Affiliations
Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
Given name(s)
Samantha
Family name
Thomas
Degrees
MB

Physician Predictions of Discharge

Article Type
Changed
Mon, 01/02/2017 - 19:34
Display Headline
An evaluation of physician predictions of discharge on a general medicine service

Hospital discharge planning is a complex process requiring efficient coordination of many different medical and social support services. For this reason, multidisciplinary teams work together to develop individualized discharge plans in an attempt to reduce preventable adverse events related to hospital discharge.[1, 2, 3, 4, 5] Despite these ongoing efforts, optimal discharge strategies have yet to be realized.[1, 4, 5, 6, 7, 8, 9]

One factor that may improve the discharge process is the early identification of patients who are approaching discharge.[10] Multidisciplinary teams cannot fully deploy comprehensive discharge plans until a physician deems a patient to be approaching discharge readiness.[8]

To our knowledge, no studies have examined the performance of physician predictions of upcoming discharge. Instead, prior studies have found that physicians have difficulty predicting the length of stay for patients seen in the emergency room and for elderly patients newly admitted to general medicine floor.[11, 12] The purpose of this study was to evaluate the ability of inpatient general medicine physicians to predict next or same‐day hospital discharges to help inform the timing of discharge planning.

METHODS

We collected daily in‐person predictions from all senior residents and attendings separately on the inpatient general medicine teams (5 resident/attending services and 4 attending‐only services) at a single 950‐bed academic medical center. We asked these physicians to predict whether each patient under their care had a greater than or equal to 80% chance of being discharged the next day, the same day, or neither (ie, no discharge on the next or same day).

Physician predictions of discharge occurred Monday through Friday at 1 of 3 time points: morning (79 am), midday (122 pm), or afternoon (57 pm). Data collection focused on 1 time point per week during 2 different weeks in November 2013 and 1 week in February 2014. Predictions of same‐day discharge could only be made at the morning and midday time points. Each patient could have multiple predictions if they remained hospitalized during subsequent assessments. For each physician making a prediction, we recorded the physician training level (resident or attending).

This protocol was deemed exempt by our university's institutional review board.

Outcomes

We measured the sensitivity (SN), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV) for each type of physician prediction (next day, same day, or no discharge by the end of the next day). We also calculated these measurements for each time point in the time of day subgroup: morning, midday, and afternoon.

Statistical Analyses

Using a normal approximation to the binomial distribution, point estimates and 95% confidence intervals for SN, SP, PPV, and NPV for the group of all patients and for the time of day subgroup are reported. The Cochran‐Armitage trend test was used to examine trends in SN, SP, PPV, and NPV as time to discharge decreased. No adjustments were made for multiple comparisons. A 2‐sided significance level was prespecified at 0.05 for all tests.

For the subset of patients who had discharge predictions made by both a resident and an attending, agreement was examined using the kappa statistic. All analyses were conducted using SAS version 9.3 (SAS Institute, Cary, NC).

RESULTS

A total of 2660 predictions were made by 24 attendings and 15 residents. Nineteen predictions were excluded because of missing prediction type or date of discharge, leaving 2641 predictions for analysis. Table 1 summarizes the total number of predictions within subgroups.

Summary of Predictions
No. of Predictions
All predictions 2,641
Day of the week
Monday 596
Tuesday 503
Wednesday 525
Thursday 551
Friday 466
Physician training level
Resident 871
Attending 1,770
Time of day
Morning (7 am9 am) 906
Midday (12 pm2 pm) 832
Afternoon (5 pm7 pm) 903

The overall daily discharge rate in our population was 22.3% (see Supporting Table 1 in the online version of this article for the raw values). The SN and PPV of physician predictions of next‐day discharge were 48% (95% confidence interval [CI]: 43%‐52%) and 51% (95% CI: 46%‐56%), respectively. The SN and PPV for same‐day discharge predictions were 73% (95% CI: 68%‐78%) and 69% (95% CI: 64%‐73%), respectively. The SP for next and same‐day discharge predictions was 90% (95% CI: 89%‐91%) and 95% (95% CI: 94%‐96%), whereas the NPV was 89% (95% CI: 88%‐90%) and 96% (95% CI: 95%‐97%), respectively.

Outcome measures for each prediction type are stratified by time of day and summarized in Table 2. For next‐day discharge predictions, the SN and PPV were lowest in the morning (SN 27%, PPV 33%) and peaked by the afternoon (SN 67%, PPV 69%). Similarly, for same‐day discharges, SN and PPV were highest later in the day (midday SN 88%, PPV 79%). This trend is also demonstrated in the SP and NPV, which increased as time to actual discharge approached, although the trends are not as pronounced as for SN and PPV.

Results by Discharge Prediction Type and Time of Day
Validity Measure Next‐Day Discharge Predictions Trend P Value Same‐Day Discharge Predictions Trend P Value
Morning Midday Afternoon Morning Midday Afternoon
  • NOTE: Data are reported as proportion (95% confidence interval). A significant Cochran‐Armitage trend test, 1‐sided P value indicates that the validity measure increases as time progresses.

Sensitivity 0.27 (0.210.35) 0.50 (0.410.59) 0.67 (0.590.74) <0.001 0.66 (0.590.73) 0.88 (0.810.93) <0.001
Specificity 0.87 (0.850.90) 0.90 (0.880.92) 0.93 (0.910.95) <0.001 0.88 (0.850.90) 0.95 (0.930.97) <0.001
PPV 0.33 (0.250.41) 0.48 (0.400.57) 0.69 (0.610.76) <0.001 0.62 (0.550.68) 0.79 (0.710.85) <0.001
NPV 0.84 (0.810.87) 0.91 (0.880.93) 0.93 (0.910.94) <0.001 0.90 (0.880.92) 0.98 (0.960.99) <0.001

The overall agreement between resident and attending predictions was measured and found to have kappa values of 0.51 (P < 0.001) for next‐day predictions and 0.73 (P < 0.001) for same‐day predictions, indicating moderate and substantial agreement, respectively (see Supporting Table 2 in the online version of this article).[13]

DISCUSSION

This is the first study, to our knowledge, to examine the ability of physicians to predict upcoming discharge during the course of routine general medicine inpatient care. We found that although physicians are poor predictors of discharge in the morning prior to the day of expected discharge, their ability to correctly predict inpatient discharges showed continual improvement as the difference between the prediction time and time of actual discharge shortened.

For next‐day predictions, the most accurate time point was the afternoon, when physicians correctly predicted more than two‐thirds of actual next‐day discharges. This finding suggests that physicians can provide meaningful discharge estimates as early as the afternoon prior to expected discharge. This may be an optimal time for physicians to meet with the multidisciplinary discharge teams, as many preparations hinge on timely and accurate predictions of discharge (eg, arranging patient transportation, postdischarge visits by a home health company). Multidisciplinary teams will also be reassured that an afternoon prediction of next‐day discharge would only prematurely activate discharge resources in roughly 3 out of every 10 occurrences. Even in these instances, patients may benefit from the extra time for disease counselling, medication teaching, and arrangement of home services.[4, 5, 6, 7, 8, 9]

This investigation has several limitations. Our study was conducted at a large tertiary care center over brief time periods, with an overall discharge rate of about 1 in 5 patients per day. Thus, the results may not be generalizable to hospitals with different patient populations, volume, or turnover, or when predictions are made at different times throughout the year. Furthermore, we were unable to determine if the outcome measures were affected by prolonged lengths of stay or excessive predictions on relatively few patients. However, we sought to mitigate these constraints by surveying many different respondents with varying experience levels, caring for a heterogeneous patient population at nonconsecutive time points during the year. A review of our hospital's administrative data suggests that the bed occupancy and average length of stay during our surveys were similar with most other time points during the year, and therefore representative of a typical inpatient general medicine service.

Our investigation was a novel investigation into the performance of physician discharge predictions, which are daily predictions made either explicitly or implicitly by physicians caring for patients on a general medicine ward. By utilizing a simple, subjective survey without bulky calculations, this approach closely mirrors real‐world practice patterns, and if further validated, could be easily assimilated into the normal workflow of a wide range of busy clinicians to more effectively activate individualized discharge plans.[1, 2, 3, 4, 5]

Future work could capture additional patient information, such as functional status, diagnosis, and current length of stay, which would allow identification of certain subsets of patients in which physicians are more or less accurate in predicting hospital discharge. Additionally, the outcomes of incorrect predictions, particularly the surprise discharges that left even though they were predicted to stay, could be assessed. If patients were discharged prematurely, this may be reflected by a higher 30‐day readmission rate, lower clinic follow‐up rate, and/or lower patient satisfaction scores.

CONCLUSION

Although physicians are poor predictors of discharge in the morning prior to the day of expected discharge, their ability to correctly predict inpatient discharges steadily improves as the difference between the prediction time and time of actual discharge shortened. It remains to be determined if systematic incorporation of physician discharge predictions into standard workflows will improve the effectiveness of transition of care interventions.

Disclosure: Nothing to report.

Files
References
  1. Brock J, Mitchell J, Irby K, et al. Care transitions project team: Association between quality improvement for care transition in communities and rehospitalizations among Medicare beneficiaries. JAMA. 2013;309(4):381391.
  2. Coleman EA, Parry C, Chalmers S, Min SJ, The care transitions intervention: results of a randomized controlled trial. Arch Intern Med. 2006;166:18221828.
  3. Naylor MD, Brooten D, Campbell R, et al. Comprehensive discharge planning and home follow‐up of hospitalized elders: a randomized clinical trial. JAMA. 1999;281:613620.
  4. Rennke S, Nguyen OK, Shoeb MH, et al. Hospital‐initiated transitional care interventions as a patient safety strategy: a systematic review. Ann Intern Med. 2013;158:433440.
  5. Shepperd S, McClaren J, Phillips CO, et al. Discharge planning from hospital to home. Cochrane Database Syst Rev. 2013;1:CD000313.
  6. Carey MR, Sheth H, Braithwaite SR. A prospective study of reasons for prolonged hospitalizations on a general medicine teaching service. J General Intern Med. 2005;20:108115.
  7. Selker HP, Beshansky JR, Pauker SG, Kassirer JP. The epidemiology of delays in a teaching hospital. Med Care. 1989;27:112129.
  8. Soong C, Daub S, Lee J, et al. Development of a checklist of safe discharge practices for hospital patients. J Hosp Med. 2013;8:444449.
  9. Kwan JL, Lo L, Sampson M, Shojania KG, Medication reconciliation during transition of care as a patient safety strategy. Ann Intern Med. 2013;158:397403.
  10. Webber‐Maybank M, Luton H, Making effective use of predicted discharge dates to reduce the length of stay in hospital. Nurs Times. 2009;105(15):1213.
  11. Asberg KH. Physicians' outcome predictions for elderly patients: Survival, hospital discharge, and length of stay in a department of internal medicine. Scand J Soc Med. 1986;14(3):127132.
  12. Mak G, Grant WD, McKenzie JC, McCabe JB. Physicians' ability to predict hospital length of stay for patients admitted to the hospital from the emergency department. Emerg Med Int. 2012;2012:824674.
  13. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360363.
Article PDF
Issue
Journal of Hospital Medicine - 10(12)
Publications
Page Number
808-810
Sections
Files
Files
Article PDF
Article PDF

Hospital discharge planning is a complex process requiring efficient coordination of many different medical and social support services. For this reason, multidisciplinary teams work together to develop individualized discharge plans in an attempt to reduce preventable adverse events related to hospital discharge.[1, 2, 3, 4, 5] Despite these ongoing efforts, optimal discharge strategies have yet to be realized.[1, 4, 5, 6, 7, 8, 9]

One factor that may improve the discharge process is the early identification of patients who are approaching discharge.[10] Multidisciplinary teams cannot fully deploy comprehensive discharge plans until a physician deems a patient to be approaching discharge readiness.[8]

To our knowledge, no studies have examined the performance of physician predictions of upcoming discharge. Instead, prior studies have found that physicians have difficulty predicting the length of stay for patients seen in the emergency room and for elderly patients newly admitted to general medicine floor.[11, 12] The purpose of this study was to evaluate the ability of inpatient general medicine physicians to predict next or same‐day hospital discharges to help inform the timing of discharge planning.

METHODS

We collected daily in‐person predictions from all senior residents and attendings separately on the inpatient general medicine teams (5 resident/attending services and 4 attending‐only services) at a single 950‐bed academic medical center. We asked these physicians to predict whether each patient under their care had a greater than or equal to 80% chance of being discharged the next day, the same day, or neither (ie, no discharge on the next or same day).

Physician predictions of discharge occurred Monday through Friday at 1 of 3 time points: morning (79 am), midday (122 pm), or afternoon (57 pm). Data collection focused on 1 time point per week during 2 different weeks in November 2013 and 1 week in February 2014. Predictions of same‐day discharge could only be made at the morning and midday time points. Each patient could have multiple predictions if they remained hospitalized during subsequent assessments. For each physician making a prediction, we recorded the physician training level (resident or attending).

This protocol was deemed exempt by our university's institutional review board.

Outcomes

We measured the sensitivity (SN), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV) for each type of physician prediction (next day, same day, or no discharge by the end of the next day). We also calculated these measurements for each time point in the time of day subgroup: morning, midday, and afternoon.

Statistical Analyses

Using a normal approximation to the binomial distribution, point estimates and 95% confidence intervals for SN, SP, PPV, and NPV for the group of all patients and for the time of day subgroup are reported. The Cochran‐Armitage trend test was used to examine trends in SN, SP, PPV, and NPV as time to discharge decreased. No adjustments were made for multiple comparisons. A 2‐sided significance level was prespecified at 0.05 for all tests.

For the subset of patients who had discharge predictions made by both a resident and an attending, agreement was examined using the kappa statistic. All analyses were conducted using SAS version 9.3 (SAS Institute, Cary, NC).

RESULTS

A total of 2660 predictions were made by 24 attendings and 15 residents. Nineteen predictions were excluded because of missing prediction type or date of discharge, leaving 2641 predictions for analysis. Table 1 summarizes the total number of predictions within subgroups.

Summary of Predictions
No. of Predictions
All predictions 2,641
Day of the week
Monday 596
Tuesday 503
Wednesday 525
Thursday 551
Friday 466
Physician training level
Resident 871
Attending 1,770
Time of day
Morning (7 am9 am) 906
Midday (12 pm2 pm) 832
Afternoon (5 pm7 pm) 903

The overall daily discharge rate in our population was 22.3% (see Supporting Table 1 in the online version of this article for the raw values). The SN and PPV of physician predictions of next‐day discharge were 48% (95% confidence interval [CI]: 43%‐52%) and 51% (95% CI: 46%‐56%), respectively. The SN and PPV for same‐day discharge predictions were 73% (95% CI: 68%‐78%) and 69% (95% CI: 64%‐73%), respectively. The SP for next and same‐day discharge predictions was 90% (95% CI: 89%‐91%) and 95% (95% CI: 94%‐96%), whereas the NPV was 89% (95% CI: 88%‐90%) and 96% (95% CI: 95%‐97%), respectively.

Outcome measures for each prediction type are stratified by time of day and summarized in Table 2. For next‐day discharge predictions, the SN and PPV were lowest in the morning (SN 27%, PPV 33%) and peaked by the afternoon (SN 67%, PPV 69%). Similarly, for same‐day discharges, SN and PPV were highest later in the day (midday SN 88%, PPV 79%). This trend is also demonstrated in the SP and NPV, which increased as time to actual discharge approached, although the trends are not as pronounced as for SN and PPV.

Results by Discharge Prediction Type and Time of Day
Validity Measure Next‐Day Discharge Predictions Trend P Value Same‐Day Discharge Predictions Trend P Value
Morning Midday Afternoon Morning Midday Afternoon
  • NOTE: Data are reported as proportion (95% confidence interval). A significant Cochran‐Armitage trend test, 1‐sided P value indicates that the validity measure increases as time progresses.

Sensitivity 0.27 (0.210.35) 0.50 (0.410.59) 0.67 (0.590.74) <0.001 0.66 (0.590.73) 0.88 (0.810.93) <0.001
Specificity 0.87 (0.850.90) 0.90 (0.880.92) 0.93 (0.910.95) <0.001 0.88 (0.850.90) 0.95 (0.930.97) <0.001
PPV 0.33 (0.250.41) 0.48 (0.400.57) 0.69 (0.610.76) <0.001 0.62 (0.550.68) 0.79 (0.710.85) <0.001
NPV 0.84 (0.810.87) 0.91 (0.880.93) 0.93 (0.910.94) <0.001 0.90 (0.880.92) 0.98 (0.960.99) <0.001

The overall agreement between resident and attending predictions was measured and found to have kappa values of 0.51 (P < 0.001) for next‐day predictions and 0.73 (P < 0.001) for same‐day predictions, indicating moderate and substantial agreement, respectively (see Supporting Table 2 in the online version of this article).[13]

DISCUSSION

This is the first study, to our knowledge, to examine the ability of physicians to predict upcoming discharge during the course of routine general medicine inpatient care. We found that although physicians are poor predictors of discharge in the morning prior to the day of expected discharge, their ability to correctly predict inpatient discharges showed continual improvement as the difference between the prediction time and time of actual discharge shortened.

For next‐day predictions, the most accurate time point was the afternoon, when physicians correctly predicted more than two‐thirds of actual next‐day discharges. This finding suggests that physicians can provide meaningful discharge estimates as early as the afternoon prior to expected discharge. This may be an optimal time for physicians to meet with the multidisciplinary discharge teams, as many preparations hinge on timely and accurate predictions of discharge (eg, arranging patient transportation, postdischarge visits by a home health company). Multidisciplinary teams will also be reassured that an afternoon prediction of next‐day discharge would only prematurely activate discharge resources in roughly 3 out of every 10 occurrences. Even in these instances, patients may benefit from the extra time for disease counselling, medication teaching, and arrangement of home services.[4, 5, 6, 7, 8, 9]

This investigation has several limitations. Our study was conducted at a large tertiary care center over brief time periods, with an overall discharge rate of about 1 in 5 patients per day. Thus, the results may not be generalizable to hospitals with different patient populations, volume, or turnover, or when predictions are made at different times throughout the year. Furthermore, we were unable to determine if the outcome measures were affected by prolonged lengths of stay or excessive predictions on relatively few patients. However, we sought to mitigate these constraints by surveying many different respondents with varying experience levels, caring for a heterogeneous patient population at nonconsecutive time points during the year. A review of our hospital's administrative data suggests that the bed occupancy and average length of stay during our surveys were similar with most other time points during the year, and therefore representative of a typical inpatient general medicine service.

Our investigation was a novel investigation into the performance of physician discharge predictions, which are daily predictions made either explicitly or implicitly by physicians caring for patients on a general medicine ward. By utilizing a simple, subjective survey without bulky calculations, this approach closely mirrors real‐world practice patterns, and if further validated, could be easily assimilated into the normal workflow of a wide range of busy clinicians to more effectively activate individualized discharge plans.[1, 2, 3, 4, 5]

Future work could capture additional patient information, such as functional status, diagnosis, and current length of stay, which would allow identification of certain subsets of patients in which physicians are more or less accurate in predicting hospital discharge. Additionally, the outcomes of incorrect predictions, particularly the surprise discharges that left even though they were predicted to stay, could be assessed. If patients were discharged prematurely, this may be reflected by a higher 30‐day readmission rate, lower clinic follow‐up rate, and/or lower patient satisfaction scores.

CONCLUSION

Although physicians are poor predictors of discharge in the morning prior to the day of expected discharge, their ability to correctly predict inpatient discharges steadily improves as the difference between the prediction time and time of actual discharge shortened. It remains to be determined if systematic incorporation of physician discharge predictions into standard workflows will improve the effectiveness of transition of care interventions.

Disclosure: Nothing to report.

Hospital discharge planning is a complex process requiring efficient coordination of many different medical and social support services. For this reason, multidisciplinary teams work together to develop individualized discharge plans in an attempt to reduce preventable adverse events related to hospital discharge.[1, 2, 3, 4, 5] Despite these ongoing efforts, optimal discharge strategies have yet to be realized.[1, 4, 5, 6, 7, 8, 9]

One factor that may improve the discharge process is the early identification of patients who are approaching discharge.[10] Multidisciplinary teams cannot fully deploy comprehensive discharge plans until a physician deems a patient to be approaching discharge readiness.[8]

To our knowledge, no studies have examined the performance of physician predictions of upcoming discharge. Instead, prior studies have found that physicians have difficulty predicting the length of stay for patients seen in the emergency room and for elderly patients newly admitted to general medicine floor.[11, 12] The purpose of this study was to evaluate the ability of inpatient general medicine physicians to predict next or same‐day hospital discharges to help inform the timing of discharge planning.

METHODS

We collected daily in‐person predictions from all senior residents and attendings separately on the inpatient general medicine teams (5 resident/attending services and 4 attending‐only services) at a single 950‐bed academic medical center. We asked these physicians to predict whether each patient under their care had a greater than or equal to 80% chance of being discharged the next day, the same day, or neither (ie, no discharge on the next or same day).

Physician predictions of discharge occurred Monday through Friday at 1 of 3 time points: morning (79 am), midday (122 pm), or afternoon (57 pm). Data collection focused on 1 time point per week during 2 different weeks in November 2013 and 1 week in February 2014. Predictions of same‐day discharge could only be made at the morning and midday time points. Each patient could have multiple predictions if they remained hospitalized during subsequent assessments. For each physician making a prediction, we recorded the physician training level (resident or attending).

This protocol was deemed exempt by our university's institutional review board.

Outcomes

We measured the sensitivity (SN), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV) for each type of physician prediction (next day, same day, or no discharge by the end of the next day). We also calculated these measurements for each time point in the time of day subgroup: morning, midday, and afternoon.

Statistical Analyses

Using a normal approximation to the binomial distribution, point estimates and 95% confidence intervals for SN, SP, PPV, and NPV for the group of all patients and for the time of day subgroup are reported. The Cochran‐Armitage trend test was used to examine trends in SN, SP, PPV, and NPV as time to discharge decreased. No adjustments were made for multiple comparisons. A 2‐sided significance level was prespecified at 0.05 for all tests.

For the subset of patients who had discharge predictions made by both a resident and an attending, agreement was examined using the kappa statistic. All analyses were conducted using SAS version 9.3 (SAS Institute, Cary, NC).

RESULTS

A total of 2660 predictions were made by 24 attendings and 15 residents. Nineteen predictions were excluded because of missing prediction type or date of discharge, leaving 2641 predictions for analysis. Table 1 summarizes the total number of predictions within subgroups.

Summary of Predictions
No. of Predictions
All predictions 2,641
Day of the week
Monday 596
Tuesday 503
Wednesday 525
Thursday 551
Friday 466
Physician training level
Resident 871
Attending 1,770
Time of day
Morning (7 am9 am) 906
Midday (12 pm2 pm) 832
Afternoon (5 pm7 pm) 903

The overall daily discharge rate in our population was 22.3% (see Supporting Table 1 in the online version of this article for the raw values). The SN and PPV of physician predictions of next‐day discharge were 48% (95% confidence interval [CI]: 43%‐52%) and 51% (95% CI: 46%‐56%), respectively. The SN and PPV for same‐day discharge predictions were 73% (95% CI: 68%‐78%) and 69% (95% CI: 64%‐73%), respectively. The SP for next and same‐day discharge predictions was 90% (95% CI: 89%‐91%) and 95% (95% CI: 94%‐96%), whereas the NPV was 89% (95% CI: 88%‐90%) and 96% (95% CI: 95%‐97%), respectively.

Outcome measures for each prediction type are stratified by time of day and summarized in Table 2. For next‐day discharge predictions, the SN and PPV were lowest in the morning (SN 27%, PPV 33%) and peaked by the afternoon (SN 67%, PPV 69%). Similarly, for same‐day discharges, SN and PPV were highest later in the day (midday SN 88%, PPV 79%). This trend is also demonstrated in the SP and NPV, which increased as time to actual discharge approached, although the trends are not as pronounced as for SN and PPV.

Results by Discharge Prediction Type and Time of Day
Validity Measure Next‐Day Discharge Predictions Trend P Value Same‐Day Discharge Predictions Trend P Value
Morning Midday Afternoon Morning Midday Afternoon
  • NOTE: Data are reported as proportion (95% confidence interval). A significant Cochran‐Armitage trend test, 1‐sided P value indicates that the validity measure increases as time progresses.

Sensitivity 0.27 (0.210.35) 0.50 (0.410.59) 0.67 (0.590.74) <0.001 0.66 (0.590.73) 0.88 (0.810.93) <0.001
Specificity 0.87 (0.850.90) 0.90 (0.880.92) 0.93 (0.910.95) <0.001 0.88 (0.850.90) 0.95 (0.930.97) <0.001
PPV 0.33 (0.250.41) 0.48 (0.400.57) 0.69 (0.610.76) <0.001 0.62 (0.550.68) 0.79 (0.710.85) <0.001
NPV 0.84 (0.810.87) 0.91 (0.880.93) 0.93 (0.910.94) <0.001 0.90 (0.880.92) 0.98 (0.960.99) <0.001

The overall agreement between resident and attending predictions was measured and found to have kappa values of 0.51 (P < 0.001) for next‐day predictions and 0.73 (P < 0.001) for same‐day predictions, indicating moderate and substantial agreement, respectively (see Supporting Table 2 in the online version of this article).[13]

DISCUSSION

This is the first study, to our knowledge, to examine the ability of physicians to predict upcoming discharge during the course of routine general medicine inpatient care. We found that although physicians are poor predictors of discharge in the morning prior to the day of expected discharge, their ability to correctly predict inpatient discharges showed continual improvement as the difference between the prediction time and time of actual discharge shortened.

For next‐day predictions, the most accurate time point was the afternoon, when physicians correctly predicted more than two‐thirds of actual next‐day discharges. This finding suggests that physicians can provide meaningful discharge estimates as early as the afternoon prior to expected discharge. This may be an optimal time for physicians to meet with the multidisciplinary discharge teams, as many preparations hinge on timely and accurate predictions of discharge (eg, arranging patient transportation, postdischarge visits by a home health company). Multidisciplinary teams will also be reassured that an afternoon prediction of next‐day discharge would only prematurely activate discharge resources in roughly 3 out of every 10 occurrences. Even in these instances, patients may benefit from the extra time for disease counselling, medication teaching, and arrangement of home services.[4, 5, 6, 7, 8, 9]

This investigation has several limitations. Our study was conducted at a large tertiary care center over brief time periods, with an overall discharge rate of about 1 in 5 patients per day. Thus, the results may not be generalizable to hospitals with different patient populations, volume, or turnover, or when predictions are made at different times throughout the year. Furthermore, we were unable to determine if the outcome measures were affected by prolonged lengths of stay or excessive predictions on relatively few patients. However, we sought to mitigate these constraints by surveying many different respondents with varying experience levels, caring for a heterogeneous patient population at nonconsecutive time points during the year. A review of our hospital's administrative data suggests that the bed occupancy and average length of stay during our surveys were similar with most other time points during the year, and therefore representative of a typical inpatient general medicine service.

Our investigation was a novel investigation into the performance of physician discharge predictions, which are daily predictions made either explicitly or implicitly by physicians caring for patients on a general medicine ward. By utilizing a simple, subjective survey without bulky calculations, this approach closely mirrors real‐world practice patterns, and if further validated, could be easily assimilated into the normal workflow of a wide range of busy clinicians to more effectively activate individualized discharge plans.[1, 2, 3, 4, 5]

Future work could capture additional patient information, such as functional status, diagnosis, and current length of stay, which would allow identification of certain subsets of patients in which physicians are more or less accurate in predicting hospital discharge. Additionally, the outcomes of incorrect predictions, particularly the surprise discharges that left even though they were predicted to stay, could be assessed. If patients were discharged prematurely, this may be reflected by a higher 30‐day readmission rate, lower clinic follow‐up rate, and/or lower patient satisfaction scores.

CONCLUSION

Although physicians are poor predictors of discharge in the morning prior to the day of expected discharge, their ability to correctly predict inpatient discharges steadily improves as the difference between the prediction time and time of actual discharge shortened. It remains to be determined if systematic incorporation of physician discharge predictions into standard workflows will improve the effectiveness of transition of care interventions.

Disclosure: Nothing to report.

References
  1. Brock J, Mitchell J, Irby K, et al. Care transitions project team: Association between quality improvement for care transition in communities and rehospitalizations among Medicare beneficiaries. JAMA. 2013;309(4):381391.
  2. Coleman EA, Parry C, Chalmers S, Min SJ, The care transitions intervention: results of a randomized controlled trial. Arch Intern Med. 2006;166:18221828.
  3. Naylor MD, Brooten D, Campbell R, et al. Comprehensive discharge planning and home follow‐up of hospitalized elders: a randomized clinical trial. JAMA. 1999;281:613620.
  4. Rennke S, Nguyen OK, Shoeb MH, et al. Hospital‐initiated transitional care interventions as a patient safety strategy: a systematic review. Ann Intern Med. 2013;158:433440.
  5. Shepperd S, McClaren J, Phillips CO, et al. Discharge planning from hospital to home. Cochrane Database Syst Rev. 2013;1:CD000313.
  6. Carey MR, Sheth H, Braithwaite SR. A prospective study of reasons for prolonged hospitalizations on a general medicine teaching service. J General Intern Med. 2005;20:108115.
  7. Selker HP, Beshansky JR, Pauker SG, Kassirer JP. The epidemiology of delays in a teaching hospital. Med Care. 1989;27:112129.
  8. Soong C, Daub S, Lee J, et al. Development of a checklist of safe discharge practices for hospital patients. J Hosp Med. 2013;8:444449.
  9. Kwan JL, Lo L, Sampson M, Shojania KG, Medication reconciliation during transition of care as a patient safety strategy. Ann Intern Med. 2013;158:397403.
  10. Webber‐Maybank M, Luton H, Making effective use of predicted discharge dates to reduce the length of stay in hospital. Nurs Times. 2009;105(15):1213.
  11. Asberg KH. Physicians' outcome predictions for elderly patients: Survival, hospital discharge, and length of stay in a department of internal medicine. Scand J Soc Med. 1986;14(3):127132.
  12. Mak G, Grant WD, McKenzie JC, McCabe JB. Physicians' ability to predict hospital length of stay for patients admitted to the hospital from the emergency department. Emerg Med Int. 2012;2012:824674.
  13. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360363.
References
  1. Brock J, Mitchell J, Irby K, et al. Care transitions project team: Association between quality improvement for care transition in communities and rehospitalizations among Medicare beneficiaries. JAMA. 2013;309(4):381391.
  2. Coleman EA, Parry C, Chalmers S, Min SJ, The care transitions intervention: results of a randomized controlled trial. Arch Intern Med. 2006;166:18221828.
  3. Naylor MD, Brooten D, Campbell R, et al. Comprehensive discharge planning and home follow‐up of hospitalized elders: a randomized clinical trial. JAMA. 1999;281:613620.
  4. Rennke S, Nguyen OK, Shoeb MH, et al. Hospital‐initiated transitional care interventions as a patient safety strategy: a systematic review. Ann Intern Med. 2013;158:433440.
  5. Shepperd S, McClaren J, Phillips CO, et al. Discharge planning from hospital to home. Cochrane Database Syst Rev. 2013;1:CD000313.
  6. Carey MR, Sheth H, Braithwaite SR. A prospective study of reasons for prolonged hospitalizations on a general medicine teaching service. J General Intern Med. 2005;20:108115.
  7. Selker HP, Beshansky JR, Pauker SG, Kassirer JP. The epidemiology of delays in a teaching hospital. Med Care. 1989;27:112129.
  8. Soong C, Daub S, Lee J, et al. Development of a checklist of safe discharge practices for hospital patients. J Hosp Med. 2013;8:444449.
  9. Kwan JL, Lo L, Sampson M, Shojania KG, Medication reconciliation during transition of care as a patient safety strategy. Ann Intern Med. 2013;158:397403.
  10. Webber‐Maybank M, Luton H, Making effective use of predicted discharge dates to reduce the length of stay in hospital. Nurs Times. 2009;105(15):1213.
  11. Asberg KH. Physicians' outcome predictions for elderly patients: Survival, hospital discharge, and length of stay in a department of internal medicine. Scand J Soc Med. 1986;14(3):127132.
  12. Mak G, Grant WD, McKenzie JC, McCabe JB. Physicians' ability to predict hospital length of stay for patients admitted to the hospital from the emergency department. Emerg Med Int. 2012;2012:824674.
  13. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360363.
Issue
Journal of Hospital Medicine - 10(12)
Issue
Journal of Hospital Medicine - 10(12)
Page Number
808-810
Page Number
808-810
Publications
Publications
Article Type
Display Headline
An evaluation of physician predictions of discharge on a general medicine service
Display Headline
An evaluation of physician predictions of discharge on a general medicine service
Sections
Article Source
© 2015 Society of Hospital Medicine
Disallow All Ads
Correspondence Location
Address for correspondence and reprint requests: Jonathan Bae, MD, Duke University Medical Center, Box 100800, Durham, NC 27710; Telephone: 919‐681‐8263; Fax: 919‐668‐5394; E‐mail: jon.bae@dm.duke.edu
Content Gating
Gated (full article locked unless allowed per User)
Gating Strategy
First Peek Free
Article PDF Media
Media Files

Individualized Care Plans

Article Type
Changed
Tue, 05/16/2017 - 23:18
Display Headline
The highest utilizers of care: Individualized care plans to coordinate care, improve healthcare service utilization, and reduce costs at an academic tertiary care center

High utilizers of hospital services are medically complex, psychosocially vulnerable, and at risk for adverse health outcomes.[1, 2] They make up a fraction of the patient population but use a disproportionate amount of resources, with high rates of emergency department (ED) visits and hospital admissions.[1, 3, 4] Less than 1% of patients account for 21% of national healthcare spending, and hospital costs are the largest category of national healthcare expenditures.[2, 5] Many patients who disproportionately contribute to high healthcare costs also have high hospital admission rates.[6]

Interventions targeting high utilizers have typically focused on the outpatient setting.[7, 8, 9, 10] Interventions using individualized care plans in the ED reduced ED visits from 33% to 70%, but all have required an additional case management program or partnership with an outside nonprofit case management organization.[11, 12, 13] One study by a hospitalist group using individualized care plans reduced ED visits and admissions by 70%, 2 months after care‐plan implementation; however, all of their care plans were focused explicitly on restricting intravenous opiate use for patients with chronic pain.[14]

Given the current focus on cost‐conscious, high‐quality care in the American healthcare system, we designed a quality‐improvement (QI) intervention using individualized care plans to reduce unnecessary healthcare service utilization and hospital costs for the highest utilizers of ED and inpatient care. Our approach focuses on integrating care plans within our electronic medical record (EMR) and implementing them using the existing healthcare workforce. We analyzed pre‐ and postintervention data to determine its effect on service utilization and hospital costs across a regional health system.

METHODS

QI Intervention

We retrospectively analyzed data collected as part of an ongoing QI project at Duke University Hospital, a 924‐bed academic tertiary care center with approximately 36,000 inpatient discharges per year. The Complex Care Plan Committee (CCPC) aims to improve the effectiveness, efficiency, and equity of care for medically, socially, and behaviorally complex adult patients who are the highest utilizers of care in the ED and inpatient medicine service. The CCPC is a volunteer, QI committee comprised of a multidisciplinary team from hospital medicine, emergency medicine, psychiatry, ambulatory care, social work, nursing, risk management, and performance services (system analysts). Individualized care plans are developed on a rolling basis as new patients are identified based on their hospital utilization rates (ED visits and admissions). To be eligible for a care plan, patients have to have at least 3 ED visits or admissions within 6 months and have some degree of medical, social, or behavioral complexity, for example, multiple medical comorbidities with care by several subspecialists, or concomitant psychiatric illness, substance abuse, and homelessness. Strict eligibility criteria are purposefully not imposed to allow flexibility and appropriate tailoring of this intervention to both high‐utilizing and complex patients. Given their complexity, the CCPC felt that without individualized care plans these patients would be at increased risk for rehospitalization and increased morbidity or mortality. The patients included in this analysis are the 24 patients with the most ED visits and hospital admissions at Duke University Hospital, accounting for a total of 183 ED visits and 145 inpatient admissions in the 6 months before the care plans were rolled out.

Each individualized care plan summarizes the patient's medical, psychiatric, and social histories, documents any disruptive behaviors, reviews their hospital utilization patterns, and proposes a set of management strategies focused on providing high‐quality care while limiting unnecessary admissions. They are written by 1 or 2 members of the CCPC who perform a thorough chart review and obtain collateral information from the ED, inpatient, and outpatient providers who have cared for that patient. Care plans are then reviewed and approved by the CCPC as a whole during monthly meetings. Care plans contain detailed information in the following domains: demographics; outpatient care team (primary care provider, specialists, psychiatrist/counselors, social worker, case manager, and home health agency); medical, psychiatric, and behavioral health history; social history; utilization patterns (dates of ED visits and hospitalizations with succinct narratives and outcomes of each admission); and finally ED, inpatient, and outpatient strategies for managing the patient, preventing unnecessary admissions, and connecting them to appropriate services. The CCPC chairperson reviews care plans quarterly to ensure they remain appropriate and relevant.

The care plan is a document uploaded into the EMR (EpicCare; Epic, Verona, WI), where it is available to any provider across the Duke health system. Within Epic, a colored banner visible across the top of the patient's chart notifies the provider of any patient with an individualized care plan. The care plan document is housed in a tab readily visible on the navigation pane. The care plan serves as a roadmap for ED providers and hospitalists, helping them navigate each patient's complex history and guiding them in their disposition decision making. We also developed an automated notification process such that when a high utilizer registers in the ED, a secure page is sent to the admitting hospitalist, who then notifies the ED provider. An automated email is also sent to the CCPC chairperson. These alerts also provide a mechanism for internal oversight and feedback by the CCPC to providers regarding care‐plan adherence.

Outcome Variables and Data Analysis

Our analysis included the 24 patients with individualized care plans developed from August 1, 2012 to August 31, 2013. We analyzed utilization data 6 and 12 months before and 6 and 12 months after the individualized care‐plan intervention was initiated (August 1, 2011 to August 31, 2014). Primary outcomes were the number of ED visits and hospital admissions, as well as ED and inpatient variable direct costs (VDCs). Secondary outcomes included inpatient length of stay (LOS) and 30‐day readmissions. We analyzed outcome data across all 3 hospitals in the Duke University Health System. This includes the only 2 hospitals in Durham, North Carolina (population 245,475) and 1 hospital in Raleigh, North Carolina (population 431,746).

We also describe basic demographic data, payor status, and medical comorbidities for this cohort of patients. Payor status is defined as the most frequently reported payor type prior to care‐plan implementation. Variable direct costs are directly related to patient care and fluctuate with patient volume. They include medications, supplies, laboratory tests, radiology studies, and nursing salaries. They are a proportion of total costs for an ED visit or hospitalization, excluding fixed and indirect costs, such as administrator or physician salaries, utilities, facilities, and equipment.

Primary and secondary outcomes were analyzed using descriptive statistics. Continuous outcomes are summarized with mean (standard deviation) and median (range), whereas categorical outcomes are summarized with N (%). LOS is calculated as the average number of days in the hospital per hospital admission per patient. The time periods of 12 months prior, 6 months prior, 6 months after, and 12 months after care‐plan implementation were examined. Only patients with 6 or more months of postcare‐plan data are included in the 6‐month comparison, and only patients with 12 or more months of postcare‐plan data are included in the 12‐month comparison. One patient in the 6‐month comparison group died very soon after care‐plan implementation, so that patient is included in Table 1 (N=24) but excluded from outcome analyses in Tables 2 and 3 (N=23). Differences between 6 months pre and 6 months postcare plan, and 12 months pre and 12 months postcare plan were examined using the Wilcoxon signed rank test for nonparametric matched data. Mean change is calculated as ([Post‐Pre]/Pre) for each patient, and then averaged across all patients. Mean percentage change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. It was done this way to emphasize the effect on the patient level. No adjustments were made for multiple comparisons. All statistical analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC). This study was granted exempt status by the Duke University Institutional Review Board.

Patient Demographics and Comorbidities
 Patients With Care Plans, N=24Patients With 12 Months PostCare Plan Follow‐up, N=12Patients With 6 Months PostCare Plan Follow‐up, N=23*
  • NOTE: Abbreviations: SD, standard deviation. *One patient died soon after care‐plan implementation; therefore N=23. Most frequently reported insurance type precare‐plan start date. Patients can have more than 1 comorbidity; therefore, numbers do not add up to N=24.

Age, y, mean (SD)38.5 (11.7)41.6 (9.2)37.3 (10.5)
Median (range)36 (2565)41 (2858)36 (2558)
Gender, N (%)   
Male11 (46%)5 (42%)11 (48%)
Female13 (54%)7 (58%)12 (52%)
Payor, N (%)   
Medicare11 (46%)6 (50%)10 (43%)
Medicaid9 (38%)4 (33%)9 (39%)
Medicare and Medicaid0 (0%)0 (0%)0 (0%)
Private insurance2 (8%)1 (8%)2 (9%)
None1 (4%)0 (0%)1 (4%)
Other1 (4%)1 (8%)1 (4%)
Comorbidities, N (%)   
Asthma9 (38%)5 (42%)9 (39%)
Chronic obstructive pulmonary disease2 (8%)2 (17%)2 (9%)
Chronic pain20 (83%)12 (100%)20 (87%)
Coronary artery disease5 (21%)4 (33%)5 (22%)
Diabetes mellitus10 (42%)6 (50%)9 (39%)
End‐stage renal disease4 (17%)4 (33%)4 (17%)
Heart failure5 (21%)2 (17%)4 (17%)
Hypertension13 (54%)6 (50%)12 (52%)
Mental health/substance abuse23 (96%)12 (100%)22 (96%)
Sickle cell10 (42%)5 (42%)10 (43%)
Utilization Patterns Before and After Care‐Plan Implementation Across Duke University Health System*
 6 Months Pre Care Plan6 Months Post Care Plan12 Months Pre Care Plan12 Months Post Care Plan6‐Month Change6‐Month P Value12‐Month Change12‐Month P Value
  • NOTE: Abbreviations: ED, emergency department; LOS, length of stay; SD, standard deviation. *Duke University Health System includes Duke University Hospital, Duke Regional Hospital, and Duke Raleigh Hospital. Mean percent change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. Mean change is calculated as Post‐Pre for each patient, and then averaged across patients. Wilcoxon signed rank test.

Admissions     <0.001 0.003
N2323121223231212
Total145561315856.0% (41.6%) 50.5% (43.9%) 
Mean (SD)6.3 (3.8)2.4 (2.4)10.9 (6.3)4.8 (4.2)3.9 (3.76) 6.1 (6.02) 
Median (range)5 (114)2 (08)8 (320)3 (011)    
30‐day readmissions    <0.001 0.002
N2323121223231212
Total130441064566.0% (32.4%) 51.5% (32.0%) 
Mean (SD)5.7 (4.1)1.9 (2.4)8.8 (7.0)3.8 (2.7)3.7 (3.79) 5.1 (5.71) 
Median (range)4 (013)1 (08)6 (019)3 (011)    
Inpatient LOS     0.506 0.910
N2323121223231212
Total76635866531750.8% (51.4%) 37.8% (78.8%) 
Mean (SD)5.0 (3.2)4.7 (4.3)4.7 (1.5)4.4 (3.1)0.3 (4.3) 0.3 (2.27) 
Median (range)4.3 (1.515.8)4 (016)4.8 (2.26.9)3.7 (09)    
ED visits     0.836 0.941
N2323121223231212
Total183198185307+42.9% (148.4%) +48.4% (145.1%) 
Mean (SD)8.0 (11.5)8.6 (19.8)15.4 (14.7)25.6 (54.4)0.7 (11.92) 10.2 (43.19) 
Median (range)5 (050)3 (096)12 (150)7 (1196)    
Healthcare Costs Before and After Care‐Plan Implementation Across Duke University Health System*
 6 Months Pre Care Plan6 Months Post Care Plan12 Months Pre Care Plan12 Months Post Care Plan6‐Month Change6‐Month P Value12‐Month Change12‐Month P Value
  • NOTE: Abbreviations: ED, emergency department; SD, standard deviation. *Duke University Health System includes Duke University Hospital, Duke Regional Hospital, and Duke Raleigh Hospital. Mean percent change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. Mean change is calculated as Post‐Pre for each patient, and then averaged across patients. Wilcoxon signed rank test.

Inpatient costs ($)    0.001 0.052
N2323121223231212
Total686,612.43358,520.42538,579.90299,501.0347.7% (52.3%) 35.8% (76.1%) 
Mean (SD)29,852.71 (21,808.22)15,587.84 (21,141.79)44,881.66 (30,132.26)24,958.42 (27,248.41)14,264.9 (19,301.75) 19,923.2 (31,891.69) 
Median (range)30,203.43 (1,625.1880,171.87)7,041.28 (086,457.05)39,936.05 (8,237.5382,861.11)13,321.56 (082,309.19)    
ED costs ($)     0.143 0.850
N2323121223231212
Total80,105.3460,500.3882,473.8698,298.84+12.5% (147.5%) +48.0% (161.8%) 
Mean (SD)3,482.84 (4,423.57)2,630.45 (4,782.56)6,872.82 (5,633.70)8,191.57 (13,974.75)852.4 (2,780.01) 1,318.7 (10,348.89) 
Median (range)2,239.19 (019,492.03)1,163.45 (022,449.84)5,924.31 (277.3019,492.03)3,002.70 (553.7250,955.56)    
Combined costs ($)     0.002 0.129
N2323121223231212
Total766,717.77419,020.80621,053.76397,799.8745.3% (48.3%) 25.5% (76.9%) 
Mean (SD)33,335.56 (22,427.77)18,218.30 (21,398.27)51,754.48 (32,248.94)33,149.99 (31,769.40)15,117.3 (19,932.41) 18,604.5 (35,513.56) 
Median (range)32,000.42 (1,625.1880,611.70)9,088.88 (087,549.37)45,716.08 (10,874.0599,426.72)23,971.85 (553.7285,440.12)    

RESULTS

Table 1 shows the demographics and comorbidities for the 24 patients with care plans included in this analysis. The average age of patients is 38.5 years (range, 2565 years) and a nearly even split between males (11) and females (13). Chronic disease burden is high. Furthermore, 83% of patients have chronic pain and 96% have mental health problems or substance abuse.

Table 2 shows inpatient and ED utilization patterns before and after care‐plan implementation. Inpatient admissions decreased by 56% for the 6 months after care‐plan implementation (P<0.001) and by 50.5% for the 12 months after care‐plan implementation (P=0.003). This translates to a decrease in the average number of admissions per patient from 6.3 to 2.4, 6 months postcare plan, and from 10.9 to 4.8, 12 months postcare plan.

Thirty‐day readmissions also significantly decreased after care‐plan implementation. Among the 23 patients with data 6 months pre and postcare plan, there were 130 readmissions before and 44 readmissions after care‐plan implementation, a 66% reduction (P<0.001). Among the 12 patients with data 12 months pre and postcare plan, there were 106 readmissions before and 45 readmissions after care‐plan implementation, a 51.5% reduction (P=0.002). Inpatient LOS did not show a statistically significant change after care‐plan implementation.

ED visits were similar for the 6 months pre compared to 6 months postcare plan. ED visits at 12 months postcare plan increased from an average of 15.4 visits pre to 25.6 visits per patient postcare plan. This was driven by a single homeless patient with dialysis‐dependent end‐stage renal disease, who had 134 ED visits in the 12 months after careplan implementation. Analysis of the data with this outlier removed showed a reduction in ED visits from an average of 12.3 visits per patient to 10.1 visits per patient in the 12 months postcare plan; however, this was not statistically significant (P=0.66, data not shown).

Table 3 shows inpatient and ED VDCs before and after care‐plan implementation. The average VDCs per patient per admission decreased from $29,852.71 to $15,587.84, 6 months after care‐plan implementation, a 47.7% reduction (P=0.001). The average VDCs per patient per admission decreased from $44,881.66 to $24,958.42, 12 months after care‐plan implementation, a 35.8% reduction (P=0.052). ED costs did not show a statistically significant decrease. However, with the outlier removed as above, costs did decrease by 12.3%, 6 months after care‐plan implementation, approaching statistical significance (P=0.073, data not shown). Combined inpatient and ED variable direct costs decreased by an average of $15,117.30, 6 months after care‐plan implementation, a 45.3% reduction (P=0.002), and by an average of $18,604.50, 12 months after care‐plan implementation, a 25.5% reduction, although this did not reach statistical significance (P=0.129).

DISCUSSION

A multidisciplinary team at our academic medical center developed individualized care plans tailored to the specific medical and psychosocial complexities of high utilizers to reduce unnecessary service utilization and hospital costs. Postintervention analysis shows reduced inpatient admissions and 30‐day readmissions among this population by 50%. Furthermore, inpatient variable direct costs decreased by 47% for the 6 months following care‐plan implementation and by 35% for the 12 months following care‐plan implementation. This translates into a $347,696.97 cost savings for the 23 patients 6 months after care‐plan implementation, and a $223,253.89 cost savings for the 12 patients 12 months after care‐plan implementation. This reduction in utilization and cost was seen across all 3 hospitals in the Duke University Health System, including the only 2 hospitals in Durham, North Carolina. Unlike other urban areas, public transportation in our region is scarce, and the options for hospital shopping in central North Carolina are relatively limited. Although this study does not measure utilization in surrounding counties, we do not feel this occurred as we did not see a rise in requests for medical records nor attempts to contact Duke providers for questions on these patients as a result of our intervention. This, along with our regional health system outcome analysis, provides support that our intervention did not cause patients to seek care elsewhere and result in cost‐shifting to other facilities.

We hypothesize that our care plans may be responsible for decreased admissions and 30‐day readmissions through several mechanisms. By raising awareness of these patients' excessive hospital utilization patterns and making this information readily available through our EMR, providers in the ED may be more conscientious about their admission decisions. Problems that at face value seem acute, are often more chronic and can be better managed in the outpatient setting. Several care plans also explicitly recommend limiting unnecessary intravenous opiate use for chronic pain patients. Other patients who have frequent admissions actually have end‐stage disease, and care plans for these patients help facilitate referrals to hospice programs.

Care plans provide a consistent message of patient histories, utilization patterns, and management strategies, and also serve as a communication tool between hospitalists and ED providers. A systematic review of all ED‐based interventions for high utilizers revealed that most studies did show a reduction in ED visits, but all incorporated case management programs to do so.[15] We did not reduce ED visits, possibly because we lacked the resources and care coordination a community‐based case management program provides. However, care plans did serve as a platform with which hospitalists and ED providers can help coordinate care among multiple outpatient providers. This has potentially limited admissions by providing a referral destination or outpatient point of contact for ED providers. For example, as a result of our intervention, referral mechanisms to our comprehensive pain clinic and outpatient psychiatry clinic have both been strengthened and streamlined. The fact that care plans decreased admissions and readmissions, but not ED visits, suggests that our intervention may not have actually changed patient behavior, but instead changed provider practices in relation to disposition decisions in the ED.

Our QI intervention has several strengths. First, it is fully integrated within our existing healthcare workforce, without the need for an extra case management system. Second, it is seamlessly incorporated into our EMR and represents another potential use of an EMR that has not been previously touted. Third, the multidisciplinary nature of the CCPC ensures that all stakeholders involved in the care of high utilizers are represented. Fourth, the outcome analysis across all 3 hospitals in our health system provides a balancing metric against the notion that our intervention simply caused patients to seek care elsewhere in the region. Last, the QI design and lack of strict inclusion and exclusion criteria adds practicality and shows effectiveness, not just efficacy, of the intervention.

Because this was developed as a QI intervention without strict inclusion and exclusion criteria, generalizability is lacking. In the future, one could use the EMR to more systematically identify high‐utilizing, complex patients. One study showed the ability to use the EMR with a standardized framework to identify hot spotting (high utilizers) and contextual anomaly detection (ie, anomalous utilization cases where patient‐incurred levels of utilization are unexpected given their clinical characteristics).[16] The nonrandomized, retrospective pre/post‐intervention analysis without a control group diminishes the external validity of the results and does introduce the potential for bias.

One of the primary study limitations includes the small sample size of only 24 patients. Admittedly, these first 24 patients are the absolute highest utilizers of care at our hospital, possibly making their utilization patterns more amenable to our intervention. The 96% prevalence rate of mental health and substance abuse in our cohort is significantly higher than other published data among high utilizers.[4, 17, 18] We are continuing to develop care plans for additional high‐utilizing, complex patients, and expect to enroll more patients with end‐stage disease, and relatively fewer with substance abuse or psychiatric illness as time goes on. It is possible this new cohort of patients has proportionally less unnecessary utilization, thus limiting our intervention effect. One final limitation of our study is the lack of care quality and patient safety outcomes. In future studies, health outcomes, adverse events, and outpatient care utilization will be important balancing measures to include.

In conclusion, we showed that a QI intervention using individualized care plans reduces hospital admissions, 30‐day readmissions, and hospital costs across a regional health system for a group of complex, high‐utilizing patients. This intervention can, and should, be developed by a multidisciplinary team and fully integrated into the existing healthcare workforce and EMR to ensure appropriateness, effectiveness, and longevity. Going forward, it will be imperative to evaluate this intervention prospectively, at multiple sites, in coordination with outpatient providers, and including quality and safety outcomes to determine if this hospital‐based intervention impacts care coordination, utilization rates, cost, and health outcomes across the broader healthcare system.

Disclosure

Nothing to report.

Files
References
  1. Hansagi H, Olsson M, Sjoberg S, Tomson Y, Goransson S. Frequent use of the hospital emergency department is indicative of high use of other health care services. Ann Emerg Med. 2001;37:561567.
  2. Matzer F, Wisiak UV, Graninger M, et al. Biopsychosocial health care needs at the emergency room: challenge of complexity. PLoS One. 2012;7:e41775.
  3. Agency for Healthcare Research and Quality. The high concentration of U.S. health care expenditures. Research in Action. Available at: http://meps.ahrq.gov/mepsweb/data_files/publications/ra19/ra19.pdf. Published June 2006. Accessed November 18, 2013.
  4. Byrne M, Murphy AW, Plunkett PK, McGee HM, Murray A, Bury G. Frequent attenders to an emergency department: a study of primary health care use, medical profile, and psychosocial characteristics. Ann Emerg Med. 2003;41:309318.
  5. Centers for Medicare 8:665671.
  6. Katzelnick DJ, Simon GE, Pearson SD, et al. Randomized trial of a depression management program in high utilizers of medical care. Arch Fam Med. 2000;9:345351.
  7. Badger T, Gelenberg AJ, Berren M. Consultative intervention to improve outcomes of high utilizers in a public mental health system. Perspect Psychiatr Care. 2004;40:5360, 69.
  8. Law DD, Crane DR, Berge JM. The influence of individual, marital, and family therapy on high utilizers of health care. J Marital Fam Ther. 2003;29:353363.
  9. Okin RL, Boccellari A, Azocar F, et al. The effects of clinical case management on hospital service use among ED frequent users. Am J Emerg Med. 2000;18:603608.
  10. For success with frequent ED utilizers, take steps to understand patient needs, connect them with appropriate resources. ED Manag. 2013;25:5759.
  11. ED diversion: multidisciplinary approach engages high utilizers, helps them better navigate the health care system. ED Manag. 2011;23:127130.
  12. CM program keeps high utilizers out of hospital. Hosp Case Manag. 2012;20:108109.
  13. Hilger R, Quirk R, Dahms R. Use of restriction care plans to decrease medically unnecessary admissions and emergency department visits. J Hosp Med. 2012;7:S2.
  14. Althaus F, Paroz S, Hugli O, et al. Effectiveness of interventions targeting frequent users of emergency departments: a systematic review. Ann Emerg Med. 2011;58:4152.
  15. Hu J, Wang F, Sun J, Sorrentino R, Ebadollahi S. A healthcare utilization analysis framework for hot spotting and contextual anomaly detection. AMIA Annu Symp Proc. 2012;2012:360369.
  16. Pasic J, Russo J, Roy‐Byrne P. High utilizers of psychiatric emergency services. Psychiatr Serv. 2005;56:678684.
  17. Henk HJ, Katzelnick DJ, Kobak KA, Greist JH, Jefferson JW. Medical costs attributed to depression among patients with a history of high medical expenses in a health maintenance organization. Arch Gen Psychiatry. 1996;53:899904.
Article PDF
Issue
Journal of Hospital Medicine - 10(7)
Publications
Page Number
419-424
Sections
Files
Files
Article PDF
Article PDF

High utilizers of hospital services are medically complex, psychosocially vulnerable, and at risk for adverse health outcomes.[1, 2] They make up a fraction of the patient population but use a disproportionate amount of resources, with high rates of emergency department (ED) visits and hospital admissions.[1, 3, 4] Less than 1% of patients account for 21% of national healthcare spending, and hospital costs are the largest category of national healthcare expenditures.[2, 5] Many patients who disproportionately contribute to high healthcare costs also have high hospital admission rates.[6]

Interventions targeting high utilizers have typically focused on the outpatient setting.[7, 8, 9, 10] Interventions using individualized care plans in the ED reduced ED visits from 33% to 70%, but all have required an additional case management program or partnership with an outside nonprofit case management organization.[11, 12, 13] One study by a hospitalist group using individualized care plans reduced ED visits and admissions by 70%, 2 months after care‐plan implementation; however, all of their care plans were focused explicitly on restricting intravenous opiate use for patients with chronic pain.[14]

Given the current focus on cost‐conscious, high‐quality care in the American healthcare system, we designed a quality‐improvement (QI) intervention using individualized care plans to reduce unnecessary healthcare service utilization and hospital costs for the highest utilizers of ED and inpatient care. Our approach focuses on integrating care plans within our electronic medical record (EMR) and implementing them using the existing healthcare workforce. We analyzed pre‐ and postintervention data to determine its effect on service utilization and hospital costs across a regional health system.

METHODS

QI Intervention

We retrospectively analyzed data collected as part of an ongoing QI project at Duke University Hospital, a 924‐bed academic tertiary care center with approximately 36,000 inpatient discharges per year. The Complex Care Plan Committee (CCPC) aims to improve the effectiveness, efficiency, and equity of care for medically, socially, and behaviorally complex adult patients who are the highest utilizers of care in the ED and inpatient medicine service. The CCPC is a volunteer, QI committee comprised of a multidisciplinary team from hospital medicine, emergency medicine, psychiatry, ambulatory care, social work, nursing, risk management, and performance services (system analysts). Individualized care plans are developed on a rolling basis as new patients are identified based on their hospital utilization rates (ED visits and admissions). To be eligible for a care plan, patients have to have at least 3 ED visits or admissions within 6 months and have some degree of medical, social, or behavioral complexity, for example, multiple medical comorbidities with care by several subspecialists, or concomitant psychiatric illness, substance abuse, and homelessness. Strict eligibility criteria are purposefully not imposed to allow flexibility and appropriate tailoring of this intervention to both high‐utilizing and complex patients. Given their complexity, the CCPC felt that without individualized care plans these patients would be at increased risk for rehospitalization and increased morbidity or mortality. The patients included in this analysis are the 24 patients with the most ED visits and hospital admissions at Duke University Hospital, accounting for a total of 183 ED visits and 145 inpatient admissions in the 6 months before the care plans were rolled out.

Each individualized care plan summarizes the patient's medical, psychiatric, and social histories, documents any disruptive behaviors, reviews their hospital utilization patterns, and proposes a set of management strategies focused on providing high‐quality care while limiting unnecessary admissions. They are written by 1 or 2 members of the CCPC who perform a thorough chart review and obtain collateral information from the ED, inpatient, and outpatient providers who have cared for that patient. Care plans are then reviewed and approved by the CCPC as a whole during monthly meetings. Care plans contain detailed information in the following domains: demographics; outpatient care team (primary care provider, specialists, psychiatrist/counselors, social worker, case manager, and home health agency); medical, psychiatric, and behavioral health history; social history; utilization patterns (dates of ED visits and hospitalizations with succinct narratives and outcomes of each admission); and finally ED, inpatient, and outpatient strategies for managing the patient, preventing unnecessary admissions, and connecting them to appropriate services. The CCPC chairperson reviews care plans quarterly to ensure they remain appropriate and relevant.

The care plan is a document uploaded into the EMR (EpicCare; Epic, Verona, WI), where it is available to any provider across the Duke health system. Within Epic, a colored banner visible across the top of the patient's chart notifies the provider of any patient with an individualized care plan. The care plan document is housed in a tab readily visible on the navigation pane. The care plan serves as a roadmap for ED providers and hospitalists, helping them navigate each patient's complex history and guiding them in their disposition decision making. We also developed an automated notification process such that when a high utilizer registers in the ED, a secure page is sent to the admitting hospitalist, who then notifies the ED provider. An automated email is also sent to the CCPC chairperson. These alerts also provide a mechanism for internal oversight and feedback by the CCPC to providers regarding care‐plan adherence.

Outcome Variables and Data Analysis

Our analysis included the 24 patients with individualized care plans developed from August 1, 2012 to August 31, 2013. We analyzed utilization data 6 and 12 months before and 6 and 12 months after the individualized care‐plan intervention was initiated (August 1, 2011 to August 31, 2014). Primary outcomes were the number of ED visits and hospital admissions, as well as ED and inpatient variable direct costs (VDCs). Secondary outcomes included inpatient length of stay (LOS) and 30‐day readmissions. We analyzed outcome data across all 3 hospitals in the Duke University Health System. This includes the only 2 hospitals in Durham, North Carolina (population 245,475) and 1 hospital in Raleigh, North Carolina (population 431,746).

We also describe basic demographic data, payor status, and medical comorbidities for this cohort of patients. Payor status is defined as the most frequently reported payor type prior to care‐plan implementation. Variable direct costs are directly related to patient care and fluctuate with patient volume. They include medications, supplies, laboratory tests, radiology studies, and nursing salaries. They are a proportion of total costs for an ED visit or hospitalization, excluding fixed and indirect costs, such as administrator or physician salaries, utilities, facilities, and equipment.

Primary and secondary outcomes were analyzed using descriptive statistics. Continuous outcomes are summarized with mean (standard deviation) and median (range), whereas categorical outcomes are summarized with N (%). LOS is calculated as the average number of days in the hospital per hospital admission per patient. The time periods of 12 months prior, 6 months prior, 6 months after, and 12 months after care‐plan implementation were examined. Only patients with 6 or more months of postcare‐plan data are included in the 6‐month comparison, and only patients with 12 or more months of postcare‐plan data are included in the 12‐month comparison. One patient in the 6‐month comparison group died very soon after care‐plan implementation, so that patient is included in Table 1 (N=24) but excluded from outcome analyses in Tables 2 and 3 (N=23). Differences between 6 months pre and 6 months postcare plan, and 12 months pre and 12 months postcare plan were examined using the Wilcoxon signed rank test for nonparametric matched data. Mean change is calculated as ([Post‐Pre]/Pre) for each patient, and then averaged across all patients. Mean percentage change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. It was done this way to emphasize the effect on the patient level. No adjustments were made for multiple comparisons. All statistical analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC). This study was granted exempt status by the Duke University Institutional Review Board.

Patient Demographics and Comorbidities
 Patients With Care Plans, N=24Patients With 12 Months PostCare Plan Follow‐up, N=12Patients With 6 Months PostCare Plan Follow‐up, N=23*
  • NOTE: Abbreviations: SD, standard deviation. *One patient died soon after care‐plan implementation; therefore N=23. Most frequently reported insurance type precare‐plan start date. Patients can have more than 1 comorbidity; therefore, numbers do not add up to N=24.

Age, y, mean (SD)38.5 (11.7)41.6 (9.2)37.3 (10.5)
Median (range)36 (2565)41 (2858)36 (2558)
Gender, N (%)   
Male11 (46%)5 (42%)11 (48%)
Female13 (54%)7 (58%)12 (52%)
Payor, N (%)   
Medicare11 (46%)6 (50%)10 (43%)
Medicaid9 (38%)4 (33%)9 (39%)
Medicare and Medicaid0 (0%)0 (0%)0 (0%)
Private insurance2 (8%)1 (8%)2 (9%)
None1 (4%)0 (0%)1 (4%)
Other1 (4%)1 (8%)1 (4%)
Comorbidities, N (%)   
Asthma9 (38%)5 (42%)9 (39%)
Chronic obstructive pulmonary disease2 (8%)2 (17%)2 (9%)
Chronic pain20 (83%)12 (100%)20 (87%)
Coronary artery disease5 (21%)4 (33%)5 (22%)
Diabetes mellitus10 (42%)6 (50%)9 (39%)
End‐stage renal disease4 (17%)4 (33%)4 (17%)
Heart failure5 (21%)2 (17%)4 (17%)
Hypertension13 (54%)6 (50%)12 (52%)
Mental health/substance abuse23 (96%)12 (100%)22 (96%)
Sickle cell10 (42%)5 (42%)10 (43%)
Utilization Patterns Before and After Care‐Plan Implementation Across Duke University Health System*
 6 Months Pre Care Plan6 Months Post Care Plan12 Months Pre Care Plan12 Months Post Care Plan6‐Month Change6‐Month P Value12‐Month Change12‐Month P Value
  • NOTE: Abbreviations: ED, emergency department; LOS, length of stay; SD, standard deviation. *Duke University Health System includes Duke University Hospital, Duke Regional Hospital, and Duke Raleigh Hospital. Mean percent change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. Mean change is calculated as Post‐Pre for each patient, and then averaged across patients. Wilcoxon signed rank test.

Admissions     <0.001 0.003
N2323121223231212
Total145561315856.0% (41.6%) 50.5% (43.9%) 
Mean (SD)6.3 (3.8)2.4 (2.4)10.9 (6.3)4.8 (4.2)3.9 (3.76) 6.1 (6.02) 
Median (range)5 (114)2 (08)8 (320)3 (011)    
30‐day readmissions    <0.001 0.002
N2323121223231212
Total130441064566.0% (32.4%) 51.5% (32.0%) 
Mean (SD)5.7 (4.1)1.9 (2.4)8.8 (7.0)3.8 (2.7)3.7 (3.79) 5.1 (5.71) 
Median (range)4 (013)1 (08)6 (019)3 (011)    
Inpatient LOS     0.506 0.910
N2323121223231212
Total76635866531750.8% (51.4%) 37.8% (78.8%) 
Mean (SD)5.0 (3.2)4.7 (4.3)4.7 (1.5)4.4 (3.1)0.3 (4.3) 0.3 (2.27) 
Median (range)4.3 (1.515.8)4 (016)4.8 (2.26.9)3.7 (09)    
ED visits     0.836 0.941
N2323121223231212
Total183198185307+42.9% (148.4%) +48.4% (145.1%) 
Mean (SD)8.0 (11.5)8.6 (19.8)15.4 (14.7)25.6 (54.4)0.7 (11.92) 10.2 (43.19) 
Median (range)5 (050)3 (096)12 (150)7 (1196)    
Healthcare Costs Before and After Care‐Plan Implementation Across Duke University Health System*
 6 Months Pre Care Plan6 Months Post Care Plan12 Months Pre Care Plan12 Months Post Care Plan6‐Month Change6‐Month P Value12‐Month Change12‐Month P Value
  • NOTE: Abbreviations: ED, emergency department; SD, standard deviation. *Duke University Health System includes Duke University Hospital, Duke Regional Hospital, and Duke Raleigh Hospital. Mean percent change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. Mean change is calculated as Post‐Pre for each patient, and then averaged across patients. Wilcoxon signed rank test.

Inpatient costs ($)    0.001 0.052
N2323121223231212
Total686,612.43358,520.42538,579.90299,501.0347.7% (52.3%) 35.8% (76.1%) 
Mean (SD)29,852.71 (21,808.22)15,587.84 (21,141.79)44,881.66 (30,132.26)24,958.42 (27,248.41)14,264.9 (19,301.75) 19,923.2 (31,891.69) 
Median (range)30,203.43 (1,625.1880,171.87)7,041.28 (086,457.05)39,936.05 (8,237.5382,861.11)13,321.56 (082,309.19)    
ED costs ($)     0.143 0.850
N2323121223231212
Total80,105.3460,500.3882,473.8698,298.84+12.5% (147.5%) +48.0% (161.8%) 
Mean (SD)3,482.84 (4,423.57)2,630.45 (4,782.56)6,872.82 (5,633.70)8,191.57 (13,974.75)852.4 (2,780.01) 1,318.7 (10,348.89) 
Median (range)2,239.19 (019,492.03)1,163.45 (022,449.84)5,924.31 (277.3019,492.03)3,002.70 (553.7250,955.56)    
Combined costs ($)     0.002 0.129
N2323121223231212
Total766,717.77419,020.80621,053.76397,799.8745.3% (48.3%) 25.5% (76.9%) 
Mean (SD)33,335.56 (22,427.77)18,218.30 (21,398.27)51,754.48 (32,248.94)33,149.99 (31,769.40)15,117.3 (19,932.41) 18,604.5 (35,513.56) 
Median (range)32,000.42 (1,625.1880,611.70)9,088.88 (087,549.37)45,716.08 (10,874.0599,426.72)23,971.85 (553.7285,440.12)    

RESULTS

Table 1 shows the demographics and comorbidities for the 24 patients with care plans included in this analysis. The average age of patients is 38.5 years (range, 2565 years) and a nearly even split between males (11) and females (13). Chronic disease burden is high. Furthermore, 83% of patients have chronic pain and 96% have mental health problems or substance abuse.

Table 2 shows inpatient and ED utilization patterns before and after care‐plan implementation. Inpatient admissions decreased by 56% for the 6 months after care‐plan implementation (P<0.001) and by 50.5% for the 12 months after care‐plan implementation (P=0.003). This translates to a decrease in the average number of admissions per patient from 6.3 to 2.4, 6 months postcare plan, and from 10.9 to 4.8, 12 months postcare plan.

Thirty‐day readmissions also significantly decreased after care‐plan implementation. Among the 23 patients with data 6 months pre and postcare plan, there were 130 readmissions before and 44 readmissions after care‐plan implementation, a 66% reduction (P<0.001). Among the 12 patients with data 12 months pre and postcare plan, there were 106 readmissions before and 45 readmissions after care‐plan implementation, a 51.5% reduction (P=0.002). Inpatient LOS did not show a statistically significant change after care‐plan implementation.

ED visits were similar for the 6 months pre compared to 6 months postcare plan. ED visits at 12 months postcare plan increased from an average of 15.4 visits pre to 25.6 visits per patient postcare plan. This was driven by a single homeless patient with dialysis‐dependent end‐stage renal disease, who had 134 ED visits in the 12 months after careplan implementation. Analysis of the data with this outlier removed showed a reduction in ED visits from an average of 12.3 visits per patient to 10.1 visits per patient in the 12 months postcare plan; however, this was not statistically significant (P=0.66, data not shown).

Table 3 shows inpatient and ED VDCs before and after care‐plan implementation. The average VDCs per patient per admission decreased from $29,852.71 to $15,587.84, 6 months after care‐plan implementation, a 47.7% reduction (P=0.001). The average VDCs per patient per admission decreased from $44,881.66 to $24,958.42, 12 months after care‐plan implementation, a 35.8% reduction (P=0.052). ED costs did not show a statistically significant decrease. However, with the outlier removed as above, costs did decrease by 12.3%, 6 months after care‐plan implementation, approaching statistical significance (P=0.073, data not shown). Combined inpatient and ED variable direct costs decreased by an average of $15,117.30, 6 months after care‐plan implementation, a 45.3% reduction (P=0.002), and by an average of $18,604.50, 12 months after care‐plan implementation, a 25.5% reduction, although this did not reach statistical significance (P=0.129).

DISCUSSION

A multidisciplinary team at our academic medical center developed individualized care plans tailored to the specific medical and psychosocial complexities of high utilizers to reduce unnecessary service utilization and hospital costs. Postintervention analysis shows reduced inpatient admissions and 30‐day readmissions among this population by 50%. Furthermore, inpatient variable direct costs decreased by 47% for the 6 months following care‐plan implementation and by 35% for the 12 months following care‐plan implementation. This translates into a $347,696.97 cost savings for the 23 patients 6 months after care‐plan implementation, and a $223,253.89 cost savings for the 12 patients 12 months after care‐plan implementation. This reduction in utilization and cost was seen across all 3 hospitals in the Duke University Health System, including the only 2 hospitals in Durham, North Carolina. Unlike other urban areas, public transportation in our region is scarce, and the options for hospital shopping in central North Carolina are relatively limited. Although this study does not measure utilization in surrounding counties, we do not feel this occurred as we did not see a rise in requests for medical records nor attempts to contact Duke providers for questions on these patients as a result of our intervention. This, along with our regional health system outcome analysis, provides support that our intervention did not cause patients to seek care elsewhere and result in cost‐shifting to other facilities.

We hypothesize that our care plans may be responsible for decreased admissions and 30‐day readmissions through several mechanisms. By raising awareness of these patients' excessive hospital utilization patterns and making this information readily available through our EMR, providers in the ED may be more conscientious about their admission decisions. Problems that at face value seem acute, are often more chronic and can be better managed in the outpatient setting. Several care plans also explicitly recommend limiting unnecessary intravenous opiate use for chronic pain patients. Other patients who have frequent admissions actually have end‐stage disease, and care plans for these patients help facilitate referrals to hospice programs.

Care plans provide a consistent message of patient histories, utilization patterns, and management strategies, and also serve as a communication tool between hospitalists and ED providers. A systematic review of all ED‐based interventions for high utilizers revealed that most studies did show a reduction in ED visits, but all incorporated case management programs to do so.[15] We did not reduce ED visits, possibly because we lacked the resources and care coordination a community‐based case management program provides. However, care plans did serve as a platform with which hospitalists and ED providers can help coordinate care among multiple outpatient providers. This has potentially limited admissions by providing a referral destination or outpatient point of contact for ED providers. For example, as a result of our intervention, referral mechanisms to our comprehensive pain clinic and outpatient psychiatry clinic have both been strengthened and streamlined. The fact that care plans decreased admissions and readmissions, but not ED visits, suggests that our intervention may not have actually changed patient behavior, but instead changed provider practices in relation to disposition decisions in the ED.

Our QI intervention has several strengths. First, it is fully integrated within our existing healthcare workforce, without the need for an extra case management system. Second, it is seamlessly incorporated into our EMR and represents another potential use of an EMR that has not been previously touted. Third, the multidisciplinary nature of the CCPC ensures that all stakeholders involved in the care of high utilizers are represented. Fourth, the outcome analysis across all 3 hospitals in our health system provides a balancing metric against the notion that our intervention simply caused patients to seek care elsewhere in the region. Last, the QI design and lack of strict inclusion and exclusion criteria adds practicality and shows effectiveness, not just efficacy, of the intervention.

Because this was developed as a QI intervention without strict inclusion and exclusion criteria, generalizability is lacking. In the future, one could use the EMR to more systematically identify high‐utilizing, complex patients. One study showed the ability to use the EMR with a standardized framework to identify hot spotting (high utilizers) and contextual anomaly detection (ie, anomalous utilization cases where patient‐incurred levels of utilization are unexpected given their clinical characteristics).[16] The nonrandomized, retrospective pre/post‐intervention analysis without a control group diminishes the external validity of the results and does introduce the potential for bias.

One of the primary study limitations includes the small sample size of only 24 patients. Admittedly, these first 24 patients are the absolute highest utilizers of care at our hospital, possibly making their utilization patterns more amenable to our intervention. The 96% prevalence rate of mental health and substance abuse in our cohort is significantly higher than other published data among high utilizers.[4, 17, 18] We are continuing to develop care plans for additional high‐utilizing, complex patients, and expect to enroll more patients with end‐stage disease, and relatively fewer with substance abuse or psychiatric illness as time goes on. It is possible this new cohort of patients has proportionally less unnecessary utilization, thus limiting our intervention effect. One final limitation of our study is the lack of care quality and patient safety outcomes. In future studies, health outcomes, adverse events, and outpatient care utilization will be important balancing measures to include.

In conclusion, we showed that a QI intervention using individualized care plans reduces hospital admissions, 30‐day readmissions, and hospital costs across a regional health system for a group of complex, high‐utilizing patients. This intervention can, and should, be developed by a multidisciplinary team and fully integrated into the existing healthcare workforce and EMR to ensure appropriateness, effectiveness, and longevity. Going forward, it will be imperative to evaluate this intervention prospectively, at multiple sites, in coordination with outpatient providers, and including quality and safety outcomes to determine if this hospital‐based intervention impacts care coordination, utilization rates, cost, and health outcomes across the broader healthcare system.

Disclosure

Nothing to report.

High utilizers of hospital services are medically complex, psychosocially vulnerable, and at risk for adverse health outcomes.[1, 2] They make up a fraction of the patient population but use a disproportionate amount of resources, with high rates of emergency department (ED) visits and hospital admissions.[1, 3, 4] Less than 1% of patients account for 21% of national healthcare spending, and hospital costs are the largest category of national healthcare expenditures.[2, 5] Many patients who disproportionately contribute to high healthcare costs also have high hospital admission rates.[6]

Interventions targeting high utilizers have typically focused on the outpatient setting.[7, 8, 9, 10] Interventions using individualized care plans in the ED reduced ED visits from 33% to 70%, but all have required an additional case management program or partnership with an outside nonprofit case management organization.[11, 12, 13] One study by a hospitalist group using individualized care plans reduced ED visits and admissions by 70%, 2 months after care‐plan implementation; however, all of their care plans were focused explicitly on restricting intravenous opiate use for patients with chronic pain.[14]

Given the current focus on cost‐conscious, high‐quality care in the American healthcare system, we designed a quality‐improvement (QI) intervention using individualized care plans to reduce unnecessary healthcare service utilization and hospital costs for the highest utilizers of ED and inpatient care. Our approach focuses on integrating care plans within our electronic medical record (EMR) and implementing them using the existing healthcare workforce. We analyzed pre‐ and postintervention data to determine its effect on service utilization and hospital costs across a regional health system.

METHODS

QI Intervention

We retrospectively analyzed data collected as part of an ongoing QI project at Duke University Hospital, a 924‐bed academic tertiary care center with approximately 36,000 inpatient discharges per year. The Complex Care Plan Committee (CCPC) aims to improve the effectiveness, efficiency, and equity of care for medically, socially, and behaviorally complex adult patients who are the highest utilizers of care in the ED and inpatient medicine service. The CCPC is a volunteer, QI committee comprised of a multidisciplinary team from hospital medicine, emergency medicine, psychiatry, ambulatory care, social work, nursing, risk management, and performance services (system analysts). Individualized care plans are developed on a rolling basis as new patients are identified based on their hospital utilization rates (ED visits and admissions). To be eligible for a care plan, patients have to have at least 3 ED visits or admissions within 6 months and have some degree of medical, social, or behavioral complexity, for example, multiple medical comorbidities with care by several subspecialists, or concomitant psychiatric illness, substance abuse, and homelessness. Strict eligibility criteria are purposefully not imposed to allow flexibility and appropriate tailoring of this intervention to both high‐utilizing and complex patients. Given their complexity, the CCPC felt that without individualized care plans these patients would be at increased risk for rehospitalization and increased morbidity or mortality. The patients included in this analysis are the 24 patients with the most ED visits and hospital admissions at Duke University Hospital, accounting for a total of 183 ED visits and 145 inpatient admissions in the 6 months before the care plans were rolled out.

Each individualized care plan summarizes the patient's medical, psychiatric, and social histories, documents any disruptive behaviors, reviews their hospital utilization patterns, and proposes a set of management strategies focused on providing high‐quality care while limiting unnecessary admissions. They are written by 1 or 2 members of the CCPC who perform a thorough chart review and obtain collateral information from the ED, inpatient, and outpatient providers who have cared for that patient. Care plans are then reviewed and approved by the CCPC as a whole during monthly meetings. Care plans contain detailed information in the following domains: demographics; outpatient care team (primary care provider, specialists, psychiatrist/counselors, social worker, case manager, and home health agency); medical, psychiatric, and behavioral health history; social history; utilization patterns (dates of ED visits and hospitalizations with succinct narratives and outcomes of each admission); and finally ED, inpatient, and outpatient strategies for managing the patient, preventing unnecessary admissions, and connecting them to appropriate services. The CCPC chairperson reviews care plans quarterly to ensure they remain appropriate and relevant.

The care plan is a document uploaded into the EMR (EpicCare; Epic, Verona, WI), where it is available to any provider across the Duke health system. Within Epic, a colored banner visible across the top of the patient's chart notifies the provider of any patient with an individualized care plan. The care plan document is housed in a tab readily visible on the navigation pane. The care plan serves as a roadmap for ED providers and hospitalists, helping them navigate each patient's complex history and guiding them in their disposition decision making. We also developed an automated notification process such that when a high utilizer registers in the ED, a secure page is sent to the admitting hospitalist, who then notifies the ED provider. An automated email is also sent to the CCPC chairperson. These alerts also provide a mechanism for internal oversight and feedback by the CCPC to providers regarding care‐plan adherence.

Outcome Variables and Data Analysis

Our analysis included the 24 patients with individualized care plans developed from August 1, 2012 to August 31, 2013. We analyzed utilization data 6 and 12 months before and 6 and 12 months after the individualized care‐plan intervention was initiated (August 1, 2011 to August 31, 2014). Primary outcomes were the number of ED visits and hospital admissions, as well as ED and inpatient variable direct costs (VDCs). Secondary outcomes included inpatient length of stay (LOS) and 30‐day readmissions. We analyzed outcome data across all 3 hospitals in the Duke University Health System. This includes the only 2 hospitals in Durham, North Carolina (population 245,475) and 1 hospital in Raleigh, North Carolina (population 431,746).

We also describe basic demographic data, payor status, and medical comorbidities for this cohort of patients. Payor status is defined as the most frequently reported payor type prior to care‐plan implementation. Variable direct costs are directly related to patient care and fluctuate with patient volume. They include medications, supplies, laboratory tests, radiology studies, and nursing salaries. They are a proportion of total costs for an ED visit or hospitalization, excluding fixed and indirect costs, such as administrator or physician salaries, utilities, facilities, and equipment.

Primary and secondary outcomes were analyzed using descriptive statistics. Continuous outcomes are summarized with mean (standard deviation) and median (range), whereas categorical outcomes are summarized with N (%). LOS is calculated as the average number of days in the hospital per hospital admission per patient. The time periods of 12 months prior, 6 months prior, 6 months after, and 12 months after care‐plan implementation were examined. Only patients with 6 or more months of postcare‐plan data are included in the 6‐month comparison, and only patients with 12 or more months of postcare‐plan data are included in the 12‐month comparison. One patient in the 6‐month comparison group died very soon after care‐plan implementation, so that patient is included in Table 1 (N=24) but excluded from outcome analyses in Tables 2 and 3 (N=23). Differences between 6 months pre and 6 months postcare plan, and 12 months pre and 12 months postcare plan were examined using the Wilcoxon signed rank test for nonparametric matched data. Mean change is calculated as ([Post‐Pre]/Pre) for each patient, and then averaged across all patients. Mean percentage change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. It was done this way to emphasize the effect on the patient level. No adjustments were made for multiple comparisons. All statistical analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC). This study was granted exempt status by the Duke University Institutional Review Board.

Patient Demographics and Comorbidities
 Patients With Care Plans, N=24Patients With 12 Months PostCare Plan Follow‐up, N=12Patients With 6 Months PostCare Plan Follow‐up, N=23*
  • NOTE: Abbreviations: SD, standard deviation. *One patient died soon after care‐plan implementation; therefore N=23. Most frequently reported insurance type precare‐plan start date. Patients can have more than 1 comorbidity; therefore, numbers do not add up to N=24.

Age, y, mean (SD)38.5 (11.7)41.6 (9.2)37.3 (10.5)
Median (range)36 (2565)41 (2858)36 (2558)
Gender, N (%)   
Male11 (46%)5 (42%)11 (48%)
Female13 (54%)7 (58%)12 (52%)
Payor, N (%)   
Medicare11 (46%)6 (50%)10 (43%)
Medicaid9 (38%)4 (33%)9 (39%)
Medicare and Medicaid0 (0%)0 (0%)0 (0%)
Private insurance2 (8%)1 (8%)2 (9%)
None1 (4%)0 (0%)1 (4%)
Other1 (4%)1 (8%)1 (4%)
Comorbidities, N (%)   
Asthma9 (38%)5 (42%)9 (39%)
Chronic obstructive pulmonary disease2 (8%)2 (17%)2 (9%)
Chronic pain20 (83%)12 (100%)20 (87%)
Coronary artery disease5 (21%)4 (33%)5 (22%)
Diabetes mellitus10 (42%)6 (50%)9 (39%)
End‐stage renal disease4 (17%)4 (33%)4 (17%)
Heart failure5 (21%)2 (17%)4 (17%)
Hypertension13 (54%)6 (50%)12 (52%)
Mental health/substance abuse23 (96%)12 (100%)22 (96%)
Sickle cell10 (42%)5 (42%)10 (43%)
Utilization Patterns Before and After Care‐Plan Implementation Across Duke University Health System*
 6 Months Pre Care Plan6 Months Post Care Plan12 Months Pre Care Plan12 Months Post Care Plan6‐Month Change6‐Month P Value12‐Month Change12‐Month P Value
  • NOTE: Abbreviations: ED, emergency department; LOS, length of stay; SD, standard deviation. *Duke University Health System includes Duke University Hospital, Duke Regional Hospital, and Duke Raleigh Hospital. Mean percent change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. Mean change is calculated as Post‐Pre for each patient, and then averaged across patients. Wilcoxon signed rank test.

Admissions     <0.001 0.003
N2323121223231212
Total145561315856.0% (41.6%) 50.5% (43.9%) 
Mean (SD)6.3 (3.8)2.4 (2.4)10.9 (6.3)4.8 (4.2)3.9 (3.76) 6.1 (6.02) 
Median (range)5 (114)2 (08)8 (320)3 (011)    
30‐day readmissions    <0.001 0.002
N2323121223231212
Total130441064566.0% (32.4%) 51.5% (32.0%) 
Mean (SD)5.7 (4.1)1.9 (2.4)8.8 (7.0)3.8 (2.7)3.7 (3.79) 5.1 (5.71) 
Median (range)4 (013)1 (08)6 (019)3 (011)    
Inpatient LOS     0.506 0.910
N2323121223231212
Total76635866531750.8% (51.4%) 37.8% (78.8%) 
Mean (SD)5.0 (3.2)4.7 (4.3)4.7 (1.5)4.4 (3.1)0.3 (4.3) 0.3 (2.27) 
Median (range)4.3 (1.515.8)4 (016)4.8 (2.26.9)3.7 (09)    
ED visits     0.836 0.941
N2323121223231212
Total183198185307+42.9% (148.4%) +48.4% (145.1%) 
Mean (SD)8.0 (11.5)8.6 (19.8)15.4 (14.7)25.6 (54.4)0.7 (11.92) 10.2 (43.19) 
Median (range)5 (050)3 (096)12 (150)7 (1196)    
Healthcare Costs Before and After Care‐Plan Implementation Across Duke University Health System*
 6 Months Pre Care Plan6 Months Post Care Plan12 Months Pre Care Plan12 Months Post Care Plan6‐Month Change6‐Month P Value12‐Month Change12‐Month P Value
  • NOTE: Abbreviations: ED, emergency department; SD, standard deviation. *Duke University Health System includes Duke University Hospital, Duke Regional Hospital, and Duke Raleigh Hospital. Mean percent change is calculated as ([Post‐Pre]/Pre)*100 for each patient, and then averaged across patients. Mean change is calculated as Post‐Pre for each patient, and then averaged across patients. Wilcoxon signed rank test.

Inpatient costs ($)    0.001 0.052
N2323121223231212
Total686,612.43358,520.42538,579.90299,501.0347.7% (52.3%) 35.8% (76.1%) 
Mean (SD)29,852.71 (21,808.22)15,587.84 (21,141.79)44,881.66 (30,132.26)24,958.42 (27,248.41)14,264.9 (19,301.75) 19,923.2 (31,891.69) 
Median (range)30,203.43 (1,625.1880,171.87)7,041.28 (086,457.05)39,936.05 (8,237.5382,861.11)13,321.56 (082,309.19)    
ED costs ($)     0.143 0.850
N2323121223231212
Total80,105.3460,500.3882,473.8698,298.84+12.5% (147.5%) +48.0% (161.8%) 
Mean (SD)3,482.84 (4,423.57)2,630.45 (4,782.56)6,872.82 (5,633.70)8,191.57 (13,974.75)852.4 (2,780.01) 1,318.7 (10,348.89) 
Median (range)2,239.19 (019,492.03)1,163.45 (022,449.84)5,924.31 (277.3019,492.03)3,002.70 (553.7250,955.56)    
Combined costs ($)     0.002 0.129
N2323121223231212
Total766,717.77419,020.80621,053.76397,799.8745.3% (48.3%) 25.5% (76.9%) 
Mean (SD)33,335.56 (22,427.77)18,218.30 (21,398.27)51,754.48 (32,248.94)33,149.99 (31,769.40)15,117.3 (19,932.41) 18,604.5 (35,513.56) 
Median (range)32,000.42 (1,625.1880,611.70)9,088.88 (087,549.37)45,716.08 (10,874.0599,426.72)23,971.85 (553.7285,440.12)    

RESULTS

Table 1 shows the demographics and comorbidities for the 24 patients with care plans included in this analysis. The average age of patients is 38.5 years (range, 2565 years) and a nearly even split between males (11) and females (13). Chronic disease burden is high. Furthermore, 83% of patients have chronic pain and 96% have mental health problems or substance abuse.

Table 2 shows inpatient and ED utilization patterns before and after care‐plan implementation. Inpatient admissions decreased by 56% for the 6 months after care‐plan implementation (P<0.001) and by 50.5% for the 12 months after care‐plan implementation (P=0.003). This translates to a decrease in the average number of admissions per patient from 6.3 to 2.4, 6 months postcare plan, and from 10.9 to 4.8, 12 months postcare plan.

Thirty‐day readmissions also significantly decreased after care‐plan implementation. Among the 23 patients with data 6 months pre and postcare plan, there were 130 readmissions before and 44 readmissions after care‐plan implementation, a 66% reduction (P<0.001). Among the 12 patients with data 12 months pre and postcare plan, there were 106 readmissions before and 45 readmissions after care‐plan implementation, a 51.5% reduction (P=0.002). Inpatient LOS did not show a statistically significant change after care‐plan implementation.

ED visits were similar for the 6 months pre compared to 6 months postcare plan. ED visits at 12 months postcare plan increased from an average of 15.4 visits pre to 25.6 visits per patient postcare plan. This was driven by a single homeless patient with dialysis‐dependent end‐stage renal disease, who had 134 ED visits in the 12 months after careplan implementation. Analysis of the data with this outlier removed showed a reduction in ED visits from an average of 12.3 visits per patient to 10.1 visits per patient in the 12 months postcare plan; however, this was not statistically significant (P=0.66, data not shown).

Table 3 shows inpatient and ED VDCs before and after care‐plan implementation. The average VDCs per patient per admission decreased from $29,852.71 to $15,587.84, 6 months after care‐plan implementation, a 47.7% reduction (P=0.001). The average VDCs per patient per admission decreased from $44,881.66 to $24,958.42, 12 months after care‐plan implementation, a 35.8% reduction (P=0.052). ED costs did not show a statistically significant decrease. However, with the outlier removed as above, costs did decrease by 12.3%, 6 months after care‐plan implementation, approaching statistical significance (P=0.073, data not shown). Combined inpatient and ED variable direct costs decreased by an average of $15,117.30, 6 months after care‐plan implementation, a 45.3% reduction (P=0.002), and by an average of $18,604.50, 12 months after care‐plan implementation, a 25.5% reduction, although this did not reach statistical significance (P=0.129).

DISCUSSION

A multidisciplinary team at our academic medical center developed individualized care plans tailored to the specific medical and psychosocial complexities of high utilizers to reduce unnecessary service utilization and hospital costs. Postintervention analysis shows reduced inpatient admissions and 30‐day readmissions among this population by 50%. Furthermore, inpatient variable direct costs decreased by 47% for the 6 months following care‐plan implementation and by 35% for the 12 months following care‐plan implementation. This translates into a $347,696.97 cost savings for the 23 patients 6 months after care‐plan implementation, and a $223,253.89 cost savings for the 12 patients 12 months after care‐plan implementation. This reduction in utilization and cost was seen across all 3 hospitals in the Duke University Health System, including the only 2 hospitals in Durham, North Carolina. Unlike other urban areas, public transportation in our region is scarce, and the options for hospital shopping in central North Carolina are relatively limited. Although this study does not measure utilization in surrounding counties, we do not feel this occurred as we did not see a rise in requests for medical records nor attempts to contact Duke providers for questions on these patients as a result of our intervention. This, along with our regional health system outcome analysis, provides support that our intervention did not cause patients to seek care elsewhere and result in cost‐shifting to other facilities.

We hypothesize that our care plans may be responsible for decreased admissions and 30‐day readmissions through several mechanisms. By raising awareness of these patients' excessive hospital utilization patterns and making this information readily available through our EMR, providers in the ED may be more conscientious about their admission decisions. Problems that at face value seem acute, are often more chronic and can be better managed in the outpatient setting. Several care plans also explicitly recommend limiting unnecessary intravenous opiate use for chronic pain patients. Other patients who have frequent admissions actually have end‐stage disease, and care plans for these patients help facilitate referrals to hospice programs.

Care plans provide a consistent message of patient histories, utilization patterns, and management strategies, and also serve as a communication tool between hospitalists and ED providers. A systematic review of all ED‐based interventions for high utilizers revealed that most studies did show a reduction in ED visits, but all incorporated case management programs to do so.[15] We did not reduce ED visits, possibly because we lacked the resources and care coordination a community‐based case management program provides. However, care plans did serve as a platform with which hospitalists and ED providers can help coordinate care among multiple outpatient providers. This has potentially limited admissions by providing a referral destination or outpatient point of contact for ED providers. For example, as a result of our intervention, referral mechanisms to our comprehensive pain clinic and outpatient psychiatry clinic have both been strengthened and streamlined. The fact that care plans decreased admissions and readmissions, but not ED visits, suggests that our intervention may not have actually changed patient behavior, but instead changed provider practices in relation to disposition decisions in the ED.

Our QI intervention has several strengths. First, it is fully integrated within our existing healthcare workforce, without the need for an extra case management system. Second, it is seamlessly incorporated into our EMR and represents another potential use of an EMR that has not been previously touted. Third, the multidisciplinary nature of the CCPC ensures that all stakeholders involved in the care of high utilizers are represented. Fourth, the outcome analysis across all 3 hospitals in our health system provides a balancing metric against the notion that our intervention simply caused patients to seek care elsewhere in the region. Last, the QI design and lack of strict inclusion and exclusion criteria adds practicality and shows effectiveness, not just efficacy, of the intervention.

Because this was developed as a QI intervention without strict inclusion and exclusion criteria, generalizability is lacking. In the future, one could use the EMR to more systematically identify high‐utilizing, complex patients. One study showed the ability to use the EMR with a standardized framework to identify hot spotting (high utilizers) and contextual anomaly detection (ie, anomalous utilization cases where patient‐incurred levels of utilization are unexpected given their clinical characteristics).[16] The nonrandomized, retrospective pre/post‐intervention analysis without a control group diminishes the external validity of the results and does introduce the potential for bias.

One of the primary study limitations includes the small sample size of only 24 patients. Admittedly, these first 24 patients are the absolute highest utilizers of care at our hospital, possibly making their utilization patterns more amenable to our intervention. The 96% prevalence rate of mental health and substance abuse in our cohort is significantly higher than other published data among high utilizers.[4, 17, 18] We are continuing to develop care plans for additional high‐utilizing, complex patients, and expect to enroll more patients with end‐stage disease, and relatively fewer with substance abuse or psychiatric illness as time goes on. It is possible this new cohort of patients has proportionally less unnecessary utilization, thus limiting our intervention effect. One final limitation of our study is the lack of care quality and patient safety outcomes. In future studies, health outcomes, adverse events, and outpatient care utilization will be important balancing measures to include.

In conclusion, we showed that a QI intervention using individualized care plans reduces hospital admissions, 30‐day readmissions, and hospital costs across a regional health system for a group of complex, high‐utilizing patients. This intervention can, and should, be developed by a multidisciplinary team and fully integrated into the existing healthcare workforce and EMR to ensure appropriateness, effectiveness, and longevity. Going forward, it will be imperative to evaluate this intervention prospectively, at multiple sites, in coordination with outpatient providers, and including quality and safety outcomes to determine if this hospital‐based intervention impacts care coordination, utilization rates, cost, and health outcomes across the broader healthcare system.

Disclosure

Nothing to report.

References
  1. Hansagi H, Olsson M, Sjoberg S, Tomson Y, Goransson S. Frequent use of the hospital emergency department is indicative of high use of other health care services. Ann Emerg Med. 2001;37:561567.
  2. Matzer F, Wisiak UV, Graninger M, et al. Biopsychosocial health care needs at the emergency room: challenge of complexity. PLoS One. 2012;7:e41775.
  3. Agency for Healthcare Research and Quality. The high concentration of U.S. health care expenditures. Research in Action. Available at: http://meps.ahrq.gov/mepsweb/data_files/publications/ra19/ra19.pdf. Published June 2006. Accessed November 18, 2013.
  4. Byrne M, Murphy AW, Plunkett PK, McGee HM, Murray A, Bury G. Frequent attenders to an emergency department: a study of primary health care use, medical profile, and psychosocial characteristics. Ann Emerg Med. 2003;41:309318.
  5. Centers for Medicare 8:665671.
  6. Katzelnick DJ, Simon GE, Pearson SD, et al. Randomized trial of a depression management program in high utilizers of medical care. Arch Fam Med. 2000;9:345351.
  7. Badger T, Gelenberg AJ, Berren M. Consultative intervention to improve outcomes of high utilizers in a public mental health system. Perspect Psychiatr Care. 2004;40:5360, 69.
  8. Law DD, Crane DR, Berge JM. The influence of individual, marital, and family therapy on high utilizers of health care. J Marital Fam Ther. 2003;29:353363.
  9. Okin RL, Boccellari A, Azocar F, et al. The effects of clinical case management on hospital service use among ED frequent users. Am J Emerg Med. 2000;18:603608.
  10. For success with frequent ED utilizers, take steps to understand patient needs, connect them with appropriate resources. ED Manag. 2013;25:5759.
  11. ED diversion: multidisciplinary approach engages high utilizers, helps them better navigate the health care system. ED Manag. 2011;23:127130.
  12. CM program keeps high utilizers out of hospital. Hosp Case Manag. 2012;20:108109.
  13. Hilger R, Quirk R, Dahms R. Use of restriction care plans to decrease medically unnecessary admissions and emergency department visits. J Hosp Med. 2012;7:S2.
  14. Althaus F, Paroz S, Hugli O, et al. Effectiveness of interventions targeting frequent users of emergency departments: a systematic review. Ann Emerg Med. 2011;58:4152.
  15. Hu J, Wang F, Sun J, Sorrentino R, Ebadollahi S. A healthcare utilization analysis framework for hot spotting and contextual anomaly detection. AMIA Annu Symp Proc. 2012;2012:360369.
  16. Pasic J, Russo J, Roy‐Byrne P. High utilizers of psychiatric emergency services. Psychiatr Serv. 2005;56:678684.
  17. Henk HJ, Katzelnick DJ, Kobak KA, Greist JH, Jefferson JW. Medical costs attributed to depression among patients with a history of high medical expenses in a health maintenance organization. Arch Gen Psychiatry. 1996;53:899904.
References
  1. Hansagi H, Olsson M, Sjoberg S, Tomson Y, Goransson S. Frequent use of the hospital emergency department is indicative of high use of other health care services. Ann Emerg Med. 2001;37:561567.
  2. Matzer F, Wisiak UV, Graninger M, et al. Biopsychosocial health care needs at the emergency room: challenge of complexity. PLoS One. 2012;7:e41775.
  3. Agency for Healthcare Research and Quality. The high concentration of U.S. health care expenditures. Research in Action. Available at: http://meps.ahrq.gov/mepsweb/data_files/publications/ra19/ra19.pdf. Published June 2006. Accessed November 18, 2013.
  4. Byrne M, Murphy AW, Plunkett PK, McGee HM, Murray A, Bury G. Frequent attenders to an emergency department: a study of primary health care use, medical profile, and psychosocial characteristics. Ann Emerg Med. 2003;41:309318.
  5. Centers for Medicare 8:665671.
  6. Katzelnick DJ, Simon GE, Pearson SD, et al. Randomized trial of a depression management program in high utilizers of medical care. Arch Fam Med. 2000;9:345351.
  7. Badger T, Gelenberg AJ, Berren M. Consultative intervention to improve outcomes of high utilizers in a public mental health system. Perspect Psychiatr Care. 2004;40:5360, 69.
  8. Law DD, Crane DR, Berge JM. The influence of individual, marital, and family therapy on high utilizers of health care. J Marital Fam Ther. 2003;29:353363.
  9. Okin RL, Boccellari A, Azocar F, et al. The effects of clinical case management on hospital service use among ED frequent users. Am J Emerg Med. 2000;18:603608.
  10. For success with frequent ED utilizers, take steps to understand patient needs, connect them with appropriate resources. ED Manag. 2013;25:5759.
  11. ED diversion: multidisciplinary approach engages high utilizers, helps them better navigate the health care system. ED Manag. 2011;23:127130.
  12. CM program keeps high utilizers out of hospital. Hosp Case Manag. 2012;20:108109.
  13. Hilger R, Quirk R, Dahms R. Use of restriction care plans to decrease medically unnecessary admissions and emergency department visits. J Hosp Med. 2012;7:S2.
  14. Althaus F, Paroz S, Hugli O, et al. Effectiveness of interventions targeting frequent users of emergency departments: a systematic review. Ann Emerg Med. 2011;58:4152.
  15. Hu J, Wang F, Sun J, Sorrentino R, Ebadollahi S. A healthcare utilization analysis framework for hot spotting and contextual anomaly detection. AMIA Annu Symp Proc. 2012;2012:360369.
  16. Pasic J, Russo J, Roy‐Byrne P. High utilizers of psychiatric emergency services. Psychiatr Serv. 2005;56:678684.
  17. Henk HJ, Katzelnick DJ, Kobak KA, Greist JH, Jefferson JW. Medical costs attributed to depression among patients with a history of high medical expenses in a health maintenance organization. Arch Gen Psychiatry. 1996;53:899904.
Issue
Journal of Hospital Medicine - 10(7)
Issue
Journal of Hospital Medicine - 10(7)
Page Number
419-424
Page Number
419-424
Publications
Publications
Article Type
Display Headline
The highest utilizers of care: Individualized care plans to coordinate care, improve healthcare service utilization, and reduce costs at an academic tertiary care center
Display Headline
The highest utilizers of care: Individualized care plans to coordinate care, improve healthcare service utilization, and reduce costs at an academic tertiary care center
Sections
Article Source

© 2015 Society of Hospital Medicine

Disallow All Ads
Correspondence Location
Address for correspondence and reprint requests: Noppon Setji, MD, Duke University Medical Center, PO Box 100800, Durham, NC 27710; Telephone: 919‐681‐8263; Fax: 919‐668‐5394; E‐mail: noppon.setji@duke.edu
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Article PDF Media
Media Files