by the ACC/AHA primarily on the basis of the Coumadin Aspirin Reinfarction Study (CARS) results. This study of patients following MI was discontinued prematurely because of a lack of incremental benefit of reduced‐dose ASA (80 mg/d) combined with either 1 or 3 mg of warfarin daily when compared with 160 mg/d of ASA alone.

Triple Therapy for PCI and Atrial Fibrillation

AF is the most frequent indication (70%) for long‐term therapy with warfarin in patients scheduled for stent placement.10 Clinical trials have shown that warfarin alone is superior to ASA, clopidogrel, or DAPT for prevention of stroke in patients with AF.45, 46 Although warfarin is indispensable in these settings, DAPT is similarly necessary after stent implantation. As triple therapy increases the risk of bleeding, the management of patients with AF and who have received stents remains controversial. This situation is particularly problematic among patients who have received DES and may benefit from extended DAPT. No randomized trials exist to clarify the optimal treatment in these patients; and the feasibility of such studies is questionable. Small, mostly retrospective, studies (Table 4) provide limited guidance on this issue; most studies focus on bleeding events rather than the cardiovascular efficacy of triple therapy. Because of these limitations, cardiovascular societies give IIb recommendation for either triple therapy or the combination of warfarin and clopidogrel in this setting and the level of evidence is C.1, 59, 60

Studies of Triple Therapy for Patients With Atrial Fibrillation and Coronary Stents
Author Year Type No. Major Bleeding, % (range) Thrombotic Events Comments
  • Abbreviations: Obs, observational; Pros, prospective; INR, international normalized ratio; GI, gastrointestinal; TT, triple therapy; PCI, percutaneous coronary intervention; MI, myocardial infarction; DAPT, dual antiplatelet therapy; ASA, aspirin; OR, odds ratio; BMI, body mass index; DM, diabetes mellitus; MACE, major adverse cardiovascular events; MACCE, major adverse cardiac and cerebral events; WAA, warfarin plus single antiplatelet agent; EB, early bleeding; LB, late (>48‐h) bleeding.

  • Transfusions.

  • Dual antiplatelet therapy vs triple therapy.

  • Warfarin versus nonwarfarin.

  • Triple therapy versus nontriple therapy.

  • Triple therapy versus dual antiplatelet therapy vs warfarin and single antiplatelet agent.

Studies of one group (triple therapy group)
Orford et al.47 2004 Obs 66 4.5 (0.211.2) N/A Bleeding occurred only with suboptimal control of INR and/or pre‐existing GI disease.
Porter et al.48 2006 Obs 180 1.6 (0.04.2) N/A Bleeding rates were acceptable with short‐term TT after PCI.
Rubboli et al.49 2007 Obs 49 18 (4.436.9) N/A Most hemorrhages occurred during TT.
Rogacka et al.50 2008 Obs 127 4.7 N/A One‐half of bleeding episodes were lethal and 67% occurred within the first month.
Studies comparing triple therapy with dual antiplatelet therapy
Mattichak et al.51 2005 Obs 82 21 vs. 3.5 (P = .028)a Reinfarction (29% vs. 9%, P = .15) TT did not reduce reinfarction after stenting for MI but increased rates of GI bleeding and transfusions.
Khurram et al.11 2006 Matched cohort 214 6.6 vs. 0 (P = .03) N/A Higher bleeding rates for TT than DAPT. INR range or ASA dosage did not influence the bleeding risk.
DeEugenio et al.9 2007 Matched cohort 194 OR 5.0 (1.417.8, P = .012) N/A ASA dose, age, sex, BMI, DM, hypertension, and procedural anticoagulant type or use did not influence risk of major bleeding.
Ruiz‐Nodar et al.52 2008 Obs 426 14.9 vs. 9.0 (P = .19) Mortality: OR 3.43 (1.617.54, P = .002)b MACE: OR 4.9 (2.1711.1, P < .01)b TT was associated with a nonsignificant increase in major bleeding but lower all‐cause mortality and fewer MACE.
Sarafoff et al.53 2008 Prosp 515 1.4 vs. 3.1 (P = .34). MACCE: OR 0.76 (0.481.21, P = .25) No difference in MACCE or bleeding at 2 y. Stent thrombosis did not differ between groups.
Rossini et al.54 2008 Prosp 204 10.8 vs. 4.9 (P = .1) MACE: 5.8% vs. 4.9% (P = .7) INR was targeted to the lower range (2.0‐2.5). No significant difference in bleeding rates for TT versus DAPT at 18 mo. Less bleeding for patients whose INR was within target (4.9 versus 33%, P = .00019). No significant differences in MACE between groups.
Uchida et al.55 2010 Obs 575 18 vs. 2.7 (P < .001) MACE (P = .108) No differences in MACE rates. More bleeding for patients on TT.
Studies comparing triple therapy versus dual antiplatelet therapy versus wararin and single antiplatelet agent
Karjalainen et al.10 2007 Matched cohort 239 OR 3.3 (1.38.6, P = .014)c MACE: OR 1.7 (1.0‐3.0, P = 0.05)c This study compared patients on warfarin at baseline with those not on warfarinall undergoing stenting. Patients on warfarin at baseline were treated with a variety of strategies. Baseline warfarin use increased both major bleeding and MACE at 1 y. ASA plus warfarin was inadequate to prevent stent thrombosis, and premature warfarin cessation was associated with stroke.
Manzano‐Fernandez et al.56 2008 Obs 104 EB (5.8 vs. 11.3, P = .33) LB (21.6 vs. 3.8, P = .006)d MACE: 25.5% vs. 21.0% (P = .53)d No difference in MACE rates between TT and non‐TT (WAA or DAPT). TT conferred higher late bleeding (>48 h).
Gao et al.57 2010 Prosp 622 2.9 vs. 1.8 vs. 2.5 (P = .725)e MACCE: 8.8% vs. 20.1% vs. 14.9% (P = .010)e Target INR was set as 1.8‐2.5. Lower stroke and MACCE rates for TT as compared with DAPT or WAA; no difference in bleeding.
Studies comparing triple therapy with warfarin and single antiplatelet agent
Nguyen et al.58 2007 Obs 800 5.9 vs. 46 (P = .46) Death: 5.1% vs. 6.5% (P = .47) Stroke: 0.7% vs. 3.4% (P = .02) MI: 3.3% vs. 4.5% (P = .49) TT and WAA lead to similar 6‐mo bleeding, death, and MI. Fewer strokes with TT (caveat: low event rate).

In the largest study to date, Nguyen et al.58 evaluated 800 patients who underwent stenting for ACS and were discharged on warfarin plus single antiplatelet agent or triple therapy as part of the GRACE registry. At 6 months, triple therapy conferred a significant reduction in stroke (0.7% versus 3.4%, P = .02) but not in death or MI. There were no differences in in‐hospital major bleeding events between the two groups (5.9% versus 4.6%; P = .46). Similarly, Sarafoff et al.53 reported no significant differences in the combined endpoint (death, MI, stent thrombosis or stroke) or bleeding complications among patients who received triple therapy or DAPT at 2 years of follow‐up. In contrast, Ruiz‐Nodar et al.52 showed that triple therapy, compared with DAPT, at discharge reduced the incidence of death (17.8% versus 27.8%; adjusted HR = 3.43; 95% CI, 1.617.54; P = .002) and major adverse cardiac events (26.5% versus 38.7%; adjusted HR = 4.9; 95% CI, 2.1711.1; P = .01), without a substantial increase in major bleeding events.

The value of combination antiplatelet therapy to prevent stent thrombosis in these patients is clearer in the study reported by Karjalainen et al.10 This case‐control study of 239 patients receiving warfarin at baseline who underwent PCI evaluated a primary endpoint of death, MI, target‐vessel revascularization, or stent thrombosis and a secondary endpoint of major bleeding and stroke to 12 months of follow‐up. Forty‐eight percent of patients received triple therapy, whereas 15.5% were discharged on DAPT. The remaining patients received warfarin plus a single antiplatelet agent. Stent thrombosis occurred more frequently among patients receiving warfarin plus ASA (15.2%) than among those receiving triple therapy (1.9%). As expected, stroke was more frequent in patients treated with DAPT (8.8%) than among those receiving triple therapy (2.8%). Major bleeding was similar between groups. Therapy with warfarin was an independent predictor of both major bleeding and major cardiac events at 1 year. This observation illustrates that the outcome of PCI in patients on chronic warfarin therapy is unsatisfactory irrespective of the antithrombotic combinations used, highlighting the need for better strategies to treat these patients.

Choice of Therapy and Management of Patients Eligible for Triple Therapy

Current guidelines for PCI do not provide guidance for patients with an indication for triple therapy due to a paucity of published evidence. Several ongoing prospective trials aim to address the management of these patients (AFCAS, ISAR‐TRIPLE). Pending further study, clinicians should consider the embolic risk (CHADS2 score), target INR, type of stent, bleeding risk, and duration of treatment when determining the appropriate antiplatelet/anticoagulant combinations. The CHADS2 score (Table 2) stratifies the risk for stroke among patients with AF,4 while the Outpatient Bleeding Risk Index (OBRI) allows estimation of bleeding risk.12, 61 The OBRI considers age > 65 years, prior stroke, prior gastrointestinal bleeding, and any of four comorbidities (recent MI, anemia, diabetes, or renal insufficiency) in order to stratify patients into three risk groups.61 Patients with three to four risk factors have a high risk of bleeding (23% at 3 months and 48% at 12 months) whereas patients with no risk factors have only a 3% risk of bleeding at 12 months. Unfortunately, advanced age and prior stroke appear in both OBRI and CHADS.

For patients with AF who are at high risk for embolic stroke (>3% per year), we recommend triple therapy for the shortest time possible, followed by warfarin and ASA indefinitely. In case of BMS, it is acceptable to shorten triple therapy duration to 1 month. The optimal duration of triple therapy for patients with DES is uncertain; recommended durations range from 3 months to 1 year.62 If the potential consequences of stent thrombosis are high due to a large amount of myocardium at risk, an extended period of triple therapy might be justified. For patients whose stroke risk is lower (CHADS2 score of 0‐1), the risk for bleeding likely outweighs any benefit from stroke prevention. In this instance, it is reasonable to use DAPT with ASA and clopidogrel for 1 month after BMS and 12 months after DES, followed by ASA, with or without warfarin, indefinitely. In a recently published study, patients with AF and a CHADS2 score of 1 had a yearly stroke risk of 1.25% while taking DAPT63; the risk of major bleeding for triple therapy is 6.1% per year.64

For patients who have a high bleeding risk, BMS are the preferred stent type as the duration of triple therapy might be limited to 4 weeks. To our knowledge, no randomized study has evaluated the outcome of patients with BMS compared with DES who also have an indication for warfarin. Because studies have suggested that clopidogrel is more effective than aspirin in preventing stent thrombosis and in reducing death or MI after coronary stenting,40, 65 warfarin and single antiplatelet therapy with clopidogrel might be a reasonable treatment option in patients with high bleeding risk. The WOEST study (NCT00769938), currently recruiting participants, is the first randomized study specifically designed to test this hypothesis.

Since gastrointestinal bleeding accounts for approximately 30‐40% of hemorrhagic events in patients on combined ASA and anticoagulant therapy, an expert consensus document recommended concomitant treatment with proton pump inhibitors (PPIs) to reduce this risk.66 In contrast, the 2009 Focused Updates of the ACC/AHA/SCAI Guidelines did not recommend the use of PPIs with DAPT in the setting of ACS.2 This is because of studies that show inhibition of platelet activation,67 and potential clinical harm,68 when clopidogrel is combined with certain PPIs that inhibit the CYP2C19 enzyme. However, to date there are no convincing randomized clinical trial data documenting an important clinical drug‐drug interaction. The U.S. Food and Drug Administration (FDA) advises that physicians avoid the use of clopidogrel in patients with impaired CYP2C19 function due to known genetic variation or due to concomitant use of drugs that inhibit CYP2C19 activity. More specifically, the FDA recommends avoiding the use of omeprazole and esomeprazole in patients taking clopidogrel.69

In particular, elderly patients have an increased risk of bleeding while receiving triple therapy. In a study of patients over age 65, 2.5% were hospitalized for bleeding in the first year after PCI, and the use of triple therapy was the strongest predictor of bleeding (more than threefold increase).70 One in five patients suffered death or MI at 1 year after hospitalization for bleeding.70 The basis for poor outcomes after hospitalization for bleeding in this population is multifactorial and may be due to the location of bleeding, associated hypercoagulable state, potential adverse impact of blood transfusion, withdrawal of warfarin therapy in patients with AF and PCI, and the premature discontinuation of DAPT. The use of nonsteroidal anti‐inflammatory drugs (NSAIDs) is common among the elderly and conferred a doubling of bleeding risk.70 Limiting the use of NSAID, the use of low‐dose ASA beyond 30 days after stent implantation, greater use of BMS, and maintaining INR at the lowest possible level (INR of 22.5) will reduce the risk for bleeding.57, 71

New Anticoagulants

Due to the high risk for bleeding with warfarin and the challenges inherent in INR monitoring, researchers have developed several novel anticoagulants whose advantages include fixed daily dosing and no need for monitoring. Dabigatran is a direct oral thrombin inhibitor that is already licensed in Europe and Canada for thromboprophylaxis after hip or knee surgery. It has also been studied in patients with AF. In the RE‐LY trial, patients with AF who received dabigatran 110 mg daily had rates of stroke and systemic embolism that were similar to those with warfarin, as well as lower rates of major hemorrhage.72 The randomized ReDEEM trial, reported at the AHA 2009 Scientific Sessions, was aimed at finding a dosage of dabigatran that achieves a good balance between clinical effectiveness and bleeding risk when combined with aspirin and clopidogrel after acute MI. Dosages ranging from 50 mg twice daily to 150 mg twice daily were all associated with 6‐month rates of bleeding lower than 2%. Hospitalists should view these encouraging results cautiously until the publication of ReDEEM trial results in a peer‐reviewed journal.

A variety of oral Xa antagonists are also being evaluated in patients with AF or ACS. These trials offer insight into triple therapy regimens that include ASA, clopidogrel, and an Xa antagonist. In a recent study of the oral Xa antagonist rivaroxaban, investigators stratified 3491 subjects with ACS according to whether they received concomitant ASA alone or ASA and clopidogrel.73 Subjects receiving ASA plus rivaroxaban had a modest increase in bleeding. Triple therapy, however, increased the composite bleeding rate from 3.5% in the DAPT group to approximately 6‐15% (low‐dose or high‐dose rivaroxaban, respectively). Rivaroxaban is currently under review by the FDA.

These novel agents might eventually replace warfarin for many or most indications for anticoagulation. It is imperative that future research compare the efficacy and risk of bleeding between triple therapy using these new agents and triple therapy with warfarin.

Conclusions

The management of patients on long‐term anticoagulation who require DAPT because of ACS or coronary stenting is challenging. DAPT may safely substitute for warfarin only for patients at low risk for a thromboembolic event (ie, low‐risk AF with low CHADS2 score). Clinicians should not interrupt warfarin in patients at higher risk (ie, intermediate to high‐risk AF, mechanical valves, or recent venous thromboembolism), even in the presence of DAPT. In these patients, triple therapy is the optimal approach following coronary stenting (and possibly during the initial period after ACS without stenting). As this approach confers a fivefold increase in bleeding complications compared with DAPT, careful monitoring of the INR, the addition of PPIs, and the exclusion of elderly patients who are at the highest risk for bleeding complications74 is recommended. The preferred duration of triple therapy after BMS in patients who require long‐term anticoagulation is 1 month, whereas the optimal duration after ACS or DES remains unresolved.

References
  1. King SB,Smith SC,Hirshfeld JW, et al.2007 Focused Update of the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention, Writing on Behalf of the 2005 Writing Committee.Circulation2008;117:261295.
  2. Kushner FG,Hand M,Smith SC, et al.2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST‐Elevation Myocardial Infarction (updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (updating the 2005 Guideline and 2007 Focused Update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.Circulation2009;120:22712306.
  3. Anderson JL,Adams CD,Antman EM, et al.ACC/AHA 2007 guidelines for the management of patients with unstable angina/non‐ST‐Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non‐ST‐Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine.J Am Coll Cardiol2007;50:e1e157.
  4. Gage BF,van Walraven C,Pearce L, et al.Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin.Circulation2004;110:22872292.
  5. Cannegieter SC,Rosendaal FR,Briet E.Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses.Circulation1994;89:635641.
  6. Pignone M,Anderson GK,Binns K,Tilson HH,Weisman SM.Aspirin use among adults aged 40 and older in the United States: results of a national survey.Am J Prev Med2007;32:403407.
  7. Douketis JD,Berger PB,Dunn AS, et al.The perioperative management of antithrombotic therapy: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th Edition).Chest2008;133:299S339S.
  8. Wang TY,Robinson LA,Ou FS, et al.Discharge antithrombotic strategies among patients with acute coronary syndrome previously on warfarin anticoagulation: physician practice in the CRUSADE registry.Am Heart J2008;155:361368.
  9. DeEugenio D,Kolman L,DeCaro M, et al.Risk of major bleeding with concomitant dual antiplatelet therapy after percutaneous coronary intervention in patients receiving long‐term warfarin therapy.Pharmacotherapy2007;27:691696.
  10. Karjalainen PP,Porela P,Ylitalo A, et al.Safety and efficacy of combined antiplatelet‐warfarin therapy after coronary stenting.Eur Heart J2007;28:726732.
  11. Khurram Z,Chou E,Minutello R, et al.Combination therapy with aspirin, clopidogrel and warfarin following coronary stenting is associated with a significant risk of bleeding.J Invasive Cardiol2006;18:162164.
  12. Shireman TI,Mahnken JD,Howard PA,Kresowik TF,Hou Q,Ellerbeck EF.Development of a contemporary bleeding risk model for elderly warfarin recipients.Chest2006;130:13901396.
  13. Sabatine MS,Cannon CP,Gibson CM, et al.Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST‐segment elevation.N Engl J Med2005;352:11791189.
  14. Chen ZM,Jiang LX,Chen YP, et al.Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo‐controlled trial.Lancet2005;366:16071621.
  15. Yusuf S,Zhao F,Mehta SR,Chrolavicius S,Tognoni G,Fox KK.Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST‐segment elevation.N Engl J Med2001;345:494502.
  16. Steinhubl SR,Berger PB,Mann JT, et al.Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial.JAMA2002;288:24112420.
  17. Mehta SR,Yusuf S,Peters RJ, et al.Effects of pretreatment with clopidogrel and aspirin followed by long‐term therapy in patients undergoing percutaneous coronary intervention: the PCI‐CURE study.Lancet2001;358:527533.
  18. Bassand JP,Hamm CW,Ardissino D, et al.Guidelines for the diagnosis and treatment of non‐ST‐segment elevation acute coronary syndromes.Eur Heart J2007;28:15981660.
  19. Turpie AG.Burden of disease: medical and economic impact of acute coronary syndromes.Am J Manag Care2006;12:S430S434.
  20. Serebruany VL,Steinhubl SR,Berger PB,Malinin AI,Bhatt DL,Topol EJ.Variability in platelet responsiveness to clopidogrel among 544 individuals.J Am Coll Cardiol2005;45:246251.
  21. Mehta SR,Bassand JP,Chrolavicius S, et al.Dose comparisons of clopidogrel and aspirin in acute coronary syndromes.N Engl J Med2010;363:930942.
  22. Leon MB,Baim DS,Popma JJ, et al.A clinical trial comparing three antithrombotic‐drug regimens after coronary‐artery stenting. Stent Anticoagulation Restenosis Study Investigators.N Engl J Med1998;339:16651671.
  23. Schomig A,Neumann FJ,Kastrati A, et al.A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary‐artery stents.N Engl J Med1996;334:10841089.
  24. Williams DO,Abbott JD,Kip KE.Outcomes of 6906 patients undergoing percutaneous coronary intervention in the era of drug‐eluting stents: report of the DEScover Registry.Circulation2006;114:21542162.
  25. Stone GW,Moses JW,Ellis SG, et al.Safety and efficacy of sirolimus‐ and paclitaxel‐eluting coronary stents.N Engl J Med2007;356:9981008.
  26. Banerjee S,Varghese C,Samuel J, et al.Comparison of the impact of short (<1 year) and long‐term (> or =1 year) clopidogrel use following percutaneous coronary intervention on mortality.Am J Cardiol2008;102:11591162.
  27. Camenzind E,Steg PG,Wijns W.Stent thrombosis late after implantation of first‐generation drug‐eluting stents: a cause for concern.Circulation2007;115:14401455; discussion 55.
  28. Daemen J,Wenaweser P,Tsuchida K, et al.Early and late coronary stent thrombosis of sirolimus‐eluting and paclitaxel‐eluting stents in routine clinical practice: data from a large two‐institutional cohort study.Lancet2007;369:667678.
  29. Kastrati A,Mehilli J,Pache J, et al.Analysis of 14 trials comparing sirolimus‐eluting stents with bare‐metal stents.N Engl J Med2007;356:10301039.
  30. Lagerqvist B,James SK,Stenestrand U,Lindback J,Nilsson T,Wallentin L.Long‐term outcomes with drug‐eluting stents versus bare‐metal stents in Sweden.N Engl J Med2007;356:10091019.
  31. Mauri L,Hsieh WH,Massaro JM,Ho KK,D'Agostino R,Cutlip DE.Stent thrombosis in randomized clinical trials of drug‐eluting stents.N Engl J Med2007;356:10201029.
  32. Park DW,Yun SC,Lee SW, et al.Stent thrombosis, clinical events, and influence of prolonged clopidogrel use after placement of drug‐eluting stent data from an observational cohort study of drug‐eluting versus bare‐metal stents.JACC Cardiovasc Interv2008;1:494503.
  33. Roy P,Bonello L,Torguson R, et al.Temporal relation between Clopidogrel cessation and stent thrombosis after drug‐eluting stent implantation.Am J Cardiol2009;103:801805.
  34. Stone GW,Ellis SG,Colombo A, et al.Effect of prolonged thienopyridine use after drug‐eluting stent implantation (from the TAXUS landmark trials data).Am J Cardiol2008;102:10171022.
  35. Tanzilli G,Greco C,Pelliccia F, et al.Effectiveness of two‐year clopidogrel + aspirin in abolishing the risk of very late thrombosis after drug‐eluting stent implantation (from the TYCOON [two‐year ClOpidOgrel need] study).Am J Cardiol2009;104:13571361.
  36. Nordmann AJ,Briel M,Bucher HC.Mortality in randomized controlled trials comparing drug‐eluting vs. bare metal stents in coronary artery disease: a meta‐analysis.Eur Heart J2006;27:27842814.
  37. Moses JW,Leon MB,Popma JJ, et al.Sirolimus‐eluting stents versus standard stents in patients with stenosis in a native coronary artery.N Engl J Med2003;349:13151323.
  38. Stone GW,Ellis SG,Cox DA, et al.A polymer‐based, paclitaxel‐eluting stent in patients with coronary artery disease.N Engl J Med2004;350:221231.
  39. Park SJ,Park DW,Kim YH, et al.Duration of dual antiplatelet therapy after implantation of drug‐eluting stents.N Engl J Med2010;362:13741382.
  40. Eisenstein EL,Anstrom KJ,Kong DF, et al.Clopidogrel use and long‐term clinical outcomes after drug‐eluting stent implantation.JAMA2007;297:159168.
  41. Smith P,Arnesen H,Holme I.The effect of warfarin on mortality and reinfarction after myocardial infarction.N Engl J Med1990;323:147152.
  42. Effect of long‐term oral anticoagulant treatment on mortality and cardiovascular morbidity after myocardial infarction.Anticoagulants in the Secondary Prevention of Events in Coronary Thrombosis (ASPECT) Research Group.Lancet1994;343:499503.
  43. Hurlen M,Abdelnoor M,Smith P,Erikssen J,Arnesen H.Warfarin, aspirin, or both after myocardial infarction.N Engl J Med2002;347:969974.
  44. van Es RF,Jonker JJ,Verheugt FW,Deckers JW,Grobbee DE.Aspirin and coumadin after acute coronary syndromes (the ASPECT‐2 study): a randomised controlled trial.Lancet2002;360:109113.
  45. Connolly S,Pogue J,Hart R, et al.Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial.Lancet2006;367:19031912.
  46. Hart RG,Benavente O,McBride R,Pearce LA.Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta‐analysis.Ann Intern Med1999;131:492501.
  47. Orford JL,Fasseas P,Melby S, et al.Safety and efficacy of aspirin, clopidogrel, and warfarin after coronary stent placement in patients with an indication for anticoagulation.Am Heart J2004;147:463467.
  48. Porter A,Konstantino Y,Iakobishvili Z,Shachar L,Battler A,Hasdai D.Short‐term triple therapy with aspirin, warfarin, and a thienopyridine among patients undergoing percutaneous coronary intervention.Catheter Cardiovasc Interv2006;68:5661.
  49. Rubboli A,Colletta M,Herzfeld J,Sangiorgio P,Di Pasquale G.Periprocedural and medium‐term antithrombotic strategies in patients with an indication for long‐term anticoagulation undergoing coronary angiography and intervention.Coron Artery Dis2007;18:193199.
  50. Rogacka R,Chieffo A,Michev I, et al.Dual antiplatelet therapy after percutaneous coronary intervention with stent implantation in patients taking chronic oral anticoagulation.JACC Cardiovasc Interv2008;1:5661.
  51. Mattichak SJ,Reed PS,Gallagher MJ,Boura JA,O'Neill WW,Kahn JK.Evaluation of safety of warfarin in combination with antiplatelet therapy for patients treated with coronary stents for acute myocardial infarction.J Interv Cardiol2005;18:163166.
  52. Ruiz‐Nodar JM,Marin F,Hurtado JA, et al.Anticoagulant and antiplatelet therapy use in 426 patients with atrial fibrillation undergoing percutaneous coronary intervention and stent implantation implications for bleeding risk and prognosis.J Am Coll Cardiol2008;51:818825.
  53. Sarafoff N,Ndrepepa G,Mehilli J, et al.Aspirin and clopidogrel with or without phenprocoumon after drug eluting coronary stent placement in patients on chronic oral anticoagulation.J Intern Med2008;264:472480.
  54. Rossini R,Musumeci G,Lettieri C, et al.Long‐term outcomes in patients undergoing coronary stenting on dual oral antiplatelet treatment requiring oral anticoagulant therapy.Am J Cardiol2008;102:16181623.
  55. Uchida Y,Mori F,Ogawa H,Takagi A,Hagiwara N.Impact of anticoagulant therapy with dual antiplatelet therapy on prognosis after treatment with drug‐eluting coronary stents.J Cardiol2010;55:362369.
  56. Manzano‐Fernandez S,Pastor FJ,Marin F, et al.Increased major bleeding complications related to triple antithrombotic therapy usage in patients with atrial fibrillation undergoing percutaneous coronary artery stenting.Chest2008;134:559567.
  57. Gao F,Zhou YJ,Wang ZJ, et al.Comparison of different antithrombotic regimens for patients with atrial fibrillation undergoing drug‐eluting stent implantation.Circ J2010;74:701708.
  58. Nguyen MC,Lim YL,Walton A, et al.Combining warfarin and antiplatelet therapy after coronary stenting in the Global Registry of Acute Coronary Events: is it safe and effective to use just one antiplatelet agent?Eur Heart J2007;28:17171722.
  59. Antman EM,Hand M,Armstrong PW, et al.2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST‐elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.J Am Coll Cardiol2008;51:210247.
  60. Silber S,Albertsson P,Aviles FF, et al.Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology.Eur Heart J2005;26:804847.
  61. Beyth RJ,Quinn LM,Landefeld CS.Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin.Am J Med1998;105:9199.
  62. Sourgounis A,Lipiecki J,Lo TS,Hamon M.Coronary stents and chronic anticoagulation.Circulation2009;119:16821688.
  63. Healey JS,Hart RG,Pogue J, et al.Risks and benefits of oral anticoagulation compared with clopidogrel plus aspirin in patients with atrial fibrillation according to stroke risk: the atrial fibrillation clopidogrel trial with irbesartan for prevention of vascular events (ACTIVE‐W).Stroke2008;39:1482–1486.
  64. Halg C,Brunner‐La Rocca HP,Kaiser C, et al.Early and late increased bleeding rates after angioplasty and stenting due to combined antiplatelet and anticoagulanttherapy.EuroIntervention2009;5:425431.
  65. Pfisterer M,Brunner‐La Rocca HP,Buser PT, et al.Late clinical events after clopidogrel discontinuation may limit the benefit of drug‐eluting stents: an observational study of drug‐eluting versus bare‐metal stents.J Am Coll Cardiol2006;48:25842591.
  66. Bhatt DL,Scheiman J,Abraham NS, et al.ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents.Circulation2008;118:18941909.
  67. Gilard M,Arnaud B,Cornily JC, et al.Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double‐blind OCLA (Omeprazole CLopidogrel Aspirin) study.J Am Coll Cardiol2008;51:256260.
  68. Ho PM,Maddox TM,Wang L, et al.Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome.JAMA2009;301:937944.
  69. Follow‐Up to the January 26,2009, Early Communication about an Ongoing Safety Review of Clopidogrel Bisulfate (marketed as Plavix) and Omeprazole (marketed as Prilosec and Prilosec OTC). 11/17/2009. (Accessed at http://www.fda.gov/Drugs/DrugSafety/Postmarket DrugSafetyInformationforPatientsandProviders/DrugSafetyInformationfor HeathcareProfessionals/ucm190784.htm.)
  70. Ko DT,Yun L,Wijeysundera HC, et al.Incidence, predictors, and prognostic implications of hospitalization for late bleeding after percutaneous coronary intervention for patients older than 65 years.Circ Cardiovasc Interv2010;3:140147.
  71. Rubboli A,Halperin JL,Airaksinen KE, et al.Antithrombotic therapy in patients treated with oral anticoagulation undergoing coronary artery stenting. An expert consensus document with focus on atrial fibrillation.Ann Med2008;40:428436.
  72. Connolly SJ,Ezekowitz MD,Yusuf S, et al.Dabigatran versus warfarin in patients with atrial fibrillation.N Engl J Med2009;361:11391151.
  73. Mega JL,Braunwald E,Mohanavelu S, et al.Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACS‐TIMI 46): a randomised, double‐blind, phase II trial.Lancet2009;374:2938.
  74. Buresly K,Eisenberg MJ,Zhang X,Pilote L.Bleeding complications associated with combinations of aspirin, thienopyridine derivatives, and warfarin in elderly patients following acute myocardial infarction.Arch Intern Med2005;165:784789.
References
  1. King SB,Smith SC,Hirshfeld JW, et al.2007 Focused Update of the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: 2007 Writing Group to Review New Evidence and Update the ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention, Writing on Behalf of the 2005 Writing Committee.Circulation2008;117:261295.
  2. Kushner FG,Hand M,Smith SC, et al.2009 Focused Updates: ACC/AHA Guidelines for the Management of Patients With ST‐Elevation Myocardial Infarction (updating the 2004 Guideline and 2007 Focused Update) and ACC/AHA/SCAI Guidelines on Percutaneous Coronary Intervention (updating the 2005 Guideline and 2007 Focused Update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.Circulation2009;120:22712306.
  3. Anderson JL,Adams CD,Antman EM, et al.ACC/AHA 2007 guidelines for the management of patients with unstable angina/non‐ST‐Elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non‐ST‐Elevation Myocardial Infarction) developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine.J Am Coll Cardiol2007;50:e1e157.
  4. Gage BF,van Walraven C,Pearce L, et al.Selecting patients with atrial fibrillation for anticoagulation: stroke risk stratification in patients taking aspirin.Circulation2004;110:22872292.
  5. Cannegieter SC,Rosendaal FR,Briet E.Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses.Circulation1994;89:635641.
  6. Pignone M,Anderson GK,Binns K,Tilson HH,Weisman SM.Aspirin use among adults aged 40 and older in the United States: results of a national survey.Am J Prev Med2007;32:403407.
  7. Douketis JD,Berger PB,Dunn AS, et al.The perioperative management of antithrombotic therapy: American College of Chest Physicians Evidence‐Based Clinical Practice Guidelines (8th Edition).Chest2008;133:299S339S.
  8. Wang TY,Robinson LA,Ou FS, et al.Discharge antithrombotic strategies among patients with acute coronary syndrome previously on warfarin anticoagulation: physician practice in the CRUSADE registry.Am Heart J2008;155:361368.
  9. DeEugenio D,Kolman L,DeCaro M, et al.Risk of major bleeding with concomitant dual antiplatelet therapy after percutaneous coronary intervention in patients receiving long‐term warfarin therapy.Pharmacotherapy2007;27:691696.
  10. Karjalainen PP,Porela P,Ylitalo A, et al.Safety and efficacy of combined antiplatelet‐warfarin therapy after coronary stenting.Eur Heart J2007;28:726732.
  11. Khurram Z,Chou E,Minutello R, et al.Combination therapy with aspirin, clopidogrel and warfarin following coronary stenting is associated with a significant risk of bleeding.J Invasive Cardiol2006;18:162164.
  12. Shireman TI,Mahnken JD,Howard PA,Kresowik TF,Hou Q,Ellerbeck EF.Development of a contemporary bleeding risk model for elderly warfarin recipients.Chest2006;130:13901396.
  13. Sabatine MS,Cannon CP,Gibson CM, et al.Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST‐segment elevation.N Engl J Med2005;352:11791189.
  14. Chen ZM,Jiang LX,Chen YP, et al.Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo‐controlled trial.Lancet2005;366:16071621.
  15. Yusuf S,Zhao F,Mehta SR,Chrolavicius S,Tognoni G,Fox KK.Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST‐segment elevation.N Engl J Med2001;345:494502.
  16. Steinhubl SR,Berger PB,Mann JT, et al.Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial.JAMA2002;288:24112420.
  17. Mehta SR,Yusuf S,Peters RJ, et al.Effects of pretreatment with clopidogrel and aspirin followed by long‐term therapy in patients undergoing percutaneous coronary intervention: the PCI‐CURE study.Lancet2001;358:527533.
  18. Bassand JP,Hamm CW,Ardissino D, et al.Guidelines for the diagnosis and treatment of non‐ST‐segment elevation acute coronary syndromes.Eur Heart J2007;28:15981660.
  19. Turpie AG.Burden of disease: medical and economic impact of acute coronary syndromes.Am J Manag Care2006;12:S430S434.
  20. Serebruany VL,Steinhubl SR,Berger PB,Malinin AI,Bhatt DL,Topol EJ.Variability in platelet responsiveness to clopidogrel among 544 individuals.J Am Coll Cardiol2005;45:246251.
  21. Mehta SR,Bassand JP,Chrolavicius S, et al.Dose comparisons of clopidogrel and aspirin in acute coronary syndromes.N Engl J Med2010;363:930942.
  22. Leon MB,Baim DS,Popma JJ, et al.A clinical trial comparing three antithrombotic‐drug regimens after coronary‐artery stenting. Stent Anticoagulation Restenosis Study Investigators.N Engl J Med1998;339:16651671.
  23. Schomig A,Neumann FJ,Kastrati A, et al.A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary‐artery stents.N Engl J Med1996;334:10841089.
  24. Williams DO,Abbott JD,Kip KE.Outcomes of 6906 patients undergoing percutaneous coronary intervention in the era of drug‐eluting stents: report of the DEScover Registry.Circulation2006;114:21542162.
  25. Stone GW,Moses JW,Ellis SG, et al.Safety and efficacy of sirolimus‐ and paclitaxel‐eluting coronary stents.N Engl J Med2007;356:9981008.
  26. Banerjee S,Varghese C,Samuel J, et al.Comparison of the impact of short (<1 year) and long‐term (> or =1 year) clopidogrel use following percutaneous coronary intervention on mortality.Am J Cardiol2008;102:11591162.
  27. Camenzind E,Steg PG,Wijns W.Stent thrombosis late after implantation of first‐generation drug‐eluting stents: a cause for concern.Circulation2007;115:14401455; discussion 55.
  28. Daemen J,Wenaweser P,Tsuchida K, et al.Early and late coronary stent thrombosis of sirolimus‐eluting and paclitaxel‐eluting stents in routine clinical practice: data from a large two‐institutional cohort study.Lancet2007;369:667678.
  29. Kastrati A,Mehilli J,Pache J, et al.Analysis of 14 trials comparing sirolimus‐eluting stents with bare‐metal stents.N Engl J Med2007;356:10301039.
  30. Lagerqvist B,James SK,Stenestrand U,Lindback J,Nilsson T,Wallentin L.Long‐term outcomes with drug‐eluting stents versus bare‐metal stents in Sweden.N Engl J Med2007;356:10091019.
  31. Mauri L,Hsieh WH,Massaro JM,Ho KK,D'Agostino R,Cutlip DE.Stent thrombosis in randomized clinical trials of drug‐eluting stents.N Engl J Med2007;356:10201029.
  32. Park DW,Yun SC,Lee SW, et al.Stent thrombosis, clinical events, and influence of prolonged clopidogrel use after placement of drug‐eluting stent data from an observational cohort study of drug‐eluting versus bare‐metal stents.JACC Cardiovasc Interv2008;1:494503.
  33. Roy P,Bonello L,Torguson R, et al.Temporal relation between Clopidogrel cessation and stent thrombosis after drug‐eluting stent implantation.Am J Cardiol2009;103:801805.
  34. Stone GW,Ellis SG,Colombo A, et al.Effect of prolonged thienopyridine use after drug‐eluting stent implantation (from the TAXUS landmark trials data).Am J Cardiol2008;102:10171022.
  35. Tanzilli G,Greco C,Pelliccia F, et al.Effectiveness of two‐year clopidogrel + aspirin in abolishing the risk of very late thrombosis after drug‐eluting stent implantation (from the TYCOON [two‐year ClOpidOgrel need] study).Am J Cardiol2009;104:13571361.
  36. Nordmann AJ,Briel M,Bucher HC.Mortality in randomized controlled trials comparing drug‐eluting vs. bare metal stents in coronary artery disease: a meta‐analysis.Eur Heart J2006;27:27842814.
  37. Moses JW,Leon MB,Popma JJ, et al.Sirolimus‐eluting stents versus standard stents in patients with stenosis in a native coronary artery.N Engl J Med2003;349:13151323.
  38. Stone GW,Ellis SG,Cox DA, et al.A polymer‐based, paclitaxel‐eluting stent in patients with coronary artery disease.N Engl J Med2004;350:221231.
  39. Park SJ,Park DW,Kim YH, et al.Duration of dual antiplatelet therapy after implantation of drug‐eluting stents.N Engl J Med2010;362:13741382.
  40. Eisenstein EL,Anstrom KJ,Kong DF, et al.Clopidogrel use and long‐term clinical outcomes after drug‐eluting stent implantation.JAMA2007;297:159168.
  41. Smith P,Arnesen H,Holme I.The effect of warfarin on mortality and reinfarction after myocardial infarction.N Engl J Med1990;323:147152.
  42. Effect of long‐term oral anticoagulant treatment on mortality and cardiovascular morbidity after myocardial infarction.Anticoagulants in the Secondary Prevention of Events in Coronary Thrombosis (ASPECT) Research Group.Lancet1994;343:499503.
  43. Hurlen M,Abdelnoor M,Smith P,Erikssen J,Arnesen H.Warfarin, aspirin, or both after myocardial infarction.N Engl J Med2002;347:969974.
  44. van Es RF,Jonker JJ,Verheugt FW,Deckers JW,Grobbee DE.Aspirin and coumadin after acute coronary syndromes (the ASPECT‐2 study): a randomised controlled trial.Lancet2002;360:109113.
  45. Connolly S,Pogue J,Hart R, et al.Clopidogrel plus aspirin versus oral anticoagulation for atrial fibrillation in the Atrial fibrillation Clopidogrel Trial with Irbesartan for prevention of Vascular Events (ACTIVE W): a randomised controlled trial.Lancet2006;367:19031912.
  46. Hart RG,Benavente O,McBride R,Pearce LA.Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: a meta‐analysis.Ann Intern Med1999;131:492501.
  47. Orford JL,Fasseas P,Melby S, et al.Safety and efficacy of aspirin, clopidogrel, and warfarin after coronary stent placement in patients with an indication for anticoagulation.Am Heart J2004;147:463467.
  48. Porter A,Konstantino Y,Iakobishvili Z,Shachar L,Battler A,Hasdai D.Short‐term triple therapy with aspirin, warfarin, and a thienopyridine among patients undergoing percutaneous coronary intervention.Catheter Cardiovasc Interv2006;68:5661.
  49. Rubboli A,Colletta M,Herzfeld J,Sangiorgio P,Di Pasquale G.Periprocedural and medium‐term antithrombotic strategies in patients with an indication for long‐term anticoagulation undergoing coronary angiography and intervention.Coron Artery Dis2007;18:193199.
  50. Rogacka R,Chieffo A,Michev I, et al.Dual antiplatelet therapy after percutaneous coronary intervention with stent implantation in patients taking chronic oral anticoagulation.JACC Cardiovasc Interv2008;1:5661.
  51. Mattichak SJ,Reed PS,Gallagher MJ,Boura JA,O'Neill WW,Kahn JK.Evaluation of safety of warfarin in combination with antiplatelet therapy for patients treated with coronary stents for acute myocardial infarction.J Interv Cardiol2005;18:163166.
  52. Ruiz‐Nodar JM,Marin F,Hurtado JA, et al.Anticoagulant and antiplatelet therapy use in 426 patients with atrial fibrillation undergoing percutaneous coronary intervention and stent implantation implications for bleeding risk and prognosis.J Am Coll Cardiol2008;51:818825.
  53. Sarafoff N,Ndrepepa G,Mehilli J, et al.Aspirin and clopidogrel with or without phenprocoumon after drug eluting coronary stent placement in patients on chronic oral anticoagulation.J Intern Med2008;264:472480.
  54. Rossini R,Musumeci G,Lettieri C, et al.Long‐term outcomes in patients undergoing coronary stenting on dual oral antiplatelet treatment requiring oral anticoagulant therapy.Am J Cardiol2008;102:16181623.
  55. Uchida Y,Mori F,Ogawa H,Takagi A,Hagiwara N.Impact of anticoagulant therapy with dual antiplatelet therapy on prognosis after treatment with drug‐eluting coronary stents.J Cardiol2010;55:362369.
  56. Manzano‐Fernandez S,Pastor FJ,Marin F, et al.Increased major bleeding complications related to triple antithrombotic therapy usage in patients with atrial fibrillation undergoing percutaneous coronary artery stenting.Chest2008;134:559567.
  57. Gao F,Zhou YJ,Wang ZJ, et al.Comparison of different antithrombotic regimens for patients with atrial fibrillation undergoing drug‐eluting stent implantation.Circ J2010;74:701708.
  58. Nguyen MC,Lim YL,Walton A, et al.Combining warfarin and antiplatelet therapy after coronary stenting in the Global Registry of Acute Coronary Events: is it safe and effective to use just one antiplatelet agent?Eur Heart J2007;28:17171722.
  59. Antman EM,Hand M,Armstrong PW, et al.2007 focused update of the ACC/AHA 2004 guidelines for the management of patients with ST‐elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.J Am Coll Cardiol2008;51:210247.
  60. Silber S,Albertsson P,Aviles FF, et al.Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology.Eur Heart J2005;26:804847.
  61. Beyth RJ,Quinn LM,Landefeld CS.Prospective evaluation of an index for predicting the risk of major bleeding in outpatients treated with warfarin.Am J Med1998;105:9199.
  62. Sourgounis A,Lipiecki J,Lo TS,Hamon M.Coronary stents and chronic anticoagulation.Circulation2009;119:16821688.
  63. Healey JS,Hart RG,Pogue J, et al.Risks and benefits of oral anticoagulation compared with clopidogrel plus aspirin in patients with atrial fibrillation according to stroke risk: the atrial fibrillation clopidogrel trial with irbesartan for prevention of vascular events (ACTIVE‐W).Stroke2008;39:1482–1486.
  64. Halg C,Brunner‐La Rocca HP,Kaiser C, et al.Early and late increased bleeding rates after angioplasty and stenting due to combined antiplatelet and anticoagulanttherapy.EuroIntervention2009;5:425431.
  65. Pfisterer M,Brunner‐La Rocca HP,Buser PT, et al.Late clinical events after clopidogrel discontinuation may limit the benefit of drug‐eluting stents: an observational study of drug‐eluting versus bare‐metal stents.J Am Coll Cardiol2006;48:25842591.
  66. Bhatt DL,Scheiman J,Abraham NS, et al.ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents.Circulation2008;118:18941909.
  67. Gilard M,Arnaud B,Cornily JC, et al.Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double‐blind OCLA (Omeprazole CLopidogrel Aspirin) study.J Am Coll Cardiol2008;51:256260.
  68. Ho PM,Maddox TM,Wang L, et al.Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome.JAMA2009;301:937944.
  69. Follow‐Up to the January 26,2009, Early Communication about an Ongoing Safety Review of Clopidogrel Bisulfate (marketed as Plavix) and Omeprazole (marketed as Prilosec and Prilosec OTC). 11/17/2009. (Accessed at http://www.fda.gov/Drugs/DrugSafety/Postmarket DrugSafetyInformationforPatientsandProviders/DrugSafetyInformationfor HeathcareProfessionals/ucm190784.htm.)
  70. Ko DT,Yun L,Wijeysundera HC, et al.Incidence, predictors, and prognostic implications of hospitalization for late bleeding after percutaneous coronary intervention for patients older than 65 years.Circ Cardiovasc Interv2010;3:140147.
  71. Rubboli A,Halperin JL,Airaksinen KE, et al.Antithrombotic therapy in patients treated with oral anticoagulation undergoing coronary artery stenting. An expert consensus document with focus on atrial fibrillation.Ann Med2008;40:428436.
  72. Connolly SJ,Ezekowitz MD,Yusuf S, et al.Dabigatran versus warfarin in patients with atrial fibrillation.N Engl J Med2009;361:11391151.
  73. Mega JL,Braunwald E,Mohanavelu S, et al.Rivaroxaban versus placebo in patients with acute coronary syndromes (ATLAS ACS‐TIMI 46): a randomised, double‐blind, phase II trial.Lancet2009;374:2938.
  74. Buresly K,Eisenberg MJ,Zhang X,Pilote L.Bleeding complications associated with combinations of aspirin, thienopyridine derivatives, and warfarin in elderly patients following acute myocardial infarction.Arch Intern Med2005;165:784789.
Issue
Journal of Hospital Medicine - 6(9)
Issue
Journal of Hospital Medicine - 6(9)
Page Number
537-545
Page Number
537-545
Publications
Publications
Article Type
Display Headline
Triple therapy in hospitalized patients: Facts and controversies
Display Headline
Triple therapy in hospitalized patients: Facts and controversies
Legacy Keywords
Acute coronary syndromes, atrial fibrillation, dual antiplatelet therapy, stent, triple therapy, warfarin
Legacy Keywords
Acute coronary syndromes, atrial fibrillation, dual antiplatelet therapy, stent, triple therapy, warfarin
Sections
Article Source
Copyright © 2011 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
Hospital Medicine Program, Division of General Medicine and Primary Care, Beth Israel Deaconess Medical center, 330 Brookline Ave, Boston, MA, 02215
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media
Media Files