Article Type
Changed
Fri, 01/18/2019 - 17:31

 

Rosacea is a chronic inflammatory skin disorder characterized by flushing, telangiectasia, erythema, papules, and pustules, most classically of the central face. Fair-skinned individuals and women are more commonly affected than are men, with age of onset typically around 30 years and older.1 In children and adolescents, rosacea is rare, especially among prepubertal children, so other papulopustular disorders should be considered when a rosacealike picture is present.2 Recurrent chalazia are seen with ocular rosacea and may be a clue to the diagnosis of acne rosacea. Rosacea may be divided into four subtypes, and more than one subtype may be simultaneously present in an individual at one time. An individual’s subtype of rosacea also may transform with time to a different or an additional subtype.

Courtesy Dr. Laurence F. Eichenfield
Erythematotelangiectatic rosacea (subtype I) describes persistent erythema of the central face associated with episodes of transient flushing. The erythema may extend to the periphery of the face, ears, neck, and upper chest, and is the most common sign of rosacea in the adult population. Telangiectasias often are present, but both telangiectasias and erythema may be difficult to appreciate in patients of Fitzpatrick skin types V and VI. Rosacea is thought to be both less common and more frequently left undiagnosed in this population.

Papulopustular rosacea (subtype II) is characterized by the presence of erythematous, dome-shaped papules distributed in crops in the central facial region. Cheeks, nasolabial folds, and the chin are most commonly affected. Pustules may or may not be present, but comedones are notably absent in an exclusively rosacea disease process. If comedones are present, a diagnosis of acne vulgaris should be considered instead of, or in addition to, rosacea. Pediatric patients with rosacea frequently present with papules and/or pustules, following the development of flushing.2

Allison Han
Phymatous rosacea (subtype III) consists of irregular thickening and fibrosis of the skin, with widening of follicles and increased nodularity of the skin surface. Any sebaceous facial region may be affected, though rhinophyma – an enlarged, bulbous nose – is the most classic presentation. Fortunately, children usually are spared from phymatous change, as it tends to occur later in the disease process during adulthood.2

Ocular rosacea (subtype IV) may range in severity from mild blepharitis to severe keratitis and corneal vascularization. Patients may complain of a foreign body sensation. On external exam, lid margin telangiectasias, blepharitis, conjunctivitis, conjunctival injection, and recurrent chalazia may be frequently seen.3 Ocular rosacea may present without any signs of cutaneous disease; it may be the only form of rosacea (15% of patients in one study of 20 patients had only ocular rosacea)4 or may herald the development of cutaneous involvement. In fact, in children, ocular rosacea is frequently the first sign of disease. (A total of 55% of patients in the same study had both ocular and cutaneous rosacea, with ocular symptoms manifesting before the cutaneous disease). Thus an index of suspicion for rosacea should be maintained when a child presents with ocular findings.2

Dr. Lawrence F. Eichenfield
Rosacea is clinically diagnosed when at least one diagnostic or two major phenotypic criteria are present.1 Presence of fixed centrofacial erythema or phymatous change are adequate for definitive diagnosis, while flushing, papules and pustules, telangiectasia, and ocular manifestations are considered major phenotypic criteria. In addition, presence of sensitive, easily irritated skin, with frequent stinging or burning, may support a diagnosis of rosacea. Skin biopsy is generally unnecessary, as the histopathologic findings are nonspecific: perivascular and perifollicular inflammatory infiltrates in papulopustular rosacea, dilated blood vessels in the erythematotelangiectatic rosacea, and sebaceous gland hyperplasia and dermal fibrosis in phymatous rosacea.5

Other dermatitides resembling rosacea include steroid rosacea, perioral dermatitis, and idiopathic facial aseptic granuloma. Steroid rosacea, also known as iatrosacea, describes an eruption of erythema, papules, and telangiectasias that is clinically indistinguishable from rosacea.6 It results from chronic use of topical steroids, generally high potency, or abrupt withdrawal of steroids. Steroid rosacea should be treated by discontinuation of the steroid via tapered withdrawal.7 Perioral dermatitis, also known as periorificial dermatitis, may also appear rosacea-form. It usually is located around the perioral and perinasal areas, but may extend to the periocular area.8 Idiopathic facial septic granuloma describes erythematous to violaceous nodules of the cheeks and eyelid in children, with chalazia frequently present; it is thought to be associated with rosacea.9

Although the exact pathophysiology of rosacea is unknown, it is clear that the dysregulation of the innate immune system plays a key role in the pathogenesis of rosacea. Studies have found that patients with rosacea have increased expression of cathelicidin, and its activating serine protease, kallikrein.5 Interestingly, UV light, a known trigger of rosacea, induces expression of cathelicidin and its inflammatory cascade.5 Neurovascular signaling is also aberrantly upregulated; vanilloid and ankyrin receptors have been shown to be active in rosacea, and are activated by rosacea-exacerbating stimuli, such as heat, inflammation, and spices. Higher levels of Demodex folliculorum and Staphylococcus epidermis also have been consistently found on the skin of rosacea patients, compared with healthy subjects, though it is unclear what role these pathogens play in the development of rosacea.

Treatment of rosacea is very important given its profound impact on quality of life; one study found that the odds ratio for depression in individuals with rosacea is 4.81.10 Patient education is essential, and patients should be encouraged to identify specific triggers so they can minimize exposure when feasible. Common triggers include hot and cold temperature, sunlight, wind, spicy foods, alcohol, exercise, emotional stress, and certain medications such as niacin. Topical steroids frequently are exacerbating, so patients should be encouraged to avoid them and use moisturizers often, given their skin’s increased transepidermal water loss and susceptibility to irritation. In addition, sunscreens are essential to reduce inflammation from reactive oxygen species, which aggravate rosacea.11 For pharmaceutical therapeutics, topical sodium sulfacetamide, metronidazole, and azelaic acid have been shown to be effective in rosacea. For persistent erythema, topical alpha-adrenergic receptor agonists including brimonidine tartrate and oxymetazoline have been shown to reduce erythema by vasoconstricting blood vessels, although some products are associated with a rebound erythema on treatment discontinuation. For moderate to severe rosacea, low-dose oral doxycycline at anti-inflammatory doses (less than 50 mg daily) is the mainstay of therapy. Other oral antibiotics and topical permethrin have been used, and topical ivermectin 1% cream has been approved for inflammatory rosacea.11 Oral beta-blockers also have been successfully used in some patients to reduce erythema and flushing, as well as isotretinoin for refractory, severe rosacea with improvement.

Allison Han is a medical student at the University of California, San Diego. Dr. Eichenfield is chief of pediatric and adolescent dermatology at Rady Children’s Hospital–San Diego. He is vice chair of the department of dermatology and professor of dermatology and pediatrics at the University of California, San Diego. There are no conflicts of interest or financial disclosures for Ms. Han or Dr. Eichenfield.

References

1. J Am Acad Dermatol. 2018 Jan;78(1):148-55.

2. Cutis. 2016 Jul;98(1):49-53.

3. J Eur Acad Dermatol Venereol. 2017 Oct;31(10):1732-8.

4. J Fr Ophtalmol. 2011 Dec;34(10):703-10.

5. J Am Acad Dermatol. 2015 May;72(5):749-58.

6. Indian J Dermatol. 2011 Jan;56(1):30-2.

7. Cutis, 2004. 74(2):99-103.

8. Pediatr Dermatol. 1992 Mar;9(1):22-6.

9. Pediatr Dermatol. 2015 Jul-Aug;32(4):e136-9.

10. Br J Dermatol. 2005 Dec;153(6):1176-81.

11. J Am Acad Dermatol. 2015 May;72(5):761-70.

Publications
Topics
Sections

 

Rosacea is a chronic inflammatory skin disorder characterized by flushing, telangiectasia, erythema, papules, and pustules, most classically of the central face. Fair-skinned individuals and women are more commonly affected than are men, with age of onset typically around 30 years and older.1 In children and adolescents, rosacea is rare, especially among prepubertal children, so other papulopustular disorders should be considered when a rosacealike picture is present.2 Recurrent chalazia are seen with ocular rosacea and may be a clue to the diagnosis of acne rosacea. Rosacea may be divided into four subtypes, and more than one subtype may be simultaneously present in an individual at one time. An individual’s subtype of rosacea also may transform with time to a different or an additional subtype.

Courtesy Dr. Laurence F. Eichenfield
Erythematotelangiectatic rosacea (subtype I) describes persistent erythema of the central face associated with episodes of transient flushing. The erythema may extend to the periphery of the face, ears, neck, and upper chest, and is the most common sign of rosacea in the adult population. Telangiectasias often are present, but both telangiectasias and erythema may be difficult to appreciate in patients of Fitzpatrick skin types V and VI. Rosacea is thought to be both less common and more frequently left undiagnosed in this population.

Papulopustular rosacea (subtype II) is characterized by the presence of erythematous, dome-shaped papules distributed in crops in the central facial region. Cheeks, nasolabial folds, and the chin are most commonly affected. Pustules may or may not be present, but comedones are notably absent in an exclusively rosacea disease process. If comedones are present, a diagnosis of acne vulgaris should be considered instead of, or in addition to, rosacea. Pediatric patients with rosacea frequently present with papules and/or pustules, following the development of flushing.2

Allison Han
Phymatous rosacea (subtype III) consists of irregular thickening and fibrosis of the skin, with widening of follicles and increased nodularity of the skin surface. Any sebaceous facial region may be affected, though rhinophyma – an enlarged, bulbous nose – is the most classic presentation. Fortunately, children usually are spared from phymatous change, as it tends to occur later in the disease process during adulthood.2

Ocular rosacea (subtype IV) may range in severity from mild blepharitis to severe keratitis and corneal vascularization. Patients may complain of a foreign body sensation. On external exam, lid margin telangiectasias, blepharitis, conjunctivitis, conjunctival injection, and recurrent chalazia may be frequently seen.3 Ocular rosacea may present without any signs of cutaneous disease; it may be the only form of rosacea (15% of patients in one study of 20 patients had only ocular rosacea)4 or may herald the development of cutaneous involvement. In fact, in children, ocular rosacea is frequently the first sign of disease. (A total of 55% of patients in the same study had both ocular and cutaneous rosacea, with ocular symptoms manifesting before the cutaneous disease). Thus an index of suspicion for rosacea should be maintained when a child presents with ocular findings.2

Dr. Lawrence F. Eichenfield
Rosacea is clinically diagnosed when at least one diagnostic or two major phenotypic criteria are present.1 Presence of fixed centrofacial erythema or phymatous change are adequate for definitive diagnosis, while flushing, papules and pustules, telangiectasia, and ocular manifestations are considered major phenotypic criteria. In addition, presence of sensitive, easily irritated skin, with frequent stinging or burning, may support a diagnosis of rosacea. Skin biopsy is generally unnecessary, as the histopathologic findings are nonspecific: perivascular and perifollicular inflammatory infiltrates in papulopustular rosacea, dilated blood vessels in the erythematotelangiectatic rosacea, and sebaceous gland hyperplasia and dermal fibrosis in phymatous rosacea.5

Other dermatitides resembling rosacea include steroid rosacea, perioral dermatitis, and idiopathic facial aseptic granuloma. Steroid rosacea, also known as iatrosacea, describes an eruption of erythema, papules, and telangiectasias that is clinically indistinguishable from rosacea.6 It results from chronic use of topical steroids, generally high potency, or abrupt withdrawal of steroids. Steroid rosacea should be treated by discontinuation of the steroid via tapered withdrawal.7 Perioral dermatitis, also known as periorificial dermatitis, may also appear rosacea-form. It usually is located around the perioral and perinasal areas, but may extend to the periocular area.8 Idiopathic facial septic granuloma describes erythematous to violaceous nodules of the cheeks and eyelid in children, with chalazia frequently present; it is thought to be associated with rosacea.9

Although the exact pathophysiology of rosacea is unknown, it is clear that the dysregulation of the innate immune system plays a key role in the pathogenesis of rosacea. Studies have found that patients with rosacea have increased expression of cathelicidin, and its activating serine protease, kallikrein.5 Interestingly, UV light, a known trigger of rosacea, induces expression of cathelicidin and its inflammatory cascade.5 Neurovascular signaling is also aberrantly upregulated; vanilloid and ankyrin receptors have been shown to be active in rosacea, and are activated by rosacea-exacerbating stimuli, such as heat, inflammation, and spices. Higher levels of Demodex folliculorum and Staphylococcus epidermis also have been consistently found on the skin of rosacea patients, compared with healthy subjects, though it is unclear what role these pathogens play in the development of rosacea.

Treatment of rosacea is very important given its profound impact on quality of life; one study found that the odds ratio for depression in individuals with rosacea is 4.81.10 Patient education is essential, and patients should be encouraged to identify specific triggers so they can minimize exposure when feasible. Common triggers include hot and cold temperature, sunlight, wind, spicy foods, alcohol, exercise, emotional stress, and certain medications such as niacin. Topical steroids frequently are exacerbating, so patients should be encouraged to avoid them and use moisturizers often, given their skin’s increased transepidermal water loss and susceptibility to irritation. In addition, sunscreens are essential to reduce inflammation from reactive oxygen species, which aggravate rosacea.11 For pharmaceutical therapeutics, topical sodium sulfacetamide, metronidazole, and azelaic acid have been shown to be effective in rosacea. For persistent erythema, topical alpha-adrenergic receptor agonists including brimonidine tartrate and oxymetazoline have been shown to reduce erythema by vasoconstricting blood vessels, although some products are associated with a rebound erythema on treatment discontinuation. For moderate to severe rosacea, low-dose oral doxycycline at anti-inflammatory doses (less than 50 mg daily) is the mainstay of therapy. Other oral antibiotics and topical permethrin have been used, and topical ivermectin 1% cream has been approved for inflammatory rosacea.11 Oral beta-blockers also have been successfully used in some patients to reduce erythema and flushing, as well as isotretinoin for refractory, severe rosacea with improvement.

Allison Han is a medical student at the University of California, San Diego. Dr. Eichenfield is chief of pediatric and adolescent dermatology at Rady Children’s Hospital–San Diego. He is vice chair of the department of dermatology and professor of dermatology and pediatrics at the University of California, San Diego. There are no conflicts of interest or financial disclosures for Ms. Han or Dr. Eichenfield.

References

1. J Am Acad Dermatol. 2018 Jan;78(1):148-55.

2. Cutis. 2016 Jul;98(1):49-53.

3. J Eur Acad Dermatol Venereol. 2017 Oct;31(10):1732-8.

4. J Fr Ophtalmol. 2011 Dec;34(10):703-10.

5. J Am Acad Dermatol. 2015 May;72(5):749-58.

6. Indian J Dermatol. 2011 Jan;56(1):30-2.

7. Cutis, 2004. 74(2):99-103.

8. Pediatr Dermatol. 1992 Mar;9(1):22-6.

9. Pediatr Dermatol. 2015 Jul-Aug;32(4):e136-9.

10. Br J Dermatol. 2005 Dec;153(6):1176-81.

11. J Am Acad Dermatol. 2015 May;72(5):761-70.

 

Rosacea is a chronic inflammatory skin disorder characterized by flushing, telangiectasia, erythema, papules, and pustules, most classically of the central face. Fair-skinned individuals and women are more commonly affected than are men, with age of onset typically around 30 years and older.1 In children and adolescents, rosacea is rare, especially among prepubertal children, so other papulopustular disorders should be considered when a rosacealike picture is present.2 Recurrent chalazia are seen with ocular rosacea and may be a clue to the diagnosis of acne rosacea. Rosacea may be divided into four subtypes, and more than one subtype may be simultaneously present in an individual at one time. An individual’s subtype of rosacea also may transform with time to a different or an additional subtype.

Courtesy Dr. Laurence F. Eichenfield
Erythematotelangiectatic rosacea (subtype I) describes persistent erythema of the central face associated with episodes of transient flushing. The erythema may extend to the periphery of the face, ears, neck, and upper chest, and is the most common sign of rosacea in the adult population. Telangiectasias often are present, but both telangiectasias and erythema may be difficult to appreciate in patients of Fitzpatrick skin types V and VI. Rosacea is thought to be both less common and more frequently left undiagnosed in this population.

Papulopustular rosacea (subtype II) is characterized by the presence of erythematous, dome-shaped papules distributed in crops in the central facial region. Cheeks, nasolabial folds, and the chin are most commonly affected. Pustules may or may not be present, but comedones are notably absent in an exclusively rosacea disease process. If comedones are present, a diagnosis of acne vulgaris should be considered instead of, or in addition to, rosacea. Pediatric patients with rosacea frequently present with papules and/or pustules, following the development of flushing.2

Allison Han
Phymatous rosacea (subtype III) consists of irregular thickening and fibrosis of the skin, with widening of follicles and increased nodularity of the skin surface. Any sebaceous facial region may be affected, though rhinophyma – an enlarged, bulbous nose – is the most classic presentation. Fortunately, children usually are spared from phymatous change, as it tends to occur later in the disease process during adulthood.2

Ocular rosacea (subtype IV) may range in severity from mild blepharitis to severe keratitis and corneal vascularization. Patients may complain of a foreign body sensation. On external exam, lid margin telangiectasias, blepharitis, conjunctivitis, conjunctival injection, and recurrent chalazia may be frequently seen.3 Ocular rosacea may present without any signs of cutaneous disease; it may be the only form of rosacea (15% of patients in one study of 20 patients had only ocular rosacea)4 or may herald the development of cutaneous involvement. In fact, in children, ocular rosacea is frequently the first sign of disease. (A total of 55% of patients in the same study had both ocular and cutaneous rosacea, with ocular symptoms manifesting before the cutaneous disease). Thus an index of suspicion for rosacea should be maintained when a child presents with ocular findings.2

Dr. Lawrence F. Eichenfield
Rosacea is clinically diagnosed when at least one diagnostic or two major phenotypic criteria are present.1 Presence of fixed centrofacial erythema or phymatous change are adequate for definitive diagnosis, while flushing, papules and pustules, telangiectasia, and ocular manifestations are considered major phenotypic criteria. In addition, presence of sensitive, easily irritated skin, with frequent stinging or burning, may support a diagnosis of rosacea. Skin biopsy is generally unnecessary, as the histopathologic findings are nonspecific: perivascular and perifollicular inflammatory infiltrates in papulopustular rosacea, dilated blood vessels in the erythematotelangiectatic rosacea, and sebaceous gland hyperplasia and dermal fibrosis in phymatous rosacea.5

Other dermatitides resembling rosacea include steroid rosacea, perioral dermatitis, and idiopathic facial aseptic granuloma. Steroid rosacea, also known as iatrosacea, describes an eruption of erythema, papules, and telangiectasias that is clinically indistinguishable from rosacea.6 It results from chronic use of topical steroids, generally high potency, or abrupt withdrawal of steroids. Steroid rosacea should be treated by discontinuation of the steroid via tapered withdrawal.7 Perioral dermatitis, also known as periorificial dermatitis, may also appear rosacea-form. It usually is located around the perioral and perinasal areas, but may extend to the periocular area.8 Idiopathic facial septic granuloma describes erythematous to violaceous nodules of the cheeks and eyelid in children, with chalazia frequently present; it is thought to be associated with rosacea.9

Although the exact pathophysiology of rosacea is unknown, it is clear that the dysregulation of the innate immune system plays a key role in the pathogenesis of rosacea. Studies have found that patients with rosacea have increased expression of cathelicidin, and its activating serine protease, kallikrein.5 Interestingly, UV light, a known trigger of rosacea, induces expression of cathelicidin and its inflammatory cascade.5 Neurovascular signaling is also aberrantly upregulated; vanilloid and ankyrin receptors have been shown to be active in rosacea, and are activated by rosacea-exacerbating stimuli, such as heat, inflammation, and spices. Higher levels of Demodex folliculorum and Staphylococcus epidermis also have been consistently found on the skin of rosacea patients, compared with healthy subjects, though it is unclear what role these pathogens play in the development of rosacea.

Treatment of rosacea is very important given its profound impact on quality of life; one study found that the odds ratio for depression in individuals with rosacea is 4.81.10 Patient education is essential, and patients should be encouraged to identify specific triggers so they can minimize exposure when feasible. Common triggers include hot and cold temperature, sunlight, wind, spicy foods, alcohol, exercise, emotional stress, and certain medications such as niacin. Topical steroids frequently are exacerbating, so patients should be encouraged to avoid them and use moisturizers often, given their skin’s increased transepidermal water loss and susceptibility to irritation. In addition, sunscreens are essential to reduce inflammation from reactive oxygen species, which aggravate rosacea.11 For pharmaceutical therapeutics, topical sodium sulfacetamide, metronidazole, and azelaic acid have been shown to be effective in rosacea. For persistent erythema, topical alpha-adrenergic receptor agonists including brimonidine tartrate and oxymetazoline have been shown to reduce erythema by vasoconstricting blood vessels, although some products are associated with a rebound erythema on treatment discontinuation. For moderate to severe rosacea, low-dose oral doxycycline at anti-inflammatory doses (less than 50 mg daily) is the mainstay of therapy. Other oral antibiotics and topical permethrin have been used, and topical ivermectin 1% cream has been approved for inflammatory rosacea.11 Oral beta-blockers also have been successfully used in some patients to reduce erythema and flushing, as well as isotretinoin for refractory, severe rosacea with improvement.

Allison Han is a medical student at the University of California, San Diego. Dr. Eichenfield is chief of pediatric and adolescent dermatology at Rady Children’s Hospital–San Diego. He is vice chair of the department of dermatology and professor of dermatology and pediatrics at the University of California, San Diego. There are no conflicts of interest or financial disclosures for Ms. Han or Dr. Eichenfield.

References

1. J Am Acad Dermatol. 2018 Jan;78(1):148-55.

2. Cutis. 2016 Jul;98(1):49-53.

3. J Eur Acad Dermatol Venereol. 2017 Oct;31(10):1732-8.

4. J Fr Ophtalmol. 2011 Dec;34(10):703-10.

5. J Am Acad Dermatol. 2015 May;72(5):749-58.

6. Indian J Dermatol. 2011 Jan;56(1):30-2.

7. Cutis, 2004. 74(2):99-103.

8. Pediatr Dermatol. 1992 Mar;9(1):22-6.

9. Pediatr Dermatol. 2015 Jul-Aug;32(4):e136-9.

10. Br J Dermatol. 2005 Dec;153(6):1176-81.

11. J Am Acad Dermatol. 2015 May;72(5):761-70.

Publications
Publications
Topics
Article Type
Sections
Questionnaire Body

A 16-year-old girl presented with a 6-month history of an erythematous eruption of small papules and pustules around the cheeks and nose. She states the erythema had started first, with periods of feeling flushed that became worse with sun exposure. She saw her primary care physician who prescribed topical steroids. After using the steroids, the rash became worse, and she developed papules and pustules.


Courtesy Dr. Laurence F. Eichenfield
On physical exam, the patient has Fitzpatrick type III skin, and there is bright erythema of the nose and faint erythema of the malar cheeks. There is a cluster of papules and pustules on the nose, a few scattered on the cheeks, and a chalazion on the eyelid with surrounding hyperemia. The nose has surface irregularity and nodularity. A few comedones are noted on the forehead.

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default