Slot System
Featured Buckets
Featured Buckets Admin

AGA Research Foundation: You Can Help

Article Type
Changed
Mon, 11/04/2024 - 10:35

To my fellow AGA Members, I’m not the first to tell you that real progress in the diagnosis, treatment, and cure of digestive disease is at risk. Research funding from traditional sources, like the National Institutes of Health, continues to shrink. We can expect even greater cuts on the horizon.

GI investigators in the early stages of their careers are particularly hard hit. They are finding it much more difficult to secure needed federal funding. As a result, many of these investigators are walking away from GI research frustrated by a lack of support.

Dr. Michael Camilleri

It is our hope that physicians have an abundance of new tools and treatments to care for their patients suffering from digestive disorders.

You know that research has revolutionized the care of many digestive disease patients. These patients, as well as everyone in the GI field clinicians and researchers alike, have benefited from the discoveries of passionate investigators, past and present.

This is where you can help.

New treatments and devices are the result of years of research. The AGA Research Foundation grants are critical to continuing the GI pipeline. The AGA research awards program helps researchers take new directions and discover new treatments to better patient care.

Help us fund more researchers by supporting the AGA Research Foundation with a year-end donation. Your donation will support young investigators’ research careers and help assure research is continued.

Be gracious, generous and giving to the future of the GI specialty this holiday season. There are three easy ways to give:

Make a tax-deductible donation online at www. foundation.gastro.org. 

Send a donation through the mail to: 

AGA Research Foundation 

4930 Del Ray Avenue 

Bethesda, MD 20814


Or donate over the phone by calling (301) 222-4002. All gifts are tax-deductible to the fullest extent of US law. Join us!

Dr. Camilleri is AGA Research Foundation Chair and Past AGA Institute President. He is a consultant in the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.

Publications
Topics
Sections

To my fellow AGA Members, I’m not the first to tell you that real progress in the diagnosis, treatment, and cure of digestive disease is at risk. Research funding from traditional sources, like the National Institutes of Health, continues to shrink. We can expect even greater cuts on the horizon.

GI investigators in the early stages of their careers are particularly hard hit. They are finding it much more difficult to secure needed federal funding. As a result, many of these investigators are walking away from GI research frustrated by a lack of support.

Dr. Michael Camilleri

It is our hope that physicians have an abundance of new tools and treatments to care for their patients suffering from digestive disorders.

You know that research has revolutionized the care of many digestive disease patients. These patients, as well as everyone in the GI field clinicians and researchers alike, have benefited from the discoveries of passionate investigators, past and present.

This is where you can help.

New treatments and devices are the result of years of research. The AGA Research Foundation grants are critical to continuing the GI pipeline. The AGA research awards program helps researchers take new directions and discover new treatments to better patient care.

Help us fund more researchers by supporting the AGA Research Foundation with a year-end donation. Your donation will support young investigators’ research careers and help assure research is continued.

Be gracious, generous and giving to the future of the GI specialty this holiday season. There are three easy ways to give:

Make a tax-deductible donation online at www. foundation.gastro.org. 

Send a donation through the mail to: 

AGA Research Foundation 

4930 Del Ray Avenue 

Bethesda, MD 20814


Or donate over the phone by calling (301) 222-4002. All gifts are tax-deductible to the fullest extent of US law. Join us!

Dr. Camilleri is AGA Research Foundation Chair and Past AGA Institute President. He is a consultant in the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.

To my fellow AGA Members, I’m not the first to tell you that real progress in the diagnosis, treatment, and cure of digestive disease is at risk. Research funding from traditional sources, like the National Institutes of Health, continues to shrink. We can expect even greater cuts on the horizon.

GI investigators in the early stages of their careers are particularly hard hit. They are finding it much more difficult to secure needed federal funding. As a result, many of these investigators are walking away from GI research frustrated by a lack of support.

Dr. Michael Camilleri

It is our hope that physicians have an abundance of new tools and treatments to care for their patients suffering from digestive disorders.

You know that research has revolutionized the care of many digestive disease patients. These patients, as well as everyone in the GI field clinicians and researchers alike, have benefited from the discoveries of passionate investigators, past and present.

This is where you can help.

New treatments and devices are the result of years of research. The AGA Research Foundation grants are critical to continuing the GI pipeline. The AGA research awards program helps researchers take new directions and discover new treatments to better patient care.

Help us fund more researchers by supporting the AGA Research Foundation with a year-end donation. Your donation will support young investigators’ research careers and help assure research is continued.

Be gracious, generous and giving to the future of the GI specialty this holiday season. There are three easy ways to give:

Make a tax-deductible donation online at www. foundation.gastro.org. 

Send a donation through the mail to: 

AGA Research Foundation 

4930 Del Ray Avenue 

Bethesda, MD 20814


Or donate over the phone by calling (301) 222-4002. All gifts are tax-deductible to the fullest extent of US law. Join us!

Dr. Camilleri is AGA Research Foundation Chair and Past AGA Institute President. He is a consultant in the Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Unlock the Latest Clinical Updates with the 2024 PG Course OnDemand

Article Type
Changed
Mon, 11/04/2024 - 10:32

Did you miss out on the AGA Postgraduate Course this year? We have you covered with AGA PG Course OnDemand, a complete capture of the 2024 AGA Postgraduate Course, The Latest from the Greatest.

Visit agau.gastro.org to purchase today for flexible, on-the-go access to the latest clinical advances in the GI field.

  • Unparalleled access: Choose when and where you dive into content with convenient access from any computer or mobile device.
  • Incredible faculty: Learn from renowned experts who will offer their perspectives on cutting-edge research and clinical guidance.
  • Tangible strategies: Expert and early career faculty will guide you through challenging patient cases and provide strategies you can easily implement upon your return to the office.
  • Efficient learning: Content is organized by category: GI oncology, neurogastroenterology & motility, obesity, advanced endoscopy, and liver.
  • Continuing education: With CME testing integrated directly into each session, you can easily earn up to 16 CME and MOC credits through December 31, 2024.
Publications
Topics
Sections

Did you miss out on the AGA Postgraduate Course this year? We have you covered with AGA PG Course OnDemand, a complete capture of the 2024 AGA Postgraduate Course, The Latest from the Greatest.

Visit agau.gastro.org to purchase today for flexible, on-the-go access to the latest clinical advances in the GI field.

  • Unparalleled access: Choose when and where you dive into content with convenient access from any computer or mobile device.
  • Incredible faculty: Learn from renowned experts who will offer their perspectives on cutting-edge research and clinical guidance.
  • Tangible strategies: Expert and early career faculty will guide you through challenging patient cases and provide strategies you can easily implement upon your return to the office.
  • Efficient learning: Content is organized by category: GI oncology, neurogastroenterology & motility, obesity, advanced endoscopy, and liver.
  • Continuing education: With CME testing integrated directly into each session, you can easily earn up to 16 CME and MOC credits through December 31, 2024.

Did you miss out on the AGA Postgraduate Course this year? We have you covered with AGA PG Course OnDemand, a complete capture of the 2024 AGA Postgraduate Course, The Latest from the Greatest.

Visit agau.gastro.org to purchase today for flexible, on-the-go access to the latest clinical advances in the GI field.

  • Unparalleled access: Choose when and where you dive into content with convenient access from any computer or mobile device.
  • Incredible faculty: Learn from renowned experts who will offer their perspectives on cutting-edge research and clinical guidance.
  • Tangible strategies: Expert and early career faculty will guide you through challenging patient cases and provide strategies you can easily implement upon your return to the office.
  • Efficient learning: Content is organized by category: GI oncology, neurogastroenterology & motility, obesity, advanced endoscopy, and liver.
  • Continuing education: With CME testing integrated directly into each session, you can easily earn up to 16 CME and MOC credits through December 31, 2024.
Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Revival of the aspiration vs chest tube debate for PSP

Article Type
Changed
Wed, 11/27/2024 - 04:17

 

Thoracic Oncology and Chest Procedures Network

Pleural Disease Section

Considerable heterogeneity exists in the management of primary spontaneous pneumothorax (PSP). American and European guidelines have been grappling with this question for decades: What is the best way to manage PSP? A 2023 randomized, controlled trial (Marx et al. AJRCCM) sought to answer this.

CHEST
Dr. Ashley M. Scott

The study recruited 379 adults aged 18 to 55 years between 2009 and 2015, with complete and first PSP in 31 French hospitals. One hundred eighty-nine patients initially received simple aspiration and 190 received chest tube drainage. The aspiration device was removed if a chest radiograph (CXR) following 30 minutes of aspiration showed lung apposition, with suction repeated up to one time with incomplete re-expansion. The chest tubes were large-bore (16-F or 20-F) and removed 72 hours postprocedure if the CXR showed complete lung re-expansion.

Pulmonary re-expansion at 24 hours was the primary outcome of interest, analyzed for noninferiority. Simple aspiration was statistically inferior to chest tube drainage (29% vs 18%). However, first-line simple aspiration resulted in shorter length of stay, less subcutaneous emphysema, site infection, pain, and one-year recurrence.

CHEST
Dr. Labib G. Debiane



Since most first-time PSP occurs in younger, healthier adults, simple aspiration could still be considered as it is better tolerated than large-bore chest tubes. However, with more frequent use of small-bore (≤14-F) catheters, ambulatory drainage could also be a suitable option in carefully selected patients. Additionally, inpatient chest tubes do not need to remain in place for 72 hours, as was this study’s protocol. Society guidelines will need to weigh in on the latest high-quality evidence available for final recommendations.

Publications
Topics
Sections

 

Thoracic Oncology and Chest Procedures Network

Pleural Disease Section

Considerable heterogeneity exists in the management of primary spontaneous pneumothorax (PSP). American and European guidelines have been grappling with this question for decades: What is the best way to manage PSP? A 2023 randomized, controlled trial (Marx et al. AJRCCM) sought to answer this.

CHEST
Dr. Ashley M. Scott

The study recruited 379 adults aged 18 to 55 years between 2009 and 2015, with complete and first PSP in 31 French hospitals. One hundred eighty-nine patients initially received simple aspiration and 190 received chest tube drainage. The aspiration device was removed if a chest radiograph (CXR) following 30 minutes of aspiration showed lung apposition, with suction repeated up to one time with incomplete re-expansion. The chest tubes were large-bore (16-F or 20-F) and removed 72 hours postprocedure if the CXR showed complete lung re-expansion.

Pulmonary re-expansion at 24 hours was the primary outcome of interest, analyzed for noninferiority. Simple aspiration was statistically inferior to chest tube drainage (29% vs 18%). However, first-line simple aspiration resulted in shorter length of stay, less subcutaneous emphysema, site infection, pain, and one-year recurrence.

CHEST
Dr. Labib G. Debiane



Since most first-time PSP occurs in younger, healthier adults, simple aspiration could still be considered as it is better tolerated than large-bore chest tubes. However, with more frequent use of small-bore (≤14-F) catheters, ambulatory drainage could also be a suitable option in carefully selected patients. Additionally, inpatient chest tubes do not need to remain in place for 72 hours, as was this study’s protocol. Society guidelines will need to weigh in on the latest high-quality evidence available for final recommendations.

 

Thoracic Oncology and Chest Procedures Network

Pleural Disease Section

Considerable heterogeneity exists in the management of primary spontaneous pneumothorax (PSP). American and European guidelines have been grappling with this question for decades: What is the best way to manage PSP? A 2023 randomized, controlled trial (Marx et al. AJRCCM) sought to answer this.

CHEST
Dr. Ashley M. Scott

The study recruited 379 adults aged 18 to 55 years between 2009 and 2015, with complete and first PSP in 31 French hospitals. One hundred eighty-nine patients initially received simple aspiration and 190 received chest tube drainage. The aspiration device was removed if a chest radiograph (CXR) following 30 minutes of aspiration showed lung apposition, with suction repeated up to one time with incomplete re-expansion. The chest tubes were large-bore (16-F or 20-F) and removed 72 hours postprocedure if the CXR showed complete lung re-expansion.

Pulmonary re-expansion at 24 hours was the primary outcome of interest, analyzed for noninferiority. Simple aspiration was statistically inferior to chest tube drainage (29% vs 18%). However, first-line simple aspiration resulted in shorter length of stay, less subcutaneous emphysema, site infection, pain, and one-year recurrence.

CHEST
Dr. Labib G. Debiane



Since most first-time PSP occurs in younger, healthier adults, simple aspiration could still be considered as it is better tolerated than large-bore chest tubes. However, with more frequent use of small-bore (≤14-F) catheters, ambulatory drainage could also be a suitable option in carefully selected patients. Additionally, inpatient chest tubes do not need to remain in place for 72 hours, as was this study’s protocol. Society guidelines will need to weigh in on the latest high-quality evidence available for final recommendations.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 11/19/2024 - 10:45
Un-Gate On Date
Tue, 11/19/2024 - 10:45
Use ProPublica
CFC Schedule Remove Status
Tue, 11/19/2024 - 10:45
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 11/19/2024 - 10:45

AI applications in pediatric pulmonary, sleep, and critical care medicine

Article Type
Changed
Mon, 11/04/2024 - 09:24

 

Airways Disorders Network

Pediatric Chest Medicine Section

Artificial intelligence (AI) refers to the science and engineering of making intelligent machines that mimic human cognitive functions, such as learning and problem solving.1AI tools are being increasingly utilized in pediatric pulmonary disease management to analyze the tremendous amount of patient data on environmental and physiological variables and compliance with therapy. Asthma exacerbations in young children were detected reliably by AI-aided stethoscope alone.2 Inhaler use has been successfully tracked using active and passive patient input to cloud-based dashboards.3 Asthma specialists can potentially use this knowledge to intervene in real time or more frequent intervals than the current episodic care.

CHEST
Dr. Maninder Kalra

Sleep trackers using commercial-grade sensors can provide useful information about sleep hygiene, sleep duration, and nocturnal awakenings. An increasing number of “wearables” and “nearables” that utilize AI algorithms to evaluate sleep duration and quality are FDA approved. AI-based scoring of polysomnography data can improve the efficiency of a sleep laboratory. Big data analysis of CPAP compliance in children led to identification of actionable items that can be targeted to improve patient outcomes.4

The use of AI models in clinical decision support can result in fewer false alerts and missed patients due to increased model accuracy. Additionally, large language model tools can automatically generate comprehensive progress notes incorporating relevant electronic medical records data, thereby reducing physician charting time.

These case uses highlight the potential to improve workflow efficiency and clinical outcomes in pediatric pulmonary and critical care by incorporating AI tools in medical decision-making and management.


References


1. McCarthy JF, Marx KA, Hoffman PE, et al. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management. Ann N Y Acad Sci. 2004;1020:239-262.

2. Emeryk A, Derom E, Janeczek K, et al. Home monitoring of asthma exacerbations in children and adults with use of an AI-aided stethoscope. Ann Fam Med. 2023;21(6):517-525.

3. Jaimini U, Thirunarayan K, Kalra M, Venkataraman R, Kadariya D, Sheth A. How is my child’s asthma?” Digital phenotype and actionable insights for pediatric asthma. JMIR Pediatr Parent. 2018;1(2):e11988.

4. Bhattacharjee R, Benjafield AV, Armitstead J, et al. Adherence in children using positive airway pressure therapy: a big-data analysis [published correction appears in Lancet Digit Health. 2020 Sep;2(9):e455.]. Lancet Digit Health. 2020;2(2):e94-e101.

Publications
Topics
Sections

 

Airways Disorders Network

Pediatric Chest Medicine Section

Artificial intelligence (AI) refers to the science and engineering of making intelligent machines that mimic human cognitive functions, such as learning and problem solving.1AI tools are being increasingly utilized in pediatric pulmonary disease management to analyze the tremendous amount of patient data on environmental and physiological variables and compliance with therapy. Asthma exacerbations in young children were detected reliably by AI-aided stethoscope alone.2 Inhaler use has been successfully tracked using active and passive patient input to cloud-based dashboards.3 Asthma specialists can potentially use this knowledge to intervene in real time or more frequent intervals than the current episodic care.

CHEST
Dr. Maninder Kalra

Sleep trackers using commercial-grade sensors can provide useful information about sleep hygiene, sleep duration, and nocturnal awakenings. An increasing number of “wearables” and “nearables” that utilize AI algorithms to evaluate sleep duration and quality are FDA approved. AI-based scoring of polysomnography data can improve the efficiency of a sleep laboratory. Big data analysis of CPAP compliance in children led to identification of actionable items that can be targeted to improve patient outcomes.4

The use of AI models in clinical decision support can result in fewer false alerts and missed patients due to increased model accuracy. Additionally, large language model tools can automatically generate comprehensive progress notes incorporating relevant electronic medical records data, thereby reducing physician charting time.

These case uses highlight the potential to improve workflow efficiency and clinical outcomes in pediatric pulmonary and critical care by incorporating AI tools in medical decision-making and management.


References


1. McCarthy JF, Marx KA, Hoffman PE, et al. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management. Ann N Y Acad Sci. 2004;1020:239-262.

2. Emeryk A, Derom E, Janeczek K, et al. Home monitoring of asthma exacerbations in children and adults with use of an AI-aided stethoscope. Ann Fam Med. 2023;21(6):517-525.

3. Jaimini U, Thirunarayan K, Kalra M, Venkataraman R, Kadariya D, Sheth A. How is my child’s asthma?” Digital phenotype and actionable insights for pediatric asthma. JMIR Pediatr Parent. 2018;1(2):e11988.

4. Bhattacharjee R, Benjafield AV, Armitstead J, et al. Adherence in children using positive airway pressure therapy: a big-data analysis [published correction appears in Lancet Digit Health. 2020 Sep;2(9):e455.]. Lancet Digit Health. 2020;2(2):e94-e101.

 

Airways Disorders Network

Pediatric Chest Medicine Section

Artificial intelligence (AI) refers to the science and engineering of making intelligent machines that mimic human cognitive functions, such as learning and problem solving.1AI tools are being increasingly utilized in pediatric pulmonary disease management to analyze the tremendous amount of patient data on environmental and physiological variables and compliance with therapy. Asthma exacerbations in young children were detected reliably by AI-aided stethoscope alone.2 Inhaler use has been successfully tracked using active and passive patient input to cloud-based dashboards.3 Asthma specialists can potentially use this knowledge to intervene in real time or more frequent intervals than the current episodic care.

CHEST
Dr. Maninder Kalra

Sleep trackers using commercial-grade sensors can provide useful information about sleep hygiene, sleep duration, and nocturnal awakenings. An increasing number of “wearables” and “nearables” that utilize AI algorithms to evaluate sleep duration and quality are FDA approved. AI-based scoring of polysomnography data can improve the efficiency of a sleep laboratory. Big data analysis of CPAP compliance in children led to identification of actionable items that can be targeted to improve patient outcomes.4

The use of AI models in clinical decision support can result in fewer false alerts and missed patients due to increased model accuracy. Additionally, large language model tools can automatically generate comprehensive progress notes incorporating relevant electronic medical records data, thereby reducing physician charting time.

These case uses highlight the potential to improve workflow efficiency and clinical outcomes in pediatric pulmonary and critical care by incorporating AI tools in medical decision-making and management.


References


1. McCarthy JF, Marx KA, Hoffman PE, et al. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management. Ann N Y Acad Sci. 2004;1020:239-262.

2. Emeryk A, Derom E, Janeczek K, et al. Home monitoring of asthma exacerbations in children and adults with use of an AI-aided stethoscope. Ann Fam Med. 2023;21(6):517-525.

3. Jaimini U, Thirunarayan K, Kalra M, Venkataraman R, Kadariya D, Sheth A. How is my child’s asthma?” Digital phenotype and actionable insights for pediatric asthma. JMIR Pediatr Parent. 2018;1(2):e11988.

4. Bhattacharjee R, Benjafield AV, Armitstead J, et al. Adherence in children using positive airway pressure therapy: a big-data analysis [published correction appears in Lancet Digit Health. 2020 Sep;2(9):e455.]. Lancet Digit Health. 2020;2(2):e94-e101.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Mechanical power: A missing piece in lung-protective ventilation?

Article Type
Changed
Wed, 11/27/2024 - 04:17

 

Critical Care Network

Mechanical Ventilation and Airways Management Section

The ARDSNet trial demonstrated the importance of low tidal volume ventilation in patients with ARDS, and we have learned to monitor parameters such as plateau pressure and driving pressure (DP) to ensure lung-protective ventilation. However, severe hypercapnia can occur with low tidal volume ventilation and respiratory rate would often need to be increased. What role does the higher respiratory rate play? There is growing evidence that respiratory rate may play an important part in the pathogenesis of ventilator-induced lung injury (VILI) and the dynamic effect of both rate and static pressures needs to be evaluated.

CHEST
Dr. Zhenmei Zhang



The concept of mechanical power (MP) was formalized in 2016 by Gattinoni, et al and defined as the product of respiratory rate and total inflation energy gained per breath.1 Calculations have been developed for both volume-controlled and pressure-controlled ventilation, including elements such as respiratory rate and PEEP. Studies have shown that increased MP is associated with ICU and hospital mortality, even at low tidal volumes.2 The use of MP remains limited in clinical practice due to its dynamic nature and difficulty of calculating in routine clinical practice but may be a feasible addition to the continuous monitoring outputs on a ventilator. Additional prospective studies are also needed to define the optimal threshold of MP and to compare monitoring strategies using MP vs DP.

References

1. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-1575.

2. Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914-1922.

Publications
Topics
Sections

 

Critical Care Network

Mechanical Ventilation and Airways Management Section

The ARDSNet trial demonstrated the importance of low tidal volume ventilation in patients with ARDS, and we have learned to monitor parameters such as plateau pressure and driving pressure (DP) to ensure lung-protective ventilation. However, severe hypercapnia can occur with low tidal volume ventilation and respiratory rate would often need to be increased. What role does the higher respiratory rate play? There is growing evidence that respiratory rate may play an important part in the pathogenesis of ventilator-induced lung injury (VILI) and the dynamic effect of both rate and static pressures needs to be evaluated.

CHEST
Dr. Zhenmei Zhang



The concept of mechanical power (MP) was formalized in 2016 by Gattinoni, et al and defined as the product of respiratory rate and total inflation energy gained per breath.1 Calculations have been developed for both volume-controlled and pressure-controlled ventilation, including elements such as respiratory rate and PEEP. Studies have shown that increased MP is associated with ICU and hospital mortality, even at low tidal volumes.2 The use of MP remains limited in clinical practice due to its dynamic nature and difficulty of calculating in routine clinical practice but may be a feasible addition to the continuous monitoring outputs on a ventilator. Additional prospective studies are also needed to define the optimal threshold of MP and to compare monitoring strategies using MP vs DP.

References

1. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-1575.

2. Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914-1922.

 

Critical Care Network

Mechanical Ventilation and Airways Management Section

The ARDSNet trial demonstrated the importance of low tidal volume ventilation in patients with ARDS, and we have learned to monitor parameters such as plateau pressure and driving pressure (DP) to ensure lung-protective ventilation. However, severe hypercapnia can occur with low tidal volume ventilation and respiratory rate would often need to be increased. What role does the higher respiratory rate play? There is growing evidence that respiratory rate may play an important part in the pathogenesis of ventilator-induced lung injury (VILI) and the dynamic effect of both rate and static pressures needs to be evaluated.

CHEST
Dr. Zhenmei Zhang



The concept of mechanical power (MP) was formalized in 2016 by Gattinoni, et al and defined as the product of respiratory rate and total inflation energy gained per breath.1 Calculations have been developed for both volume-controlled and pressure-controlled ventilation, including elements such as respiratory rate and PEEP. Studies have shown that increased MP is associated with ICU and hospital mortality, even at low tidal volumes.2 The use of MP remains limited in clinical practice due to its dynamic nature and difficulty of calculating in routine clinical practice but may be a feasible addition to the continuous monitoring outputs on a ventilator. Additional prospective studies are also needed to define the optimal threshold of MP and to compare monitoring strategies using MP vs DP.

References

1. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-1575.

2. Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914-1922.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Tue, 11/19/2024 - 10:46
Un-Gate On Date
Tue, 11/19/2024 - 10:46
Use ProPublica
CFC Schedule Remove Status
Tue, 11/19/2024 - 10:46
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Tue, 11/19/2024 - 10:46

Major takeaways from the seventh world symposium on PH

Article Type
Changed
Mon, 11/04/2024 - 14:07

 

Pulmonary Vascular and Cardiovascular Network

Pulmonary Vascular Disease Section

The core definition of pulmonary hypertension (PH) remains a mean pulmonary arterial pressure (mPAP) > 20 mm Hg, with precapillary PH defined by a pulmonary arterial wedge pressure (PCWP) ≤ 15 mm Hg and pulmonary vascular resistance (PVR) > 2 Wood units (WU), similar to the 2022 European guidelines.1,2 There was recognition of uncertainty in patients with borderline PAWP (12-18 mm Hg) for postcapillary PH.

CHEST
Dr. Chidinma Ejikeme

A new staging model for group 2 PH was proposed to refine treatment strategies based on disease progression. It’s crucial to phenotype patients, especially those with valvular heart disease, hypertrophic cardiomyopathy, or amyloid cardiomyopathy, and to be cautious when using PAH medications for this PH group.3 

CHEST
Dr. Roberto J. Bernardo


Group 3 PH is often underrecognized and associated with poor outcomes, so screening in clinically stable patients is recommended using a multimodal assessment before hemodynamic evaluation. Inhaled treprostinil is recommended for PH associated with interstitial lung disease (ILD). However, the PERFECT trial on PH therapy in COPD was stopped due to safety concerns, highlighting the need for careful evaluation in chronic lung disease (CLD) patients.4 For risk stratification, further emphasis was made on cardiac imaging and hemodynamic data. 

CHEST
Dr. Rodolfo A. Estrada


Significant progress was made in understanding four key pathways, including bone morphogenetic protein (BMP)/activin signaling. A treatment algorithm based on risk stratification was reinforced, recommending initial triple therapy with parenteral prostacyclin analogs for high-risk patients.5 Follow-up reassessment may include adding an activin-signaling inhibitor for all risk groups except low risk, as well as oral or inhaled prostacyclin for intermediate-low risk groups.

References


1. Kovacs G, Bartolome S, Denton CP, et al. Definition, classification and diagnosis of pulmonary hypertension. Eur Respir J. 2024;2401324. (Online ahead of print.)

2. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2024;61(1):2200879.

3. Maron BA, Bortman G, De Marco T, et al. Pulmonary hypertension associated with left heart disease. Eur Respir J. 2024;2401344. (Online ahead of print.)

4. Shlobin OA, Adir Y, Barbera JA, et al. Pulmonary hypertension associated with lung diseases. Eur Respir J. 2024;2401200. (Online ahead of print.)

5. Chin KM, Gaine SP, Gerges C, et al. Treatment algorithm for pulmonary arterial hypertension. Eur Respir J. 2024;2401325. (Online ahead of print.)

Publications
Topics
Sections

 

Pulmonary Vascular and Cardiovascular Network

Pulmonary Vascular Disease Section

The core definition of pulmonary hypertension (PH) remains a mean pulmonary arterial pressure (mPAP) > 20 mm Hg, with precapillary PH defined by a pulmonary arterial wedge pressure (PCWP) ≤ 15 mm Hg and pulmonary vascular resistance (PVR) > 2 Wood units (WU), similar to the 2022 European guidelines.1,2 There was recognition of uncertainty in patients with borderline PAWP (12-18 mm Hg) for postcapillary PH.

CHEST
Dr. Chidinma Ejikeme

A new staging model for group 2 PH was proposed to refine treatment strategies based on disease progression. It’s crucial to phenotype patients, especially those with valvular heart disease, hypertrophic cardiomyopathy, or amyloid cardiomyopathy, and to be cautious when using PAH medications for this PH group.3 

CHEST
Dr. Roberto J. Bernardo


Group 3 PH is often underrecognized and associated with poor outcomes, so screening in clinically stable patients is recommended using a multimodal assessment before hemodynamic evaluation. Inhaled treprostinil is recommended for PH associated with interstitial lung disease (ILD). However, the PERFECT trial on PH therapy in COPD was stopped due to safety concerns, highlighting the need for careful evaluation in chronic lung disease (CLD) patients.4 For risk stratification, further emphasis was made on cardiac imaging and hemodynamic data. 

CHEST
Dr. Rodolfo A. Estrada


Significant progress was made in understanding four key pathways, including bone morphogenetic protein (BMP)/activin signaling. A treatment algorithm based on risk stratification was reinforced, recommending initial triple therapy with parenteral prostacyclin analogs for high-risk patients.5 Follow-up reassessment may include adding an activin-signaling inhibitor for all risk groups except low risk, as well as oral or inhaled prostacyclin for intermediate-low risk groups.

References


1. Kovacs G, Bartolome S, Denton CP, et al. Definition, classification and diagnosis of pulmonary hypertension. Eur Respir J. 2024;2401324. (Online ahead of print.)

2. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2024;61(1):2200879.

3. Maron BA, Bortman G, De Marco T, et al. Pulmonary hypertension associated with left heart disease. Eur Respir J. 2024;2401344. (Online ahead of print.)

4. Shlobin OA, Adir Y, Barbera JA, et al. Pulmonary hypertension associated with lung diseases. Eur Respir J. 2024;2401200. (Online ahead of print.)

5. Chin KM, Gaine SP, Gerges C, et al. Treatment algorithm for pulmonary arterial hypertension. Eur Respir J. 2024;2401325. (Online ahead of print.)

 

Pulmonary Vascular and Cardiovascular Network

Pulmonary Vascular Disease Section

The core definition of pulmonary hypertension (PH) remains a mean pulmonary arterial pressure (mPAP) > 20 mm Hg, with precapillary PH defined by a pulmonary arterial wedge pressure (PCWP) ≤ 15 mm Hg and pulmonary vascular resistance (PVR) > 2 Wood units (WU), similar to the 2022 European guidelines.1,2 There was recognition of uncertainty in patients with borderline PAWP (12-18 mm Hg) for postcapillary PH.

CHEST
Dr. Chidinma Ejikeme

A new staging model for group 2 PH was proposed to refine treatment strategies based on disease progression. It’s crucial to phenotype patients, especially those with valvular heart disease, hypertrophic cardiomyopathy, or amyloid cardiomyopathy, and to be cautious when using PAH medications for this PH group.3 

CHEST
Dr. Roberto J. Bernardo


Group 3 PH is often underrecognized and associated with poor outcomes, so screening in clinically stable patients is recommended using a multimodal assessment before hemodynamic evaluation. Inhaled treprostinil is recommended for PH associated with interstitial lung disease (ILD). However, the PERFECT trial on PH therapy in COPD was stopped due to safety concerns, highlighting the need for careful evaluation in chronic lung disease (CLD) patients.4 For risk stratification, further emphasis was made on cardiac imaging and hemodynamic data. 

CHEST
Dr. Rodolfo A. Estrada


Significant progress was made in understanding four key pathways, including bone morphogenetic protein (BMP)/activin signaling. A treatment algorithm based on risk stratification was reinforced, recommending initial triple therapy with parenteral prostacyclin analogs for high-risk patients.5 Follow-up reassessment may include adding an activin-signaling inhibitor for all risk groups except low risk, as well as oral or inhaled prostacyclin for intermediate-low risk groups.

References


1. Kovacs G, Bartolome S, Denton CP, et al. Definition, classification and diagnosis of pulmonary hypertension. Eur Respir J. 2024;2401324. (Online ahead of print.)

2. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2024;61(1):2200879.

3. Maron BA, Bortman G, De Marco T, et al. Pulmonary hypertension associated with left heart disease. Eur Respir J. 2024;2401344. (Online ahead of print.)

4. Shlobin OA, Adir Y, Barbera JA, et al. Pulmonary hypertension associated with lung diseases. Eur Respir J. 2024;2401200. (Online ahead of print.)

5. Chin KM, Gaine SP, Gerges C, et al. Treatment algorithm for pulmonary arterial hypertension. Eur Respir J. 2024;2401325. (Online ahead of print.)

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Extending exercise testing using telehealth monitoring in patients with ILD

Article Type
Changed
Fri, 12/06/2024 - 12:18

 

Diffuse Lung Disease and Lung Transplant Network

Pulmonary Physiology and Rehabilitation Section



The COVID-19 pandemic revolutionized the use of monitoring equipment in general and oxygen saturation monitoring devices as pulse oximeters in specific. Home technology devices such as home spirometry, smart apps, and wearable sensors combined with patient-reported outcome measures are increasingly used to monitor disease progression and medication compliance in addition to routine physical activity. The increasing adoption of activity trackers is geared toward promoting an active lifestyle through real-time feedback and continuous monitoring. Patients with interstitial lung diseases (ILDs) suffer from different symptoms; one of the most disabling is dyspnea. Primarily associated with oxygen desaturation, it initiates a detrimental cycle of decreased physical activity, ultimately compromising the overall quality of life.

CHEST
Dr. Rania Abdallah

The use of activity trackers has shown to enhance exercise capacity among ILD and sarcoidosis patients.1

Implementing continuous monitor activity by activity trackers coupled with continuous oxygen saturation can provide a comprehensive tool to follow up with ILD patients efficiently and accurately based on established use of a six-minute walk test (6MWT) and desaturation screen. Combined 6MWT and desaturation screens remain the principal predictors to assess the disease progression and treatment response in a variety of lung diseases, mainly pulmonary hypertension and ILD and serve as a prognostic indicator of those patients.2 One of the test limitations is that the distance walked in six minutes reflects fluctuations in quality of life.3 Also, the test measures submaximal exercise performance rather than maximal exercise capacity.4

Associations have been found in that the amplitude of oxygen desaturation at the end of exercise was poorly reproducible in 6MWT in idiopathic Interstitial pneumonia.5

Considering the mentioned limitations of the classic 6MWT, an alternative approach involves extended desaturation screen using telehealth and involving different activity levels. However, further validation across a diverse spectrum of ILDs remains essential.

References


1. Cho PSP, Vasudevan S, Maddocks M, et al. Physical inactivity in pulmonary sarcoidosis. Lung. 2019;197(3):285-293.

2. Flaherty KR, Andrei AC, Murray S, et al. Idiopathic pulmonary fibrosis: prognostic value of changes in physiology and six-minute-walk test. Am J Respir Crit Care Med. 2006;174(7), 803-809.

3. Olsson LG, Swedberg K, Clark AL, Witte KK, Cleland JG. Six-minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. Eur Heart J. 2005;26(8):778-793.

4. Ingle L, Wilkinson M, Carroll S, et al. Cardiorespiratory requirements of the 6-min walk test in older patients with left ventricular systolic dysfunction and no major structural heart disease. Int J Sports Med. 2007;28(8):678-684. https://doi.org/10.1055/s-2007-964886

5. Eaton T, Young P, Milne D, Wells AU. Six-minute walk, maximal exercise tests: reproducibility in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171(10):1150-1157.

Publications
Topics
Sections

 

Diffuse Lung Disease and Lung Transplant Network

Pulmonary Physiology and Rehabilitation Section



The COVID-19 pandemic revolutionized the use of monitoring equipment in general and oxygen saturation monitoring devices as pulse oximeters in specific. Home technology devices such as home spirometry, smart apps, and wearable sensors combined with patient-reported outcome measures are increasingly used to monitor disease progression and medication compliance in addition to routine physical activity. The increasing adoption of activity trackers is geared toward promoting an active lifestyle through real-time feedback and continuous monitoring. Patients with interstitial lung diseases (ILDs) suffer from different symptoms; one of the most disabling is dyspnea. Primarily associated with oxygen desaturation, it initiates a detrimental cycle of decreased physical activity, ultimately compromising the overall quality of life.

CHEST
Dr. Rania Abdallah

The use of activity trackers has shown to enhance exercise capacity among ILD and sarcoidosis patients.1

Implementing continuous monitor activity by activity trackers coupled with continuous oxygen saturation can provide a comprehensive tool to follow up with ILD patients efficiently and accurately based on established use of a six-minute walk test (6MWT) and desaturation screen. Combined 6MWT and desaturation screens remain the principal predictors to assess the disease progression and treatment response in a variety of lung diseases, mainly pulmonary hypertension and ILD and serve as a prognostic indicator of those patients.2 One of the test limitations is that the distance walked in six minutes reflects fluctuations in quality of life.3 Also, the test measures submaximal exercise performance rather than maximal exercise capacity.4

Associations have been found in that the amplitude of oxygen desaturation at the end of exercise was poorly reproducible in 6MWT in idiopathic Interstitial pneumonia.5

Considering the mentioned limitations of the classic 6MWT, an alternative approach involves extended desaturation screen using telehealth and involving different activity levels. However, further validation across a diverse spectrum of ILDs remains essential.

References


1. Cho PSP, Vasudevan S, Maddocks M, et al. Physical inactivity in pulmonary sarcoidosis. Lung. 2019;197(3):285-293.

2. Flaherty KR, Andrei AC, Murray S, et al. Idiopathic pulmonary fibrosis: prognostic value of changes in physiology and six-minute-walk test. Am J Respir Crit Care Med. 2006;174(7), 803-809.

3. Olsson LG, Swedberg K, Clark AL, Witte KK, Cleland JG. Six-minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. Eur Heart J. 2005;26(8):778-793.

4. Ingle L, Wilkinson M, Carroll S, et al. Cardiorespiratory requirements of the 6-min walk test in older patients with left ventricular systolic dysfunction and no major structural heart disease. Int J Sports Med. 2007;28(8):678-684. https://doi.org/10.1055/s-2007-964886

5. Eaton T, Young P, Milne D, Wells AU. Six-minute walk, maximal exercise tests: reproducibility in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171(10):1150-1157.

 

Diffuse Lung Disease and Lung Transplant Network

Pulmonary Physiology and Rehabilitation Section



The COVID-19 pandemic revolutionized the use of monitoring equipment in general and oxygen saturation monitoring devices as pulse oximeters in specific. Home technology devices such as home spirometry, smart apps, and wearable sensors combined with patient-reported outcome measures are increasingly used to monitor disease progression and medication compliance in addition to routine physical activity. The increasing adoption of activity trackers is geared toward promoting an active lifestyle through real-time feedback and continuous monitoring. Patients with interstitial lung diseases (ILDs) suffer from different symptoms; one of the most disabling is dyspnea. Primarily associated with oxygen desaturation, it initiates a detrimental cycle of decreased physical activity, ultimately compromising the overall quality of life.

CHEST
Dr. Rania Abdallah

The use of activity trackers has shown to enhance exercise capacity among ILD and sarcoidosis patients.1

Implementing continuous monitor activity by activity trackers coupled with continuous oxygen saturation can provide a comprehensive tool to follow up with ILD patients efficiently and accurately based on established use of a six-minute walk test (6MWT) and desaturation screen. Combined 6MWT and desaturation screens remain the principal predictors to assess the disease progression and treatment response in a variety of lung diseases, mainly pulmonary hypertension and ILD and serve as a prognostic indicator of those patients.2 One of the test limitations is that the distance walked in six minutes reflects fluctuations in quality of life.3 Also, the test measures submaximal exercise performance rather than maximal exercise capacity.4

Associations have been found in that the amplitude of oxygen desaturation at the end of exercise was poorly reproducible in 6MWT in idiopathic Interstitial pneumonia.5

Considering the mentioned limitations of the classic 6MWT, an alternative approach involves extended desaturation screen using telehealth and involving different activity levels. However, further validation across a diverse spectrum of ILDs remains essential.

References


1. Cho PSP, Vasudevan S, Maddocks M, et al. Physical inactivity in pulmonary sarcoidosis. Lung. 2019;197(3):285-293.

2. Flaherty KR, Andrei AC, Murray S, et al. Idiopathic pulmonary fibrosis: prognostic value of changes in physiology and six-minute-walk test. Am J Respir Crit Care Med. 2006;174(7), 803-809.

3. Olsson LG, Swedberg K, Clark AL, Witte KK, Cleland JG. Six-minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. Eur Heart J. 2005;26(8):778-793.

4. Ingle L, Wilkinson M, Carroll S, et al. Cardiorespiratory requirements of the 6-min walk test in older patients with left ventricular systolic dysfunction and no major structural heart disease. Int J Sports Med. 2007;28(8):678-684. https://doi.org/10.1055/s-2007-964886

5. Eaton T, Young P, Milne D, Wells AU. Six-minute walk, maximal exercise tests: reproducibility in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171(10):1150-1157.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Gate On Date
Fri, 12/06/2024 - 12:18
Un-Gate On Date
Fri, 12/06/2024 - 12:18
Use ProPublica
CFC Schedule Remove Status
Fri, 12/06/2024 - 12:18
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article
survey writer start date
Fri, 12/06/2024 - 12:18

Should napping be recommended as a health behavior?

Article Type
Changed
Mon, 11/04/2024 - 14:12

I was invited to a cardiology conference to talk about sleep, specifically the benefits of napping for health and cognition. After the talk, along with the usual questions related to my research, the cardiac surgeons in the room shifted the conversation to better resemble a group therapy session, sharing their harrowing personal tales of coping with sleep loss on the job. The most dramatic story involved a resident in a military hospital who, unable to avoid the effects of her mounting sleep loss, did a face plant into the open chest of the patient on the surgery table.

Sleep is inexorable.

Yet humans generally do not get sufficient sleep, and a growing body of research indicates that this deficit is taking a toll on day-to-day functioning, as well as long-term health outcomes.
Epidemiology studies have associated insufficient sleep with increased disease risk, including cardiovascular and metabolic disease, diabetes, cancer, Alzheimer’s disease and related dementias, as well as early mortality. Laboratory studies that experimentally restrict sleep show deficits across many cognitive domains, including executive functions, long-term memory, as well as emotional processing and regulation. Insufficient sleep in adolescents can longitudinally predict depression, thought problems, and lower crystallized intelligence, as well as structural brain properties. In older adults, it can predict the onset of chronic disease, including Alzheimer’s disease. Repeated nights of insufficient sleep (eg, three to four nights of four to six hours of sleep) have been shown to dysregulate hormone release, elevate body temperature and heart rate, stimulate appetite, and create an imbalance between the two branches of the autonomic nervous system by prolonging sympathetic activity and reducing parasympathetic restorative activity.

Given this ever-increasing list of ill effects of poor sleep, the quest for an effective, inexpensive, and manageable intervention for sleep loss often leads to the question: What about naps? A nap is typically defined as a period of sleep between five minutes to three hours, although naps can occur at any hour, they are usually daytime sleep behaviors. Between 40% and 60% of adults nap regularly, at least once a week, and, excluding novelty nap boutiques, they are free of charge and require little management or oversight. Yet, for all their apparent positive aspects, the jury is still out on whether naps should be recommended as a sleep loss countermeasure due to the lack of agreement across studies as to their effects on health.

Naps are studied in primarily two scientific contexts: laboratory experimental studies and epidemiological studies. Laboratory experimental studies measure the effect of short bouts of sleep as a fatigue countermeasure or cognitive enhancer under total sleep deprivation, sleep restriction (four to six hours of nighttime sleep), or well-rested conditions. These experiments are usually conducted in small (20 to 30 participants) convenience samples of young adults without medical and mental health problems. Performance on computer-based cognitive tasks is tested before and after naps of varying durations. By varying nap durations, researchers can test the impact of specific sleep stages on performance improvement. For example, in well-rested, intermediate chronotype individuals, a 30-minute nap between 13:00 and 15:00 will contain mostly stage 2 sleep, whereas a nap of up to 60 minutes will include slow wave sleep, and a 90-minute nap will end on a bout of rapid eye movement sleep. Studies that vary nap duration and therefore sleep quality have demonstrated an important principle of sleep’s effect on the brain and cognitive processing, namely that each sleep stage uniquely contributes to different aspects of cognitive and emotional processing. And that when naps are inserted into a person’s day, even in well-rested conditions, they tend to perform better after the nap than if they had stayed awake. Napping leads to greater vigilance, attention, memory, motor performance, and creativity, among others, compared with equivalent wake periods.1,2 Compared with the common fatigue countermeasure—caffeine—naps enhance explicit memory performance to a greater extent.

Sara C. Mednick, PhD


In the second context, epidemiological studies examining the impact of napping on health outcomes are typically conducted in older, less healthy, less active populations who tend to have poorer eating habits, multiple comorbidities, psychological problems, and a wide range of socioeconomic status. The strength of this approach is the sample size, which allows for correlations between factors on a large scale while providing enough data to hopefully control for possible confounds (eg, demographics, SES, exercise and eating habits, comorbidities). However, as the data were usually collected by a different group with different goals than the current epidemiologist exploring the data, there can be a disconnect between the current study goals and the variables that were initially collected by the original research team. As such, the current researcher is left with a patchwork of dissimilar variables that they must find a way to organize to answer the current question.3

When applied to the question of health effects of napping, epidemiology researchers typically divide the population into two groups, either based on a yes or no response to a napping question, or a frequency score where those who indicate napping more than one, two, or three times a week are distinguished as nappers compared to non-nappers who don’t meet these criteria. As the field lacks standard definitions for categorizing nap behavior, it is left to the discretion of the researcher to make these decisions. Furthermore, there is usually little other information collected about napping habits that could be used to better characterize napping behavior, such as lifetime nap habits, intentional vs accidental napping, and specific motivations for napping. These secondary factors have been shown to significantly moderate the effects of napping in experimental studies.

Considering the challenges, it is not surprising that there is wide disagreement across studies as to the health effects of napping.4 On the negative side, some studies have demonstrated that napping leads to increased risk of cardiovascular disease, dementia, and mortality.5-7 On the positive side, large cohort studies that control for some of these limitations report that habitual napping can predict better health outcomes, including lower mortality risk, reduced cardiovascular disease, and increased brain volume.8,9 Furthermore, age complicates matters as recent studies in older adults report that more frequent napping may be associated with reduced propensity for sleep during morning hours, and late afternoon naps were associated with earlier melatonin onset and increased evening activity, suggesting greater circadian misalignment in nappers and strategic use of napping as an evening fatigue countermeasure. More frequent napping in older adults was also correlated with lower cognitive performance in one of three cognitive domains. These results implicate more frequent and later-in-the-day napping habits in older adults may indicate altered circadian rhythms and reduced early morning sleep, with a potential functional impact on memory function. However, the same cautionary note applies to these studies, as few nap characteristics were reported that would help interpret the study outcomes and guide recommendations.10 Thus, the important and timely question of whether napping should be recommended does not, as of yet, have an answer. For clinicians weighing the multidimensional factors associated with napping in efforts to give a considered response to their patients, I can offer a set of questions that may help with tailoring responses to each individual. A lifetime history of napping can be an indicator of a health-promoting behavior, whereas a relatively recent desire to nap may reflect an underlying comorbidity that increases fatigue, sleepiness, and unintentional daytime sleep. Motivation for napping can also be revealing, as the desire to nap may be masking symptoms of depression and anxiety.11 Nighttime sleep disturbance may promote napping or, in some cases, arise from too much napping and should always be considered as a primary health measurement. In conclusion, it’s important to recognize the significance of addressing nighttime sleep disturbance and the potential impact of napping on overall health. For many, napping can be an essential and potent habit that can be encouraged throughout the lifespan for its salutary influences.


References

1. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003 Jul;6(7):697-8. doi: 10.1038/nn1078. PMID: 12819785.

2. Jones BJ, Spencer RMC. Role of Napping for Learning across the Lifespan. Curr Sleep Med Rep. 2020 Dec;6(4):290-297. Doi: 10.1007/s40675-020-00193-9. Epub 2020 Nov 12. PMID: 33816064; PMCID: PMC8011550.

3. Dunietz GL, Jansen EC, Hershner S, O’Brien LM, Peterson KE, Baylin A. Parallel Assessment Challenges in Nutritional and Sleep Epidemiology. Am J Epidemiol. 2021 Jun 1;190(6):954-961. doi: 10.1093/aje/kwaa230. PMID: 33089309; PMCID: PMC8168107.

4. Stang A. Daytime napping and health consequences: much epidemiologic work to do. Sleep Med. 2015 Jul;16(7):809-10. doi: 10.1016/j.sleep.2015.02.522. Epub 2015 Feb 14. PMID: 25772544.

5. Li, P., Gao, L., Yu, L., Zheng, X., Ulsa, M. C., Yang, H.-W., Gaba, A., Yaffe, K., Bennett, D. A., Buchman, A. S., Hu, K., & Leng, Y. (2022). Daytime napping and Alzheimer’s dementia: A potential bidirectional relationship. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association. https://doi.org/10.1002/alz.12636

6. Stang A, Dragano N., Moebus S, et al. Midday naps and the risk of coronary artery disease: results of the Heinz Nixdorf Recall Study Sleep, 35 (12) (2012), pp. 1705-1712

7. Wang K, Hu L, Wang L, Shu HN, Wang YT, Yuan Y, Cheng HP, Zhang YQ. Midday Napping, Nighttime Sleep, and Mortality: Prospective Cohort Evidence in China. Biomed Environ Sci. 2023 Aug 20;36(8):702-714. doi: 10.3967/bes2023.073. PMID: 37711082.

8. Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D. Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med. 2007 Feb 12;167(3):296-301. Doi: 10.1001/archinte.167.3.296. PMID: 17296887.

9. Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health. 2023 Oct;9(5):786-793. Doi: 10.1016/j.sleh.2023.05.002. Epub 2023 Jun 20. PMID: 37344293.

10. Mednick SC. Is napping in older adults problematic or productive? The answer may lie in the reason they nap. Sleep. 2024 May 10;47(5):zsae056. doi: 10.1093/sleep/zsae056. PMID: 38421680; PMCID: PMC11082470.

11. Duggan KA, McDevitt EA, Whitehurst LN, Mednick SC. To Nap, Perchance to DREAM: A Factor Analysis of College Students’ Self-Reported Reasons for Napping. Behav Sleep Med. 2018 Mar-Apr;16(2):135-153. doi: 10.1080/15402002.2016.1178115. Epub 2016 Jun 27. PMID: 27347727; PMCID: PMC5374038.

Publications
Topics
Sections

I was invited to a cardiology conference to talk about sleep, specifically the benefits of napping for health and cognition. After the talk, along with the usual questions related to my research, the cardiac surgeons in the room shifted the conversation to better resemble a group therapy session, sharing their harrowing personal tales of coping with sleep loss on the job. The most dramatic story involved a resident in a military hospital who, unable to avoid the effects of her mounting sleep loss, did a face plant into the open chest of the patient on the surgery table.

Sleep is inexorable.

Yet humans generally do not get sufficient sleep, and a growing body of research indicates that this deficit is taking a toll on day-to-day functioning, as well as long-term health outcomes.
Epidemiology studies have associated insufficient sleep with increased disease risk, including cardiovascular and metabolic disease, diabetes, cancer, Alzheimer’s disease and related dementias, as well as early mortality. Laboratory studies that experimentally restrict sleep show deficits across many cognitive domains, including executive functions, long-term memory, as well as emotional processing and regulation. Insufficient sleep in adolescents can longitudinally predict depression, thought problems, and lower crystallized intelligence, as well as structural brain properties. In older adults, it can predict the onset of chronic disease, including Alzheimer’s disease. Repeated nights of insufficient sleep (eg, three to four nights of four to six hours of sleep) have been shown to dysregulate hormone release, elevate body temperature and heart rate, stimulate appetite, and create an imbalance between the two branches of the autonomic nervous system by prolonging sympathetic activity and reducing parasympathetic restorative activity.

Given this ever-increasing list of ill effects of poor sleep, the quest for an effective, inexpensive, and manageable intervention for sleep loss often leads to the question: What about naps? A nap is typically defined as a period of sleep between five minutes to three hours, although naps can occur at any hour, they are usually daytime sleep behaviors. Between 40% and 60% of adults nap regularly, at least once a week, and, excluding novelty nap boutiques, they are free of charge and require little management or oversight. Yet, for all their apparent positive aspects, the jury is still out on whether naps should be recommended as a sleep loss countermeasure due to the lack of agreement across studies as to their effects on health.

Naps are studied in primarily two scientific contexts: laboratory experimental studies and epidemiological studies. Laboratory experimental studies measure the effect of short bouts of sleep as a fatigue countermeasure or cognitive enhancer under total sleep deprivation, sleep restriction (four to six hours of nighttime sleep), or well-rested conditions. These experiments are usually conducted in small (20 to 30 participants) convenience samples of young adults without medical and mental health problems. Performance on computer-based cognitive tasks is tested before and after naps of varying durations. By varying nap durations, researchers can test the impact of specific sleep stages on performance improvement. For example, in well-rested, intermediate chronotype individuals, a 30-minute nap between 13:00 and 15:00 will contain mostly stage 2 sleep, whereas a nap of up to 60 minutes will include slow wave sleep, and a 90-minute nap will end on a bout of rapid eye movement sleep. Studies that vary nap duration and therefore sleep quality have demonstrated an important principle of sleep’s effect on the brain and cognitive processing, namely that each sleep stage uniquely contributes to different aspects of cognitive and emotional processing. And that when naps are inserted into a person’s day, even in well-rested conditions, they tend to perform better after the nap than if they had stayed awake. Napping leads to greater vigilance, attention, memory, motor performance, and creativity, among others, compared with equivalent wake periods.1,2 Compared with the common fatigue countermeasure—caffeine—naps enhance explicit memory performance to a greater extent.

Sara C. Mednick, PhD


In the second context, epidemiological studies examining the impact of napping on health outcomes are typically conducted in older, less healthy, less active populations who tend to have poorer eating habits, multiple comorbidities, psychological problems, and a wide range of socioeconomic status. The strength of this approach is the sample size, which allows for correlations between factors on a large scale while providing enough data to hopefully control for possible confounds (eg, demographics, SES, exercise and eating habits, comorbidities). However, as the data were usually collected by a different group with different goals than the current epidemiologist exploring the data, there can be a disconnect between the current study goals and the variables that were initially collected by the original research team. As such, the current researcher is left with a patchwork of dissimilar variables that they must find a way to organize to answer the current question.3

When applied to the question of health effects of napping, epidemiology researchers typically divide the population into two groups, either based on a yes or no response to a napping question, or a frequency score where those who indicate napping more than one, two, or three times a week are distinguished as nappers compared to non-nappers who don’t meet these criteria. As the field lacks standard definitions for categorizing nap behavior, it is left to the discretion of the researcher to make these decisions. Furthermore, there is usually little other information collected about napping habits that could be used to better characterize napping behavior, such as lifetime nap habits, intentional vs accidental napping, and specific motivations for napping. These secondary factors have been shown to significantly moderate the effects of napping in experimental studies.

Considering the challenges, it is not surprising that there is wide disagreement across studies as to the health effects of napping.4 On the negative side, some studies have demonstrated that napping leads to increased risk of cardiovascular disease, dementia, and mortality.5-7 On the positive side, large cohort studies that control for some of these limitations report that habitual napping can predict better health outcomes, including lower mortality risk, reduced cardiovascular disease, and increased brain volume.8,9 Furthermore, age complicates matters as recent studies in older adults report that more frequent napping may be associated with reduced propensity for sleep during morning hours, and late afternoon naps were associated with earlier melatonin onset and increased evening activity, suggesting greater circadian misalignment in nappers and strategic use of napping as an evening fatigue countermeasure. More frequent napping in older adults was also correlated with lower cognitive performance in one of three cognitive domains. These results implicate more frequent and later-in-the-day napping habits in older adults may indicate altered circadian rhythms and reduced early morning sleep, with a potential functional impact on memory function. However, the same cautionary note applies to these studies, as few nap characteristics were reported that would help interpret the study outcomes and guide recommendations.10 Thus, the important and timely question of whether napping should be recommended does not, as of yet, have an answer. For clinicians weighing the multidimensional factors associated with napping in efforts to give a considered response to their patients, I can offer a set of questions that may help with tailoring responses to each individual. A lifetime history of napping can be an indicator of a health-promoting behavior, whereas a relatively recent desire to nap may reflect an underlying comorbidity that increases fatigue, sleepiness, and unintentional daytime sleep. Motivation for napping can also be revealing, as the desire to nap may be masking symptoms of depression and anxiety.11 Nighttime sleep disturbance may promote napping or, in some cases, arise from too much napping and should always be considered as a primary health measurement. In conclusion, it’s important to recognize the significance of addressing nighttime sleep disturbance and the potential impact of napping on overall health. For many, napping can be an essential and potent habit that can be encouraged throughout the lifespan for its salutary influences.


References

1. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003 Jul;6(7):697-8. doi: 10.1038/nn1078. PMID: 12819785.

2. Jones BJ, Spencer RMC. Role of Napping for Learning across the Lifespan. Curr Sleep Med Rep. 2020 Dec;6(4):290-297. Doi: 10.1007/s40675-020-00193-9. Epub 2020 Nov 12. PMID: 33816064; PMCID: PMC8011550.

3. Dunietz GL, Jansen EC, Hershner S, O’Brien LM, Peterson KE, Baylin A. Parallel Assessment Challenges in Nutritional and Sleep Epidemiology. Am J Epidemiol. 2021 Jun 1;190(6):954-961. doi: 10.1093/aje/kwaa230. PMID: 33089309; PMCID: PMC8168107.

4. Stang A. Daytime napping and health consequences: much epidemiologic work to do. Sleep Med. 2015 Jul;16(7):809-10. doi: 10.1016/j.sleep.2015.02.522. Epub 2015 Feb 14. PMID: 25772544.

5. Li, P., Gao, L., Yu, L., Zheng, X., Ulsa, M. C., Yang, H.-W., Gaba, A., Yaffe, K., Bennett, D. A., Buchman, A. S., Hu, K., & Leng, Y. (2022). Daytime napping and Alzheimer’s dementia: A potential bidirectional relationship. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association. https://doi.org/10.1002/alz.12636

6. Stang A, Dragano N., Moebus S, et al. Midday naps and the risk of coronary artery disease: results of the Heinz Nixdorf Recall Study Sleep, 35 (12) (2012), pp. 1705-1712

7. Wang K, Hu L, Wang L, Shu HN, Wang YT, Yuan Y, Cheng HP, Zhang YQ. Midday Napping, Nighttime Sleep, and Mortality: Prospective Cohort Evidence in China. Biomed Environ Sci. 2023 Aug 20;36(8):702-714. doi: 10.3967/bes2023.073. PMID: 37711082.

8. Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D. Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med. 2007 Feb 12;167(3):296-301. Doi: 10.1001/archinte.167.3.296. PMID: 17296887.

9. Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health. 2023 Oct;9(5):786-793. Doi: 10.1016/j.sleh.2023.05.002. Epub 2023 Jun 20. PMID: 37344293.

10. Mednick SC. Is napping in older adults problematic or productive? The answer may lie in the reason they nap. Sleep. 2024 May 10;47(5):zsae056. doi: 10.1093/sleep/zsae056. PMID: 38421680; PMCID: PMC11082470.

11. Duggan KA, McDevitt EA, Whitehurst LN, Mednick SC. To Nap, Perchance to DREAM: A Factor Analysis of College Students’ Self-Reported Reasons for Napping. Behav Sleep Med. 2018 Mar-Apr;16(2):135-153. doi: 10.1080/15402002.2016.1178115. Epub 2016 Jun 27. PMID: 27347727; PMCID: PMC5374038.

I was invited to a cardiology conference to talk about sleep, specifically the benefits of napping for health and cognition. After the talk, along with the usual questions related to my research, the cardiac surgeons in the room shifted the conversation to better resemble a group therapy session, sharing their harrowing personal tales of coping with sleep loss on the job. The most dramatic story involved a resident in a military hospital who, unable to avoid the effects of her mounting sleep loss, did a face plant into the open chest of the patient on the surgery table.

Sleep is inexorable.

Yet humans generally do not get sufficient sleep, and a growing body of research indicates that this deficit is taking a toll on day-to-day functioning, as well as long-term health outcomes.
Epidemiology studies have associated insufficient sleep with increased disease risk, including cardiovascular and metabolic disease, diabetes, cancer, Alzheimer’s disease and related dementias, as well as early mortality. Laboratory studies that experimentally restrict sleep show deficits across many cognitive domains, including executive functions, long-term memory, as well as emotional processing and regulation. Insufficient sleep in adolescents can longitudinally predict depression, thought problems, and lower crystallized intelligence, as well as structural brain properties. In older adults, it can predict the onset of chronic disease, including Alzheimer’s disease. Repeated nights of insufficient sleep (eg, three to four nights of four to six hours of sleep) have been shown to dysregulate hormone release, elevate body temperature and heart rate, stimulate appetite, and create an imbalance between the two branches of the autonomic nervous system by prolonging sympathetic activity and reducing parasympathetic restorative activity.

Given this ever-increasing list of ill effects of poor sleep, the quest for an effective, inexpensive, and manageable intervention for sleep loss often leads to the question: What about naps? A nap is typically defined as a period of sleep between five minutes to three hours, although naps can occur at any hour, they are usually daytime sleep behaviors. Between 40% and 60% of adults nap regularly, at least once a week, and, excluding novelty nap boutiques, they are free of charge and require little management or oversight. Yet, for all their apparent positive aspects, the jury is still out on whether naps should be recommended as a sleep loss countermeasure due to the lack of agreement across studies as to their effects on health.

Naps are studied in primarily two scientific contexts: laboratory experimental studies and epidemiological studies. Laboratory experimental studies measure the effect of short bouts of sleep as a fatigue countermeasure or cognitive enhancer under total sleep deprivation, sleep restriction (four to six hours of nighttime sleep), or well-rested conditions. These experiments are usually conducted in small (20 to 30 participants) convenience samples of young adults without medical and mental health problems. Performance on computer-based cognitive tasks is tested before and after naps of varying durations. By varying nap durations, researchers can test the impact of specific sleep stages on performance improvement. For example, in well-rested, intermediate chronotype individuals, a 30-minute nap between 13:00 and 15:00 will contain mostly stage 2 sleep, whereas a nap of up to 60 minutes will include slow wave sleep, and a 90-minute nap will end on a bout of rapid eye movement sleep. Studies that vary nap duration and therefore sleep quality have demonstrated an important principle of sleep’s effect on the brain and cognitive processing, namely that each sleep stage uniquely contributes to different aspects of cognitive and emotional processing. And that when naps are inserted into a person’s day, even in well-rested conditions, they tend to perform better after the nap than if they had stayed awake. Napping leads to greater vigilance, attention, memory, motor performance, and creativity, among others, compared with equivalent wake periods.1,2 Compared with the common fatigue countermeasure—caffeine—naps enhance explicit memory performance to a greater extent.

Sara C. Mednick, PhD


In the second context, epidemiological studies examining the impact of napping on health outcomes are typically conducted in older, less healthy, less active populations who tend to have poorer eating habits, multiple comorbidities, psychological problems, and a wide range of socioeconomic status. The strength of this approach is the sample size, which allows for correlations between factors on a large scale while providing enough data to hopefully control for possible confounds (eg, demographics, SES, exercise and eating habits, comorbidities). However, as the data were usually collected by a different group with different goals than the current epidemiologist exploring the data, there can be a disconnect between the current study goals and the variables that were initially collected by the original research team. As such, the current researcher is left with a patchwork of dissimilar variables that they must find a way to organize to answer the current question.3

When applied to the question of health effects of napping, epidemiology researchers typically divide the population into two groups, either based on a yes or no response to a napping question, or a frequency score where those who indicate napping more than one, two, or three times a week are distinguished as nappers compared to non-nappers who don’t meet these criteria. As the field lacks standard definitions for categorizing nap behavior, it is left to the discretion of the researcher to make these decisions. Furthermore, there is usually little other information collected about napping habits that could be used to better characterize napping behavior, such as lifetime nap habits, intentional vs accidental napping, and specific motivations for napping. These secondary factors have been shown to significantly moderate the effects of napping in experimental studies.

Considering the challenges, it is not surprising that there is wide disagreement across studies as to the health effects of napping.4 On the negative side, some studies have demonstrated that napping leads to increased risk of cardiovascular disease, dementia, and mortality.5-7 On the positive side, large cohort studies that control for some of these limitations report that habitual napping can predict better health outcomes, including lower mortality risk, reduced cardiovascular disease, and increased brain volume.8,9 Furthermore, age complicates matters as recent studies in older adults report that more frequent napping may be associated with reduced propensity for sleep during morning hours, and late afternoon naps were associated with earlier melatonin onset and increased evening activity, suggesting greater circadian misalignment in nappers and strategic use of napping as an evening fatigue countermeasure. More frequent napping in older adults was also correlated with lower cognitive performance in one of three cognitive domains. These results implicate more frequent and later-in-the-day napping habits in older adults may indicate altered circadian rhythms and reduced early morning sleep, with a potential functional impact on memory function. However, the same cautionary note applies to these studies, as few nap characteristics were reported that would help interpret the study outcomes and guide recommendations.10 Thus, the important and timely question of whether napping should be recommended does not, as of yet, have an answer. For clinicians weighing the multidimensional factors associated with napping in efforts to give a considered response to their patients, I can offer a set of questions that may help with tailoring responses to each individual. A lifetime history of napping can be an indicator of a health-promoting behavior, whereas a relatively recent desire to nap may reflect an underlying comorbidity that increases fatigue, sleepiness, and unintentional daytime sleep. Motivation for napping can also be revealing, as the desire to nap may be masking symptoms of depression and anxiety.11 Nighttime sleep disturbance may promote napping or, in some cases, arise from too much napping and should always be considered as a primary health measurement. In conclusion, it’s important to recognize the significance of addressing nighttime sleep disturbance and the potential impact of napping on overall health. For many, napping can be an essential and potent habit that can be encouraged throughout the lifespan for its salutary influences.


References

1. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci. 2003 Jul;6(7):697-8. doi: 10.1038/nn1078. PMID: 12819785.

2. Jones BJ, Spencer RMC. Role of Napping for Learning across the Lifespan. Curr Sleep Med Rep. 2020 Dec;6(4):290-297. Doi: 10.1007/s40675-020-00193-9. Epub 2020 Nov 12. PMID: 33816064; PMCID: PMC8011550.

3. Dunietz GL, Jansen EC, Hershner S, O’Brien LM, Peterson KE, Baylin A. Parallel Assessment Challenges in Nutritional and Sleep Epidemiology. Am J Epidemiol. 2021 Jun 1;190(6):954-961. doi: 10.1093/aje/kwaa230. PMID: 33089309; PMCID: PMC8168107.

4. Stang A. Daytime napping and health consequences: much epidemiologic work to do. Sleep Med. 2015 Jul;16(7):809-10. doi: 10.1016/j.sleep.2015.02.522. Epub 2015 Feb 14. PMID: 25772544.

5. Li, P., Gao, L., Yu, L., Zheng, X., Ulsa, M. C., Yang, H.-W., Gaba, A., Yaffe, K., Bennett, D. A., Buchman, A. S., Hu, K., & Leng, Y. (2022). Daytime napping and Alzheimer’s dementia: A potential bidirectional relationship. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association. https://doi.org/10.1002/alz.12636

6. Stang A, Dragano N., Moebus S, et al. Midday naps and the risk of coronary artery disease: results of the Heinz Nixdorf Recall Study Sleep, 35 (12) (2012), pp. 1705-1712

7. Wang K, Hu L, Wang L, Shu HN, Wang YT, Yuan Y, Cheng HP, Zhang YQ. Midday Napping, Nighttime Sleep, and Mortality: Prospective Cohort Evidence in China. Biomed Environ Sci. 2023 Aug 20;36(8):702-714. doi: 10.3967/bes2023.073. PMID: 37711082.

8. Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D. Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med. 2007 Feb 12;167(3):296-301. Doi: 10.1001/archinte.167.3.296. PMID: 17296887.

9. Paz V, Dashti HS, Garfield V. Is there an association between daytime napping, cognitive function, and brain volume? A Mendelian randomization study in the UK Biobank. Sleep Health. 2023 Oct;9(5):786-793. Doi: 10.1016/j.sleh.2023.05.002. Epub 2023 Jun 20. PMID: 37344293.

10. Mednick SC. Is napping in older adults problematic or productive? The answer may lie in the reason they nap. Sleep. 2024 May 10;47(5):zsae056. doi: 10.1093/sleep/zsae056. PMID: 38421680; PMCID: PMC11082470.

11. Duggan KA, McDevitt EA, Whitehurst LN, Mednick SC. To Nap, Perchance to DREAM: A Factor Analysis of College Students’ Self-Reported Reasons for Napping. Behav Sleep Med. 2018 Mar-Apr;16(2):135-153. doi: 10.1080/15402002.2016.1178115. Epub 2016 Jun 27. PMID: 27347727; PMCID: PMC5374038.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Exciting opportunities for tobacco treatment

Article Type
Changed
Mon, 11/04/2024 - 14:44
Unpacking the CMS changes

FROM THE CHEST TOBACCO/VAPING WORK GROUP – 

The recent changes enacted by the Centers for Medicare & Medicaid Services (CMS) are creating unprecedented opportunities for pulmonologists and medical centers to help treat people with tobacco use disorder. Specifically, these changes embed the integration of tobacco and nicotine addiction treatment more deeply into our nation’s health care system. As we face a critical moment in the fight against tobacco-related morbidity and mortality, it is essential that we leverage these changes. In doing so, CHEST aims to serve as an active bridge, informing health care providers of this unique federal opportunity that benefits both patients and clinicians.

A quick primer on “incident to” services

These CMS changes create an important shift in how “incident to” services can be billed. These are any services that are incident to (occur because of) a provider evaluation. These previously required direct supervision of the provider (in the same building) to be billed at the provider rate. Now “general supervision” suffices, which means the physician can be available by phone/video call. These services can then often be billed at a higher rate. In the case of treating dependence on tobacco products, any tobacco treatment specialist (TTS) employed by a practice who cares for the patient subsequent to the initial encounter can now be reimbursed in an increased manner. Better reimbursement for this vital service will ideally lead to better utilization of these resources and better public health.

CHEST
Matthew Bars

 

The Medicare solution is here

With the CMS rule changes in 2023 and their reaffirmation in 2024, the structure has been put in place to allow physicians, medical centers, and TTSs to create contractual relationships that can significantly improve patient care. TTSs are health care professionals from a wide variety of disciplines who have received specialized training in tobacco and nicotine addiction and treatment strategies. By expanding billing and, thus, service opportunities, these CMS modifications empower health care providers to leverage the existing fee-for-service model, translating to better care and sustainable revenue streams.

CHEST
Dr. Evan Stepp

 

Key changes in the CMS 2023 rule

One of the most notable changes involves the supervision requirements for auxiliary personnel, which now permit general supervision. Specifically, physicians are not required to be physically present during clinical encounters but can supervise TTSs virtually through real-time audio/video technology. This is a vital shift that enhances flexibility in patient care and expands the capabilities of health care teams.

According to 42 CFR § 410.26, TTSs qualify as auxiliary health care providers, meaning that they can operate under the supervision of a physician or other designated providers. This revised framework gives practices maximum autonomy in their staffing models and enhances their ability to offer comprehensive care. For example, TTSs can function as patient navigators, ensuring patients using tobacco receive medically appropriate early lung cancer screening and other related medical services.
 

Expanding access to behavioral health services

The changes aim not only to increase the efficiency of health care delivery but also to reflect a commitment to expanding access to vital behavioral health services. Key takeaways from a summary of the CMS 2023 rule include:

  • The goal of these changes is to enhance access to behavioral health services across the board.
  • The change in supervision requirements applies to auxiliary personnel offering behavioral health services incident to a physician’s services.
  • Both patients and physicians will benefit from an expanded clinical team and improved reimbursement options for the services provided.

By leveraging these opportunities, physicians and their teams can collaborate with TTSs to make significant strides in helping patients address and overcome their dependence on tobacco and nicotine.
 

The outlook: CMS 2024 rule

The current outlook for 2024 and beyond promises even more opportunities as part of CMS’ ongoing Behavioral Health Strategy. This includes enabling mental health counselors (MHCs) and marriage and family therapists (MFTs) to bill Medicare independently, initiating vital coverage for mental health services that align with tobacco cessation efforts.

Physicians and medical centers can contract with MFTs and MHCs who are TTSs to provide tobacco addiction services. TTSs will serve as essential partners in multidisciplinary care teams, enhancing the overall health care landscape while ensuring that patients receive comprehensive support tailored to their needs.
 

Telehealth policy changes: Making services accessible

The White House also recently reinforced the importance of telehealth services, providing further avenues for TTSs to reach patients effectively. With expanded geographic locations for service delivery, care can be provided from virtually anywhere, including when the patient is at home.

Key telehealth provisions include:

  • Extended telehealth services through 2024
  • Elimination of in-person requirements for mental health services
  • Expanded eligibility for providers qualified to provide telehealth services

Practical implications for providers

These developments not only simplify the establishment of tobacco treatment programs but also create better avenues to develop partnerships between physicians, hospitals, medical centers, multidisciplinary practices, and TTSs. Importantly, these clinicians will be compensated directly for the tobacco treatment services they provide.
 

Conclusion

This is a pivotal moment for pulmonologists and TTSs to meaningfully claim their place within the health care space. As we strive to “make smoking history,” we must act on these CMS opportunities. As providers, we must be proactive, collaborate across disciplines, and serve as advocates for our patients.

Together, we can turn the tide against tobacco use and improve health outcomes nationwide.
 

Call to action

CHEST encourages all health care professionals to engage with the available resources, collaborate with TTSs, and take appropriate advantage of these new policies for the benefit of our patients. Let’s work together to ensure that we seize this moment and make a real difference in the lives of those affected by tobacco addiction.


Those interested in more information—or to access additional resources and assistance in locating TTSs—please contact Matthew Bars at matt@IntelliQuit.org or +1 (800) 45-SMOKE.

Publications
Topics
Sections
Unpacking the CMS changes
Unpacking the CMS changes

FROM THE CHEST TOBACCO/VAPING WORK GROUP – 

The recent changes enacted by the Centers for Medicare & Medicaid Services (CMS) are creating unprecedented opportunities for pulmonologists and medical centers to help treat people with tobacco use disorder. Specifically, these changes embed the integration of tobacco and nicotine addiction treatment more deeply into our nation’s health care system. As we face a critical moment in the fight against tobacco-related morbidity and mortality, it is essential that we leverage these changes. In doing so, CHEST aims to serve as an active bridge, informing health care providers of this unique federal opportunity that benefits both patients and clinicians.

A quick primer on “incident to” services

These CMS changes create an important shift in how “incident to” services can be billed. These are any services that are incident to (occur because of) a provider evaluation. These previously required direct supervision of the provider (in the same building) to be billed at the provider rate. Now “general supervision” suffices, which means the physician can be available by phone/video call. These services can then often be billed at a higher rate. In the case of treating dependence on tobacco products, any tobacco treatment specialist (TTS) employed by a practice who cares for the patient subsequent to the initial encounter can now be reimbursed in an increased manner. Better reimbursement for this vital service will ideally lead to better utilization of these resources and better public health.

CHEST
Matthew Bars

 

The Medicare solution is here

With the CMS rule changes in 2023 and their reaffirmation in 2024, the structure has been put in place to allow physicians, medical centers, and TTSs to create contractual relationships that can significantly improve patient care. TTSs are health care professionals from a wide variety of disciplines who have received specialized training in tobacco and nicotine addiction and treatment strategies. By expanding billing and, thus, service opportunities, these CMS modifications empower health care providers to leverage the existing fee-for-service model, translating to better care and sustainable revenue streams.

CHEST
Dr. Evan Stepp

 

Key changes in the CMS 2023 rule

One of the most notable changes involves the supervision requirements for auxiliary personnel, which now permit general supervision. Specifically, physicians are not required to be physically present during clinical encounters but can supervise TTSs virtually through real-time audio/video technology. This is a vital shift that enhances flexibility in patient care and expands the capabilities of health care teams.

According to 42 CFR § 410.26, TTSs qualify as auxiliary health care providers, meaning that they can operate under the supervision of a physician or other designated providers. This revised framework gives practices maximum autonomy in their staffing models and enhances their ability to offer comprehensive care. For example, TTSs can function as patient navigators, ensuring patients using tobacco receive medically appropriate early lung cancer screening and other related medical services.
 

Expanding access to behavioral health services

The changes aim not only to increase the efficiency of health care delivery but also to reflect a commitment to expanding access to vital behavioral health services. Key takeaways from a summary of the CMS 2023 rule include:

  • The goal of these changes is to enhance access to behavioral health services across the board.
  • The change in supervision requirements applies to auxiliary personnel offering behavioral health services incident to a physician’s services.
  • Both patients and physicians will benefit from an expanded clinical team and improved reimbursement options for the services provided.

By leveraging these opportunities, physicians and their teams can collaborate with TTSs to make significant strides in helping patients address and overcome their dependence on tobacco and nicotine.
 

The outlook: CMS 2024 rule

The current outlook for 2024 and beyond promises even more opportunities as part of CMS’ ongoing Behavioral Health Strategy. This includes enabling mental health counselors (MHCs) and marriage and family therapists (MFTs) to bill Medicare independently, initiating vital coverage for mental health services that align with tobacco cessation efforts.

Physicians and medical centers can contract with MFTs and MHCs who are TTSs to provide tobacco addiction services. TTSs will serve as essential partners in multidisciplinary care teams, enhancing the overall health care landscape while ensuring that patients receive comprehensive support tailored to their needs.
 

Telehealth policy changes: Making services accessible

The White House also recently reinforced the importance of telehealth services, providing further avenues for TTSs to reach patients effectively. With expanded geographic locations for service delivery, care can be provided from virtually anywhere, including when the patient is at home.

Key telehealth provisions include:

  • Extended telehealth services through 2024
  • Elimination of in-person requirements for mental health services
  • Expanded eligibility for providers qualified to provide telehealth services

Practical implications for providers

These developments not only simplify the establishment of tobacco treatment programs but also create better avenues to develop partnerships between physicians, hospitals, medical centers, multidisciplinary practices, and TTSs. Importantly, these clinicians will be compensated directly for the tobacco treatment services they provide.
 

Conclusion

This is a pivotal moment for pulmonologists and TTSs to meaningfully claim their place within the health care space. As we strive to “make smoking history,” we must act on these CMS opportunities. As providers, we must be proactive, collaborate across disciplines, and serve as advocates for our patients.

Together, we can turn the tide against tobacco use and improve health outcomes nationwide.
 

Call to action

CHEST encourages all health care professionals to engage with the available resources, collaborate with TTSs, and take appropriate advantage of these new policies for the benefit of our patients. Let’s work together to ensure that we seize this moment and make a real difference in the lives of those affected by tobacco addiction.


Those interested in more information—or to access additional resources and assistance in locating TTSs—please contact Matthew Bars at matt@IntelliQuit.org or +1 (800) 45-SMOKE.

FROM THE CHEST TOBACCO/VAPING WORK GROUP – 

The recent changes enacted by the Centers for Medicare & Medicaid Services (CMS) are creating unprecedented opportunities for pulmonologists and medical centers to help treat people with tobacco use disorder. Specifically, these changes embed the integration of tobacco and nicotine addiction treatment more deeply into our nation’s health care system. As we face a critical moment in the fight against tobacco-related morbidity and mortality, it is essential that we leverage these changes. In doing so, CHEST aims to serve as an active bridge, informing health care providers of this unique federal opportunity that benefits both patients and clinicians.

A quick primer on “incident to” services

These CMS changes create an important shift in how “incident to” services can be billed. These are any services that are incident to (occur because of) a provider evaluation. These previously required direct supervision of the provider (in the same building) to be billed at the provider rate. Now “general supervision” suffices, which means the physician can be available by phone/video call. These services can then often be billed at a higher rate. In the case of treating dependence on tobacco products, any tobacco treatment specialist (TTS) employed by a practice who cares for the patient subsequent to the initial encounter can now be reimbursed in an increased manner. Better reimbursement for this vital service will ideally lead to better utilization of these resources and better public health.

CHEST
Matthew Bars

 

The Medicare solution is here

With the CMS rule changes in 2023 and their reaffirmation in 2024, the structure has been put in place to allow physicians, medical centers, and TTSs to create contractual relationships that can significantly improve patient care. TTSs are health care professionals from a wide variety of disciplines who have received specialized training in tobacco and nicotine addiction and treatment strategies. By expanding billing and, thus, service opportunities, these CMS modifications empower health care providers to leverage the existing fee-for-service model, translating to better care and sustainable revenue streams.

CHEST
Dr. Evan Stepp

 

Key changes in the CMS 2023 rule

One of the most notable changes involves the supervision requirements for auxiliary personnel, which now permit general supervision. Specifically, physicians are not required to be physically present during clinical encounters but can supervise TTSs virtually through real-time audio/video technology. This is a vital shift that enhances flexibility in patient care and expands the capabilities of health care teams.

According to 42 CFR § 410.26, TTSs qualify as auxiliary health care providers, meaning that they can operate under the supervision of a physician or other designated providers. This revised framework gives practices maximum autonomy in their staffing models and enhances their ability to offer comprehensive care. For example, TTSs can function as patient navigators, ensuring patients using tobacco receive medically appropriate early lung cancer screening and other related medical services.
 

Expanding access to behavioral health services

The changes aim not only to increase the efficiency of health care delivery but also to reflect a commitment to expanding access to vital behavioral health services. Key takeaways from a summary of the CMS 2023 rule include:

  • The goal of these changes is to enhance access to behavioral health services across the board.
  • The change in supervision requirements applies to auxiliary personnel offering behavioral health services incident to a physician’s services.
  • Both patients and physicians will benefit from an expanded clinical team and improved reimbursement options for the services provided.

By leveraging these opportunities, physicians and their teams can collaborate with TTSs to make significant strides in helping patients address and overcome their dependence on tobacco and nicotine.
 

The outlook: CMS 2024 rule

The current outlook for 2024 and beyond promises even more opportunities as part of CMS’ ongoing Behavioral Health Strategy. This includes enabling mental health counselors (MHCs) and marriage and family therapists (MFTs) to bill Medicare independently, initiating vital coverage for mental health services that align with tobacco cessation efforts.

Physicians and medical centers can contract with MFTs and MHCs who are TTSs to provide tobacco addiction services. TTSs will serve as essential partners in multidisciplinary care teams, enhancing the overall health care landscape while ensuring that patients receive comprehensive support tailored to their needs.
 

Telehealth policy changes: Making services accessible

The White House also recently reinforced the importance of telehealth services, providing further avenues for TTSs to reach patients effectively. With expanded geographic locations for service delivery, care can be provided from virtually anywhere, including when the patient is at home.

Key telehealth provisions include:

  • Extended telehealth services through 2024
  • Elimination of in-person requirements for mental health services
  • Expanded eligibility for providers qualified to provide telehealth services

Practical implications for providers

These developments not only simplify the establishment of tobacco treatment programs but also create better avenues to develop partnerships between physicians, hospitals, medical centers, multidisciplinary practices, and TTSs. Importantly, these clinicians will be compensated directly for the tobacco treatment services they provide.
 

Conclusion

This is a pivotal moment for pulmonologists and TTSs to meaningfully claim their place within the health care space. As we strive to “make smoking history,” we must act on these CMS opportunities. As providers, we must be proactive, collaborate across disciplines, and serve as advocates for our patients.

Together, we can turn the tide against tobacco use and improve health outcomes nationwide.
 

Call to action

CHEST encourages all health care professionals to engage with the available resources, collaborate with TTSs, and take appropriate advantage of these new policies for the benefit of our patients. Let’s work together to ensure that we seize this moment and make a real difference in the lives of those affected by tobacco addiction.


Those interested in more information—or to access additional resources and assistance in locating TTSs—please contact Matthew Bars at matt@IntelliQuit.org or +1 (800) 45-SMOKE.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Top reads from the CHEST journal portfolio

Article Type
Changed
Mon, 11/04/2024 - 15:22
Display Headline
Top reads from the CHEST journal portfolio
Dive into the healthy adherer effect in OSA, ICU stays for asthma, and COPD exacerbations related to medication use frequency

 

Journal CHEST®

Association Between Healthy Behaviors and Health Care Resource Use With Subsequent Positive Airway Pressure Therapy Adherence in OSA

By Claire Launois, MD, PhD, and colleagues

It has long been a critique of studies that evaluate the impact of positive airway pressure (PAP) adherence on positive health outcomes that patients who are more adherent to PAP may also be more adherent to other health behaviors that contribute to those positive outcomes, such as incident cardiac events in patients with OSA. This study further contributes to that idea. This healthy adherer effect may lead to an overestimation of the treatment impact of PAP. An association was found between multiple proxies of the healthy adherer effect and later PAP adherence in patients with OSA, the highest being related to proxies of cardiovascular health. A preceding reduction in health care costs was also found in these patients. These findings may help contribute to interpretation and validation of new studies to help us better understand the impact of PAP treatment of OSA.

CHEST
Dr. Sreelatha Naik

– Commentary by Sreelatha Naik, MD, FCCP, Member of the CHEST Physician Editorial Board
 

CHEST® Critical Care

Variation in Triage to Pediatric vs Adult ICUs Among Adolescents and Young Adults With Asthma Exacerbations

By Burton H. Shen, MD, and colleagues

Asthma is a common reason for hospital admission. Between 5% and 35% of patients who are admitted due to asthma are also admitted to the ICU during their hospital stay. For adolescents and young adults, there is variability in admission to the PICU vs adult ICU. This study specifically evaluated patients aged 12 to 26 years old and included hospitals with both a PICU and an adult ICU. The results show us that age, rather than specific clinical characteristics, is the strongest predictor for PICU admission. Patients aged 18 years and younger were more likely to be admitted to the PICU. This is an important consideration, as hospital bedspace is often more limited during viral season in pediatric hospitals and PICUs. This information is also important for outpatient asthma providers to consider as they counsel their patients and provide long-term management before and after these hospital stays.

CHEST
Dr. Lisa Ulrich


– Commentary by Lisa Ulrich, MD, Member of the CHEST Physician Editorial Board
 

CHEST® Pulmonary

Short-Acting Beta-Agonists, Antibiotics, Oral Corticosteroids, and the Associated Burden of COPD

By Mohit Bhutani, MD, FCCP, and colleagues

This study notably highlights the fact that high frequency use of short-acting beta-agonists, antibiotics, and oral corticosteroids may not directly raise the likelihood of an exacerbation but rather may be a sign of worsening disease or poorly managed COPD.

Future studies should investigate the factors that contribute to patients’ frequent prescription use, such as understanding the underlying causes of their exacerbations and other pertinent factors. Additionally, details about patient adherence, a complete clinical history, and the treatment of any further chronic disorders are pivotal for a more complete picture. Enhanced methods for recognizing mild/moderate and severe exacerbations, including patient-reported outcomes, in order to have a better understanding of the influence on drug use and outcomes will be extremely helpful as well. To understand how medications impact results, further studies should look for causal links between medication use and exacerbations.

Lastly, Canadian research on COPD definitely offers insightful information, but when extrapolating these results to the United States, one must take into account variations in the health care system, demographics, and regional patterns along with social determinants of health.

CHEST
Dr. Humayun Anjum


– Commentary by Humayun Anjum, MD, FCCP, Member of the CHEST Physician Editorial Board
 

Publications
Topics
Sections
Dive into the healthy adherer effect in OSA, ICU stays for asthma, and COPD exacerbations related to medication use frequency
Dive into the healthy adherer effect in OSA, ICU stays for asthma, and COPD exacerbations related to medication use frequency

 

Journal CHEST®

Association Between Healthy Behaviors and Health Care Resource Use With Subsequent Positive Airway Pressure Therapy Adherence in OSA

By Claire Launois, MD, PhD, and colleagues

It has long been a critique of studies that evaluate the impact of positive airway pressure (PAP) adherence on positive health outcomes that patients who are more adherent to PAP may also be more adherent to other health behaviors that contribute to those positive outcomes, such as incident cardiac events in patients with OSA. This study further contributes to that idea. This healthy adherer effect may lead to an overestimation of the treatment impact of PAP. An association was found between multiple proxies of the healthy adherer effect and later PAP adherence in patients with OSA, the highest being related to proxies of cardiovascular health. A preceding reduction in health care costs was also found in these patients. These findings may help contribute to interpretation and validation of new studies to help us better understand the impact of PAP treatment of OSA.

CHEST
Dr. Sreelatha Naik

– Commentary by Sreelatha Naik, MD, FCCP, Member of the CHEST Physician Editorial Board
 

CHEST® Critical Care

Variation in Triage to Pediatric vs Adult ICUs Among Adolescents and Young Adults With Asthma Exacerbations

By Burton H. Shen, MD, and colleagues

Asthma is a common reason for hospital admission. Between 5% and 35% of patients who are admitted due to asthma are also admitted to the ICU during their hospital stay. For adolescents and young adults, there is variability in admission to the PICU vs adult ICU. This study specifically evaluated patients aged 12 to 26 years old and included hospitals with both a PICU and an adult ICU. The results show us that age, rather than specific clinical characteristics, is the strongest predictor for PICU admission. Patients aged 18 years and younger were more likely to be admitted to the PICU. This is an important consideration, as hospital bedspace is often more limited during viral season in pediatric hospitals and PICUs. This information is also important for outpatient asthma providers to consider as they counsel their patients and provide long-term management before and after these hospital stays.

CHEST
Dr. Lisa Ulrich


– Commentary by Lisa Ulrich, MD, Member of the CHEST Physician Editorial Board
 

CHEST® Pulmonary

Short-Acting Beta-Agonists, Antibiotics, Oral Corticosteroids, and the Associated Burden of COPD

By Mohit Bhutani, MD, FCCP, and colleagues

This study notably highlights the fact that high frequency use of short-acting beta-agonists, antibiotics, and oral corticosteroids may not directly raise the likelihood of an exacerbation but rather may be a sign of worsening disease or poorly managed COPD.

Future studies should investigate the factors that contribute to patients’ frequent prescription use, such as understanding the underlying causes of their exacerbations and other pertinent factors. Additionally, details about patient adherence, a complete clinical history, and the treatment of any further chronic disorders are pivotal for a more complete picture. Enhanced methods for recognizing mild/moderate and severe exacerbations, including patient-reported outcomes, in order to have a better understanding of the influence on drug use and outcomes will be extremely helpful as well. To understand how medications impact results, further studies should look for causal links between medication use and exacerbations.

Lastly, Canadian research on COPD definitely offers insightful information, but when extrapolating these results to the United States, one must take into account variations in the health care system, demographics, and regional patterns along with social determinants of health.

CHEST
Dr. Humayun Anjum


– Commentary by Humayun Anjum, MD, FCCP, Member of the CHEST Physician Editorial Board
 

 

Journal CHEST®

Association Between Healthy Behaviors and Health Care Resource Use With Subsequent Positive Airway Pressure Therapy Adherence in OSA

By Claire Launois, MD, PhD, and colleagues

It has long been a critique of studies that evaluate the impact of positive airway pressure (PAP) adherence on positive health outcomes that patients who are more adherent to PAP may also be more adherent to other health behaviors that contribute to those positive outcomes, such as incident cardiac events in patients with OSA. This study further contributes to that idea. This healthy adherer effect may lead to an overestimation of the treatment impact of PAP. An association was found between multiple proxies of the healthy adherer effect and later PAP adherence in patients with OSA, the highest being related to proxies of cardiovascular health. A preceding reduction in health care costs was also found in these patients. These findings may help contribute to interpretation and validation of new studies to help us better understand the impact of PAP treatment of OSA.

CHEST
Dr. Sreelatha Naik

– Commentary by Sreelatha Naik, MD, FCCP, Member of the CHEST Physician Editorial Board
 

CHEST® Critical Care

Variation in Triage to Pediatric vs Adult ICUs Among Adolescents and Young Adults With Asthma Exacerbations

By Burton H. Shen, MD, and colleagues

Asthma is a common reason for hospital admission. Between 5% and 35% of patients who are admitted due to asthma are also admitted to the ICU during their hospital stay. For adolescents and young adults, there is variability in admission to the PICU vs adult ICU. This study specifically evaluated patients aged 12 to 26 years old and included hospitals with both a PICU and an adult ICU. The results show us that age, rather than specific clinical characteristics, is the strongest predictor for PICU admission. Patients aged 18 years and younger were more likely to be admitted to the PICU. This is an important consideration, as hospital bedspace is often more limited during viral season in pediatric hospitals and PICUs. This information is also important for outpatient asthma providers to consider as they counsel their patients and provide long-term management before and after these hospital stays.

CHEST
Dr. Lisa Ulrich


– Commentary by Lisa Ulrich, MD, Member of the CHEST Physician Editorial Board
 

CHEST® Pulmonary

Short-Acting Beta-Agonists, Antibiotics, Oral Corticosteroids, and the Associated Burden of COPD

By Mohit Bhutani, MD, FCCP, and colleagues

This study notably highlights the fact that high frequency use of short-acting beta-agonists, antibiotics, and oral corticosteroids may not directly raise the likelihood of an exacerbation but rather may be a sign of worsening disease or poorly managed COPD.

Future studies should investigate the factors that contribute to patients’ frequent prescription use, such as understanding the underlying causes of their exacerbations and other pertinent factors. Additionally, details about patient adherence, a complete clinical history, and the treatment of any further chronic disorders are pivotal for a more complete picture. Enhanced methods for recognizing mild/moderate and severe exacerbations, including patient-reported outcomes, in order to have a better understanding of the influence on drug use and outcomes will be extremely helpful as well. To understand how medications impact results, further studies should look for causal links between medication use and exacerbations.

Lastly, Canadian research on COPD definitely offers insightful information, but when extrapolating these results to the United States, one must take into account variations in the health care system, demographics, and regional patterns along with social determinants of health.

CHEST
Dr. Humayun Anjum


– Commentary by Humayun Anjum, MD, FCCP, Member of the CHEST Physician Editorial Board
 

Publications
Publications
Topics
Article Type
Display Headline
Top reads from the CHEST journal portfolio
Display Headline
Top reads from the CHEST journal portfolio
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article