EASD 2023: A deeper dive into type 1 and type 2 diabetes

Article Type
Changed
Tue, 09/26/2023 - 13:12

This year’s annual meeting of the European Association for the Study of Diabetes offers an in-depth look into “disease-modifying and disrupting therapies” in both type 1 and type 2 diabetes.

Noteworthy at the meeting, taking place Oct. 3-6, in Hamburg, Germany, will be final detailed data from the SURMOUNT-4 trial of the “twincretin” tirzepatide (Mounjaro, Lilly) on obesity. The top-line results, announced by the company in July, showed an average 21.1% weight loss at 36 weeks with tirzepatide injections once weekly among adults with overweight or obesity. The drug is approved in the United States and Europe for treating type 2 diabetes, and approval for obesity is expected in the United States later this year.

In addition, a symposium will present a new EASD/American Diabetes Association (ADA) consensus report, Hyperglycaemic Crisis in Adult Patients with Diabetes, scheduled to be simultaneously published in Diabetologia and Diabetes Care on Oct. 6.  

Aside from those, much of the EASD meeting content will feature smaller studies on both type 2 and type 1 diabetes, along with award lectures, symposia, debates, and lots of discussion on hot topics in diabetes and clinical challenges including complications. In essence, it will provide a forum for in-depth follow-up to the jam-packed clinical trial–filled agenda at the ADA meeting in June, said EASD Honorary Secretary Tina Vilsbøll, MD, clinical professor and head of clinic at the Steno Diabetes Center, Copenhagen.

“There were so many large trials at ADA that we just took them in without really having a chance to discuss them. ... There’s so much to discuss with all these new treatments, how do we place them in obesity and diabetes? ... All the data that we have from ADA will make good discussions at EASD,” Dr. Vilsbøll said in an interview.

Indeed, said EASD President Chantal Mathieu, MD, PhD, chair of endocrinology at University Hospital Gasthuisberg Leuven, Belgium, “We always come after ADA. That puts us in a position where we can take deeper dives into the data. ... EASD is a calmer meeting where you can really look at the details.”
 

Type 2 diabetes: Disease modifying in many ways

Dr. Mathieu told this news organization that a unifying theme for much of the EASD meeting’s content is “We are now entering the era of disease-modifying and disease-disrupting therapies” in both diabetes types.

In type 2, this means “getting to the root, which is obesity, so you’ll see a lot of presentations on the incretin system, but you also don’t get type 2 diabetes if you have an iron-clad beta cell. ... So, we also gave a lot of attention to basic translational research that helps us to understand the role of the beta cell in type 2 diabetes.”

In addition to SURMOUNT-4, there will be oral abstract sessions with follow-up data from the SURPASS series of studies of tirzepatide in type 2 diabetes, other abstract sessions, symposia about incretins and obesity, and an oral abstract session on beta cell function in both diabetes types.

Three debates will address controversial questions in the type 2 diabetes arena. In one, speakers will take opposite sides on “Initial combined therapy for type 2 diabetes: Should diabetes follow hypertension?”

In another, speakers will argue over “Is lasting remission of type 2 diabetes feasible in the real-world setting?” That’s an important question, Dr. Vilsbøll said.

“A person might be able to have a remission but go back if they regain the weight. Do we really have remission? How do we define it? Now, suddenly, we have tools to help people go in the right direction. Now we’re in a place where we can actually help our patients with their cravings and their body weight and all that. It’s more fun to discuss when we have the tools.”

A third debate will tackle the question of whether all people with type 2 diabetes and chronic kidney disease should be on [sodium-glucose co-transporter 2] (SGLT2) inhibitors “by default.”

The Minkowski Prize Lecture will address the regulation of energy and glucose metabolism by the dual incretin receptor agonists, while the EASD-Lilly Anniversary Prize Lecture will be about the role of ectopic lipid in insulin resistance and cardiometabolic disease.
 

 

 

Type 1 diabetes: Both disease modifying and disruptive

For type 1 diabetes, “disease-modifying” and “disruptive” approaches on the meeting agenda include new data on immune modulation for people in early stages in order to prevent or delay insulin dependence, islet transplantation including the use of stem cell–derived beta cells, and the latest in technology including automated insulin delivery systems, also known colloquially as the “artificial pancreas.”

Prize lectures about type 1 diabetes will include the Claude Bernard Lecture, on etiologies of autoimmune diabetes, the Albert Renold Lecture, on “disrupted RNA editing as a path to type 1 diabetes,” and the EASD/Novo Nordisk Foundation Diabetes Prize for Excellence Lecture on automated insulin delivery.

Focus on complications: The known and the emerging

The meeting also will focus a great deal on complications of diabetes, including the well-studied cardiovascular disease, neuropathy, nephropathy, retinopathy, and fatty liver disease as well as others that typically receive less attention, such as gastrointestinal problems and cardiomyopathy.

Another debate will address the question “Is it time to reclassify diabetes complications because microvascular and macrovascular classification is no longer sufficient?” And, the Camillo Golgi Lecture will cover “Diabetes Complications: From Classical to Emerging.”

As always, there’s much more on the agenda including pregnancy and diabetes, cystic fibrosis–derived diabetes, mental health in diabetes, COVID-19 and diabetes, hypoglycemia, and hypoglycemia unawareness.  

According to Dr. Vilsbøll, “Clinicians should come and enjoy all the great science we have, interact, and be inspired.”

Dr. Vilsbøll has served on scientific advisory panels, been part of speaker bureaus, and served as a consultant to and/or received research support from Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Gilead, GSK, Mundipharma, Novo Nordisk, Sanofi, and Sun Pharmaceuticals. Dr. Mathieu serves or has served on the advisory panel for Novo Nordisk, Sanofi, Merck Sharp and Dohme Ltd., Eli Lilly and Company, Novartis, AstraZeneca, Boehringer Ingelheim, Roche, Medtronic, ActoBio Therapeutics, Pfizer, Imcyse, Insulet, Zealand Pharma, Avotres, Mannkind, Sandoz, and Vertex. She has served on the speakers bureau for Novo Nordisk, Sanofi, Eli Lilly and Company, Boehringer Ingelheim, AstraZeneca, and Novartis. Financial compensation for these activities has been received by KU Leuven.
 

A version of this article appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

This year’s annual meeting of the European Association for the Study of Diabetes offers an in-depth look into “disease-modifying and disrupting therapies” in both type 1 and type 2 diabetes.

Noteworthy at the meeting, taking place Oct. 3-6, in Hamburg, Germany, will be final detailed data from the SURMOUNT-4 trial of the “twincretin” tirzepatide (Mounjaro, Lilly) on obesity. The top-line results, announced by the company in July, showed an average 21.1% weight loss at 36 weeks with tirzepatide injections once weekly among adults with overweight or obesity. The drug is approved in the United States and Europe for treating type 2 diabetes, and approval for obesity is expected in the United States later this year.

In addition, a symposium will present a new EASD/American Diabetes Association (ADA) consensus report, Hyperglycaemic Crisis in Adult Patients with Diabetes, scheduled to be simultaneously published in Diabetologia and Diabetes Care on Oct. 6.  

Aside from those, much of the EASD meeting content will feature smaller studies on both type 2 and type 1 diabetes, along with award lectures, symposia, debates, and lots of discussion on hot topics in diabetes and clinical challenges including complications. In essence, it will provide a forum for in-depth follow-up to the jam-packed clinical trial–filled agenda at the ADA meeting in June, said EASD Honorary Secretary Tina Vilsbøll, MD, clinical professor and head of clinic at the Steno Diabetes Center, Copenhagen.

“There were so many large trials at ADA that we just took them in without really having a chance to discuss them. ... There’s so much to discuss with all these new treatments, how do we place them in obesity and diabetes? ... All the data that we have from ADA will make good discussions at EASD,” Dr. Vilsbøll said in an interview.

Indeed, said EASD President Chantal Mathieu, MD, PhD, chair of endocrinology at University Hospital Gasthuisberg Leuven, Belgium, “We always come after ADA. That puts us in a position where we can take deeper dives into the data. ... EASD is a calmer meeting where you can really look at the details.”
 

Type 2 diabetes: Disease modifying in many ways

Dr. Mathieu told this news organization that a unifying theme for much of the EASD meeting’s content is “We are now entering the era of disease-modifying and disease-disrupting therapies” in both diabetes types.

In type 2, this means “getting to the root, which is obesity, so you’ll see a lot of presentations on the incretin system, but you also don’t get type 2 diabetes if you have an iron-clad beta cell. ... So, we also gave a lot of attention to basic translational research that helps us to understand the role of the beta cell in type 2 diabetes.”

In addition to SURMOUNT-4, there will be oral abstract sessions with follow-up data from the SURPASS series of studies of tirzepatide in type 2 diabetes, other abstract sessions, symposia about incretins and obesity, and an oral abstract session on beta cell function in both diabetes types.

Three debates will address controversial questions in the type 2 diabetes arena. In one, speakers will take opposite sides on “Initial combined therapy for type 2 diabetes: Should diabetes follow hypertension?”

In another, speakers will argue over “Is lasting remission of type 2 diabetes feasible in the real-world setting?” That’s an important question, Dr. Vilsbøll said.

“A person might be able to have a remission but go back if they regain the weight. Do we really have remission? How do we define it? Now, suddenly, we have tools to help people go in the right direction. Now we’re in a place where we can actually help our patients with their cravings and their body weight and all that. It’s more fun to discuss when we have the tools.”

A third debate will tackle the question of whether all people with type 2 diabetes and chronic kidney disease should be on [sodium-glucose co-transporter 2] (SGLT2) inhibitors “by default.”

The Minkowski Prize Lecture will address the regulation of energy and glucose metabolism by the dual incretin receptor agonists, while the EASD-Lilly Anniversary Prize Lecture will be about the role of ectopic lipid in insulin resistance and cardiometabolic disease.
 

 

 

Type 1 diabetes: Both disease modifying and disruptive

For type 1 diabetes, “disease-modifying” and “disruptive” approaches on the meeting agenda include new data on immune modulation for people in early stages in order to prevent or delay insulin dependence, islet transplantation including the use of stem cell–derived beta cells, and the latest in technology including automated insulin delivery systems, also known colloquially as the “artificial pancreas.”

Prize lectures about type 1 diabetes will include the Claude Bernard Lecture, on etiologies of autoimmune diabetes, the Albert Renold Lecture, on “disrupted RNA editing as a path to type 1 diabetes,” and the EASD/Novo Nordisk Foundation Diabetes Prize for Excellence Lecture on automated insulin delivery.

Focus on complications: The known and the emerging

The meeting also will focus a great deal on complications of diabetes, including the well-studied cardiovascular disease, neuropathy, nephropathy, retinopathy, and fatty liver disease as well as others that typically receive less attention, such as gastrointestinal problems and cardiomyopathy.

Another debate will address the question “Is it time to reclassify diabetes complications because microvascular and macrovascular classification is no longer sufficient?” And, the Camillo Golgi Lecture will cover “Diabetes Complications: From Classical to Emerging.”

As always, there’s much more on the agenda including pregnancy and diabetes, cystic fibrosis–derived diabetes, mental health in diabetes, COVID-19 and diabetes, hypoglycemia, and hypoglycemia unawareness.  

According to Dr. Vilsbøll, “Clinicians should come and enjoy all the great science we have, interact, and be inspired.”

Dr. Vilsbøll has served on scientific advisory panels, been part of speaker bureaus, and served as a consultant to and/or received research support from Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Gilead, GSK, Mundipharma, Novo Nordisk, Sanofi, and Sun Pharmaceuticals. Dr. Mathieu serves or has served on the advisory panel for Novo Nordisk, Sanofi, Merck Sharp and Dohme Ltd., Eli Lilly and Company, Novartis, AstraZeneca, Boehringer Ingelheim, Roche, Medtronic, ActoBio Therapeutics, Pfizer, Imcyse, Insulet, Zealand Pharma, Avotres, Mannkind, Sandoz, and Vertex. She has served on the speakers bureau for Novo Nordisk, Sanofi, Eli Lilly and Company, Boehringer Ingelheim, AstraZeneca, and Novartis. Financial compensation for these activities has been received by KU Leuven.
 

A version of this article appeared on Medscape.com.

This year’s annual meeting of the European Association for the Study of Diabetes offers an in-depth look into “disease-modifying and disrupting therapies” in both type 1 and type 2 diabetes.

Noteworthy at the meeting, taking place Oct. 3-6, in Hamburg, Germany, will be final detailed data from the SURMOUNT-4 trial of the “twincretin” tirzepatide (Mounjaro, Lilly) on obesity. The top-line results, announced by the company in July, showed an average 21.1% weight loss at 36 weeks with tirzepatide injections once weekly among adults with overweight or obesity. The drug is approved in the United States and Europe for treating type 2 diabetes, and approval for obesity is expected in the United States later this year.

In addition, a symposium will present a new EASD/American Diabetes Association (ADA) consensus report, Hyperglycaemic Crisis in Adult Patients with Diabetes, scheduled to be simultaneously published in Diabetologia and Diabetes Care on Oct. 6.  

Aside from those, much of the EASD meeting content will feature smaller studies on both type 2 and type 1 diabetes, along with award lectures, symposia, debates, and lots of discussion on hot topics in diabetes and clinical challenges including complications. In essence, it will provide a forum for in-depth follow-up to the jam-packed clinical trial–filled agenda at the ADA meeting in June, said EASD Honorary Secretary Tina Vilsbøll, MD, clinical professor and head of clinic at the Steno Diabetes Center, Copenhagen.

“There were so many large trials at ADA that we just took them in without really having a chance to discuss them. ... There’s so much to discuss with all these new treatments, how do we place them in obesity and diabetes? ... All the data that we have from ADA will make good discussions at EASD,” Dr. Vilsbøll said in an interview.

Indeed, said EASD President Chantal Mathieu, MD, PhD, chair of endocrinology at University Hospital Gasthuisberg Leuven, Belgium, “We always come after ADA. That puts us in a position where we can take deeper dives into the data. ... EASD is a calmer meeting where you can really look at the details.”
 

Type 2 diabetes: Disease modifying in many ways

Dr. Mathieu told this news organization that a unifying theme for much of the EASD meeting’s content is “We are now entering the era of disease-modifying and disease-disrupting therapies” in both diabetes types.

In type 2, this means “getting to the root, which is obesity, so you’ll see a lot of presentations on the incretin system, but you also don’t get type 2 diabetes if you have an iron-clad beta cell. ... So, we also gave a lot of attention to basic translational research that helps us to understand the role of the beta cell in type 2 diabetes.”

In addition to SURMOUNT-4, there will be oral abstract sessions with follow-up data from the SURPASS series of studies of tirzepatide in type 2 diabetes, other abstract sessions, symposia about incretins and obesity, and an oral abstract session on beta cell function in both diabetes types.

Three debates will address controversial questions in the type 2 diabetes arena. In one, speakers will take opposite sides on “Initial combined therapy for type 2 diabetes: Should diabetes follow hypertension?”

In another, speakers will argue over “Is lasting remission of type 2 diabetes feasible in the real-world setting?” That’s an important question, Dr. Vilsbøll said.

“A person might be able to have a remission but go back if they regain the weight. Do we really have remission? How do we define it? Now, suddenly, we have tools to help people go in the right direction. Now we’re in a place where we can actually help our patients with their cravings and their body weight and all that. It’s more fun to discuss when we have the tools.”

A third debate will tackle the question of whether all people with type 2 diabetes and chronic kidney disease should be on [sodium-glucose co-transporter 2] (SGLT2) inhibitors “by default.”

The Minkowski Prize Lecture will address the regulation of energy and glucose metabolism by the dual incretin receptor agonists, while the EASD-Lilly Anniversary Prize Lecture will be about the role of ectopic lipid in insulin resistance and cardiometabolic disease.
 

 

 

Type 1 diabetes: Both disease modifying and disruptive

For type 1 diabetes, “disease-modifying” and “disruptive” approaches on the meeting agenda include new data on immune modulation for people in early stages in order to prevent or delay insulin dependence, islet transplantation including the use of stem cell–derived beta cells, and the latest in technology including automated insulin delivery systems, also known colloquially as the “artificial pancreas.”

Prize lectures about type 1 diabetes will include the Claude Bernard Lecture, on etiologies of autoimmune diabetes, the Albert Renold Lecture, on “disrupted RNA editing as a path to type 1 diabetes,” and the EASD/Novo Nordisk Foundation Diabetes Prize for Excellence Lecture on automated insulin delivery.

Focus on complications: The known and the emerging

The meeting also will focus a great deal on complications of diabetes, including the well-studied cardiovascular disease, neuropathy, nephropathy, retinopathy, and fatty liver disease as well as others that typically receive less attention, such as gastrointestinal problems and cardiomyopathy.

Another debate will address the question “Is it time to reclassify diabetes complications because microvascular and macrovascular classification is no longer sufficient?” And, the Camillo Golgi Lecture will cover “Diabetes Complications: From Classical to Emerging.”

As always, there’s much more on the agenda including pregnancy and diabetes, cystic fibrosis–derived diabetes, mental health in diabetes, COVID-19 and diabetes, hypoglycemia, and hypoglycemia unawareness.  

According to Dr. Vilsbøll, “Clinicians should come and enjoy all the great science we have, interact, and be inspired.”

Dr. Vilsbøll has served on scientific advisory panels, been part of speaker bureaus, and served as a consultant to and/or received research support from Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Gilead, GSK, Mundipharma, Novo Nordisk, Sanofi, and Sun Pharmaceuticals. Dr. Mathieu serves or has served on the advisory panel for Novo Nordisk, Sanofi, Merck Sharp and Dohme Ltd., Eli Lilly and Company, Novartis, AstraZeneca, Boehringer Ingelheim, Roche, Medtronic, ActoBio Therapeutics, Pfizer, Imcyse, Insulet, Zealand Pharma, Avotres, Mannkind, Sandoz, and Vertex. She has served on the speakers bureau for Novo Nordisk, Sanofi, Eli Lilly and Company, Boehringer Ingelheim, AstraZeneca, and Novartis. Financial compensation for these activities has been received by KU Leuven.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EASD 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Weekly insulin with dosing app beneficial in type 2 diabetes

Article Type
Changed
Tue, 09/26/2023 - 10:12

 

TOPLINE:

In insulin-naive people with type 2 diabetes, once-weekly icodec titrated with a dosing guide app was both noninferior and superior to daily basal analogs in reducing A1c levels, with improved treatment satisfaction and compliance scores and similarly low hypoglycemia rates.

METHODOLOGY:

  • A 52-week, randomized, open-label, parallel-group, phase 3a trial with real-world elements was conducted at 176 sites in seven countries.
  • A total of 1,085 insulin-naive patients with type 2 diabetes were randomly assigned to receive icodec with a dosing guide app or daily analogs (U100 glargine, U300 glargine, or icodec).

TAKEAWAY:

  • A1c levels dropped from 8.96% at baseline to 7.24% at week 52 with icodec and from 8.88% to 7.61% with the daily analog, a treatment difference of 0.37 percentage point (P < .001 for noninferiority and P = .009 for superiority in favor of icodec plus the app).
  • Patient-reported outcomes were more favorable with icodec plus the app vs. daily analogs, with estimated treatment differences that were significant for the Treatment Related Impact Measure for Diabetes (3.04) but not the Diabetes Treatment Satisfaction Questionnaire (0.78).
  • Observed rates of combined clinically significant or severe hypoglycemia were low (0.19 event per patient-year of exposure for icodec plus the app vs. 0.14 for daily analogs; estimated rate ratio, 1.17).

IN PRACTICE:

“Once-weekly icodec with a dosing guide app could conceivably address several challenges seen in everyday practice, including inadequate dose titration and nonadherence to prescribed treatment regimens.”

SOURCE:

The study was conducted by Harpreet S. Bajaj, MD, MPH, of LMC Diabetes and Endocrinology, Brampton, Ontario, and colleagues. It was published online in Annals of Internal Medicine.

LIMITATIONS:

The research could not differentiate between the effects of icodec and those of the dosing guide app. The study had an open-label design. A 1-year duration is insufficient to assess long-term diabetes- and cardiovascular-related outcomes.

DISCLOSURES:

The study was funded by Novo Nordisk A/S.
 

A version of this article appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

In insulin-naive people with type 2 diabetes, once-weekly icodec titrated with a dosing guide app was both noninferior and superior to daily basal analogs in reducing A1c levels, with improved treatment satisfaction and compliance scores and similarly low hypoglycemia rates.

METHODOLOGY:

  • A 52-week, randomized, open-label, parallel-group, phase 3a trial with real-world elements was conducted at 176 sites in seven countries.
  • A total of 1,085 insulin-naive patients with type 2 diabetes were randomly assigned to receive icodec with a dosing guide app or daily analogs (U100 glargine, U300 glargine, or icodec).

TAKEAWAY:

  • A1c levels dropped from 8.96% at baseline to 7.24% at week 52 with icodec and from 8.88% to 7.61% with the daily analog, a treatment difference of 0.37 percentage point (P < .001 for noninferiority and P = .009 for superiority in favor of icodec plus the app).
  • Patient-reported outcomes were more favorable with icodec plus the app vs. daily analogs, with estimated treatment differences that were significant for the Treatment Related Impact Measure for Diabetes (3.04) but not the Diabetes Treatment Satisfaction Questionnaire (0.78).
  • Observed rates of combined clinically significant or severe hypoglycemia were low (0.19 event per patient-year of exposure for icodec plus the app vs. 0.14 for daily analogs; estimated rate ratio, 1.17).

IN PRACTICE:

“Once-weekly icodec with a dosing guide app could conceivably address several challenges seen in everyday practice, including inadequate dose titration and nonadherence to prescribed treatment regimens.”

SOURCE:

The study was conducted by Harpreet S. Bajaj, MD, MPH, of LMC Diabetes and Endocrinology, Brampton, Ontario, and colleagues. It was published online in Annals of Internal Medicine.

LIMITATIONS:

The research could not differentiate between the effects of icodec and those of the dosing guide app. The study had an open-label design. A 1-year duration is insufficient to assess long-term diabetes- and cardiovascular-related outcomes.

DISCLOSURES:

The study was funded by Novo Nordisk A/S.
 

A version of this article appeared on Medscape.com.

 

TOPLINE:

In insulin-naive people with type 2 diabetes, once-weekly icodec titrated with a dosing guide app was both noninferior and superior to daily basal analogs in reducing A1c levels, with improved treatment satisfaction and compliance scores and similarly low hypoglycemia rates.

METHODOLOGY:

  • A 52-week, randomized, open-label, parallel-group, phase 3a trial with real-world elements was conducted at 176 sites in seven countries.
  • A total of 1,085 insulin-naive patients with type 2 diabetes were randomly assigned to receive icodec with a dosing guide app or daily analogs (U100 glargine, U300 glargine, or icodec).

TAKEAWAY:

  • A1c levels dropped from 8.96% at baseline to 7.24% at week 52 with icodec and from 8.88% to 7.61% with the daily analog, a treatment difference of 0.37 percentage point (P < .001 for noninferiority and P = .009 for superiority in favor of icodec plus the app).
  • Patient-reported outcomes were more favorable with icodec plus the app vs. daily analogs, with estimated treatment differences that were significant for the Treatment Related Impact Measure for Diabetes (3.04) but not the Diabetes Treatment Satisfaction Questionnaire (0.78).
  • Observed rates of combined clinically significant or severe hypoglycemia were low (0.19 event per patient-year of exposure for icodec plus the app vs. 0.14 for daily analogs; estimated rate ratio, 1.17).

IN PRACTICE:

“Once-weekly icodec with a dosing guide app could conceivably address several challenges seen in everyday practice, including inadequate dose titration and nonadherence to prescribed treatment regimens.”

SOURCE:

The study was conducted by Harpreet S. Bajaj, MD, MPH, of LMC Diabetes and Endocrinology, Brampton, Ontario, and colleagues. It was published online in Annals of Internal Medicine.

LIMITATIONS:

The research could not differentiate between the effects of icodec and those of the dosing guide app. The study had an open-label design. A 1-year duration is insufficient to assess long-term diabetes- and cardiovascular-related outcomes.

DISCLOSURES:

The study was funded by Novo Nordisk A/S.
 

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM ANNALS OF INTERNAL MEDICINE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Are vitamin D levels key to canagliflozin’s fracture risk?

Article Type
Changed
Mon, 09/25/2023 - 09:52

Vitamin D deficiency appears to render people more vulnerable to canagliflozin’s adverse effects on bone health, whereas vitamin D3 supplementation appears protective of individuals with vitamin D deficiency.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are beneficial for treating type 2 diabetes and reducing cardiovascular and kidney disease risk. However, some, but not all, trial data have linked the SLGT2 inhibitor canagliflozin to increased fracture risk. That particular agent has been reported to accelerate loss of bone mineral density, which could contribute to fracture risk. Other drugs in the class have also been implicated in worsening markers of bone health.



The new findings, from a small study of Amish adults with vitamin D deficiency (≤ 20 ng/mL) but without diabetes or osteoporosis, suggest that physicians consider screening for vitamin D deficiency prior to prescribing SGLT2 inhibitor. Alternatively, these patients can simply be prescribed safe, inexpensive, OTC vitamin D supplements without being screening, Zhinous Shahidzadeh Yazdi, MD, of the division of endocrinology, diabetes, and nutrition at the University of Maryland, Baltimore, and colleagues wrote.

“Something as simple as OTC vitamin D might protect against bone fractures caused by chronic multiyear treatment with a drug,” study lead author Simeon I. Taylor, MD, PhD, professor of medicine at the University of Maryland, said in an interview.

In the study, published in the Journal of Clinical Endocrinology and Metabolism, 11 adults with vitamin D deficiency underwent two canagliflozin challenge protocols of 300 mg/d for 5 days, once before and once after vitamin D3 supplementation (either 50,000 IU per week or twice weekly for body mass index < 30 kg/m2 or ≥ 30 kg/m2, respectively), to achieve 25(OH)D of at least 30 ng/mL.

When the participants were vitamin D deficient, canagliflozin significantly decreased 1,25(OH)2D levels by 31.3%, from 43.8 pg/mL on day 1 to 29.1 pg/mL on day 3 (P = .0003). In contrast, after receiving the vitamin D3 supplements, canagliflozin reduced mean 1,25(OH)2D levels by a nonsignificant 9.3%, from 45 pg/mL on day 1 to 41 pg/mL on day 3 (P = .3).

“Thus, [vitamin D3] supplementation provided statistically significant protection from the adverse effect of canagliflozin to decrease mean plasma levels of 1,25(OH)2D (P = .04),” Yazdi and colleagues wrote.

Similarly, when the participants were vitamin D deficient, canagliflozin was associated with a significant 36.2% increase in mean parathyroid hormone (PTH) levels, from 47.5 pg/mL on day 1 to 58.5 pg/mL on day 6 (P = .0009). In contrast, after vitamin D3 supplementation, the increase in PTH was far less, from 48.4 pg/mL on day 1 to 53.3 pg/mL on day 6 (P = .02).

Therefore, the supplementation “significantly decreased the magnitude of the canagliflozin-induced increase in mean levels of PTH (P = .005),” they wrote.

Also, in the vitamin D deficient state, canagliflozin significantly increased mean serum phosphorous on day 3 in comparison with day 1 (P = .007), while after supplementation, that change was also insignificant (P = .8).

“We are saying that SGLT2 inhibitors, when superimposed on vitamin D deficiency, is bad for bone health. This group of people have two important risk factors – vitamin D deficiency and SGLT2 inhibitors – and are distinct from the general population of people who are not vitamin D deficient,” Dr. Taylor noted.

The findings “raise interesting questions about how to proceed,” he said in an interview, since “the gold standard study – in this case, a fracture prevention study – will never be done because it would cost more than $100 million. Vitamin D costs only $10-$20 per year, and at appropriate doses, is extremely safe. At worst, vitamin D supplements are unnecessary. At best, vitamin D supplements can protect some patients against a serious drug toxicity, bone fracture.”

The study was funded by the National Institutes of Health. Dr. Taylor serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from the National Institute of Diabetes, Digestive, and Kidney Diseases for metreleptin as a treatment for generalized lipodystrophy. Dr. Yazdi disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

Vitamin D deficiency appears to render people more vulnerable to canagliflozin’s adverse effects on bone health, whereas vitamin D3 supplementation appears protective of individuals with vitamin D deficiency.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are beneficial for treating type 2 diabetes and reducing cardiovascular and kidney disease risk. However, some, but not all, trial data have linked the SLGT2 inhibitor canagliflozin to increased fracture risk. That particular agent has been reported to accelerate loss of bone mineral density, which could contribute to fracture risk. Other drugs in the class have also been implicated in worsening markers of bone health.



The new findings, from a small study of Amish adults with vitamin D deficiency (≤ 20 ng/mL) but without diabetes or osteoporosis, suggest that physicians consider screening for vitamin D deficiency prior to prescribing SGLT2 inhibitor. Alternatively, these patients can simply be prescribed safe, inexpensive, OTC vitamin D supplements without being screening, Zhinous Shahidzadeh Yazdi, MD, of the division of endocrinology, diabetes, and nutrition at the University of Maryland, Baltimore, and colleagues wrote.

“Something as simple as OTC vitamin D might protect against bone fractures caused by chronic multiyear treatment with a drug,” study lead author Simeon I. Taylor, MD, PhD, professor of medicine at the University of Maryland, said in an interview.

In the study, published in the Journal of Clinical Endocrinology and Metabolism, 11 adults with vitamin D deficiency underwent two canagliflozin challenge protocols of 300 mg/d for 5 days, once before and once after vitamin D3 supplementation (either 50,000 IU per week or twice weekly for body mass index < 30 kg/m2 or ≥ 30 kg/m2, respectively), to achieve 25(OH)D of at least 30 ng/mL.

When the participants were vitamin D deficient, canagliflozin significantly decreased 1,25(OH)2D levels by 31.3%, from 43.8 pg/mL on day 1 to 29.1 pg/mL on day 3 (P = .0003). In contrast, after receiving the vitamin D3 supplements, canagliflozin reduced mean 1,25(OH)2D levels by a nonsignificant 9.3%, from 45 pg/mL on day 1 to 41 pg/mL on day 3 (P = .3).

“Thus, [vitamin D3] supplementation provided statistically significant protection from the adverse effect of canagliflozin to decrease mean plasma levels of 1,25(OH)2D (P = .04),” Yazdi and colleagues wrote.

Similarly, when the participants were vitamin D deficient, canagliflozin was associated with a significant 36.2% increase in mean parathyroid hormone (PTH) levels, from 47.5 pg/mL on day 1 to 58.5 pg/mL on day 6 (P = .0009). In contrast, after vitamin D3 supplementation, the increase in PTH was far less, from 48.4 pg/mL on day 1 to 53.3 pg/mL on day 6 (P = .02).

Therefore, the supplementation “significantly decreased the magnitude of the canagliflozin-induced increase in mean levels of PTH (P = .005),” they wrote.

Also, in the vitamin D deficient state, canagliflozin significantly increased mean serum phosphorous on day 3 in comparison with day 1 (P = .007), while after supplementation, that change was also insignificant (P = .8).

“We are saying that SGLT2 inhibitors, when superimposed on vitamin D deficiency, is bad for bone health. This group of people have two important risk factors – vitamin D deficiency and SGLT2 inhibitors – and are distinct from the general population of people who are not vitamin D deficient,” Dr. Taylor noted.

The findings “raise interesting questions about how to proceed,” he said in an interview, since “the gold standard study – in this case, a fracture prevention study – will never be done because it would cost more than $100 million. Vitamin D costs only $10-$20 per year, and at appropriate doses, is extremely safe. At worst, vitamin D supplements are unnecessary. At best, vitamin D supplements can protect some patients against a serious drug toxicity, bone fracture.”

The study was funded by the National Institutes of Health. Dr. Taylor serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from the National Institute of Diabetes, Digestive, and Kidney Diseases for metreleptin as a treatment for generalized lipodystrophy. Dr. Yazdi disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Vitamin D deficiency appears to render people more vulnerable to canagliflozin’s adverse effects on bone health, whereas vitamin D3 supplementation appears protective of individuals with vitamin D deficiency.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are beneficial for treating type 2 diabetes and reducing cardiovascular and kidney disease risk. However, some, but not all, trial data have linked the SLGT2 inhibitor canagliflozin to increased fracture risk. That particular agent has been reported to accelerate loss of bone mineral density, which could contribute to fracture risk. Other drugs in the class have also been implicated in worsening markers of bone health.



The new findings, from a small study of Amish adults with vitamin D deficiency (≤ 20 ng/mL) but without diabetes or osteoporosis, suggest that physicians consider screening for vitamin D deficiency prior to prescribing SGLT2 inhibitor. Alternatively, these patients can simply be prescribed safe, inexpensive, OTC vitamin D supplements without being screening, Zhinous Shahidzadeh Yazdi, MD, of the division of endocrinology, diabetes, and nutrition at the University of Maryland, Baltimore, and colleagues wrote.

“Something as simple as OTC vitamin D might protect against bone fractures caused by chronic multiyear treatment with a drug,” study lead author Simeon I. Taylor, MD, PhD, professor of medicine at the University of Maryland, said in an interview.

In the study, published in the Journal of Clinical Endocrinology and Metabolism, 11 adults with vitamin D deficiency underwent two canagliflozin challenge protocols of 300 mg/d for 5 days, once before and once after vitamin D3 supplementation (either 50,000 IU per week or twice weekly for body mass index < 30 kg/m2 or ≥ 30 kg/m2, respectively), to achieve 25(OH)D of at least 30 ng/mL.

When the participants were vitamin D deficient, canagliflozin significantly decreased 1,25(OH)2D levels by 31.3%, from 43.8 pg/mL on day 1 to 29.1 pg/mL on day 3 (P = .0003). In contrast, after receiving the vitamin D3 supplements, canagliflozin reduced mean 1,25(OH)2D levels by a nonsignificant 9.3%, from 45 pg/mL on day 1 to 41 pg/mL on day 3 (P = .3).

“Thus, [vitamin D3] supplementation provided statistically significant protection from the adverse effect of canagliflozin to decrease mean plasma levels of 1,25(OH)2D (P = .04),” Yazdi and colleagues wrote.

Similarly, when the participants were vitamin D deficient, canagliflozin was associated with a significant 36.2% increase in mean parathyroid hormone (PTH) levels, from 47.5 pg/mL on day 1 to 58.5 pg/mL on day 6 (P = .0009). In contrast, after vitamin D3 supplementation, the increase in PTH was far less, from 48.4 pg/mL on day 1 to 53.3 pg/mL on day 6 (P = .02).

Therefore, the supplementation “significantly decreased the magnitude of the canagliflozin-induced increase in mean levels of PTH (P = .005),” they wrote.

Also, in the vitamin D deficient state, canagliflozin significantly increased mean serum phosphorous on day 3 in comparison with day 1 (P = .007), while after supplementation, that change was also insignificant (P = .8).

“We are saying that SGLT2 inhibitors, when superimposed on vitamin D deficiency, is bad for bone health. This group of people have two important risk factors – vitamin D deficiency and SGLT2 inhibitors – and are distinct from the general population of people who are not vitamin D deficient,” Dr. Taylor noted.

The findings “raise interesting questions about how to proceed,” he said in an interview, since “the gold standard study – in this case, a fracture prevention study – will never be done because it would cost more than $100 million. Vitamin D costs only $10-$20 per year, and at appropriate doses, is extremely safe. At worst, vitamin D supplements are unnecessary. At best, vitamin D supplements can protect some patients against a serious drug toxicity, bone fracture.”

The study was funded by the National Institutes of Health. Dr. Taylor serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from the National Institute of Diabetes, Digestive, and Kidney Diseases for metreleptin as a treatment for generalized lipodystrophy. Dr. Yazdi disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Waist-hip ratio a stronger mortality predictor than BMI

Article Type
Changed
Thu, 09/21/2023 - 09:08

 

TOPLINE:

Compared with body mass index, waist-hip ratio (WHR) had the strongest and most consistent association with all-cause mortality and was the only measurement unaffected by BMI.

METHODOLOGY:

  • Cohort study of incident deaths from the U.K. Biobank (2006-2022), including data from 22 centers across the United Kingdom.
  • A total of 387,672 participants were divided into a discovery cohort (n = 337,078) and validation cohort (n = 50,594), with the latter consisting of 25,297 deaths and 2,297 controls.
  • The discovery cohort was used to derive genetically determined adiposity measures while the validation cohort was used for analyses.
  • Exposure-outcome associations were analyzed through observational and mendelian randomization analyses.

TAKEAWAY:

  • In adjusted analysis, a J-shaped association was found for both measured BMI and fat mass index (FMI), whereas the association with WHR was linear (hazard ratio 1.41 per standard deviation increase).
  • There was a significant association between all three adiposity measures and all-cause mortality, with odds ratio 1.29 per SD change in genetically determined BMI (P = 1.44×10-13), 1.45 per SD change in genetically determined FMI, 1.45 (P = 6.27×10-30), and 1.51 per SD change in genetically determined WHR (P = 2.11×10-9).
  • Compared with BMI, WHR had the stronger association with all-cause mortality, although it was not significantly stronger than FMI.
  • The association of genetically determined BMI and FMI with all-cause mortality varied across quantiles of observed BMI, but WHR did not (P = .04, P = .02, and P = .58, for BMI, FMI, and WHR, respectively).

IN PRACTICE:

“Current World Health Organization recommendations for optimal BMI range are inaccurate across individuals with various body compositions and therefore suboptimal for clinical guidelines.”

SOURCE:

Study by Irfan Khan, MSc, of the Population Health Research Institute, David Braley Cardiac, Vascular, and Stroke Research Institute, Hamilton, Ont., and colleagues. Published online  in JAMA Network Open.

LIMITATIONS:

Study population was genetically homogeneous, White, and British, so results may not be representative of other racial or ethnic groups.

DISCLOSURES:

Study was funded by, and Irfan Khan received support from, the Ontario Graduate Scholarship–Masters Scholarship, awarded by the government of Ontario.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Compared with body mass index, waist-hip ratio (WHR) had the strongest and most consistent association with all-cause mortality and was the only measurement unaffected by BMI.

METHODOLOGY:

  • Cohort study of incident deaths from the U.K. Biobank (2006-2022), including data from 22 centers across the United Kingdom.
  • A total of 387,672 participants were divided into a discovery cohort (n = 337,078) and validation cohort (n = 50,594), with the latter consisting of 25,297 deaths and 2,297 controls.
  • The discovery cohort was used to derive genetically determined adiposity measures while the validation cohort was used for analyses.
  • Exposure-outcome associations were analyzed through observational and mendelian randomization analyses.

TAKEAWAY:

  • In adjusted analysis, a J-shaped association was found for both measured BMI and fat mass index (FMI), whereas the association with WHR was linear (hazard ratio 1.41 per standard deviation increase).
  • There was a significant association between all three adiposity measures and all-cause mortality, with odds ratio 1.29 per SD change in genetically determined BMI (P = 1.44×10-13), 1.45 per SD change in genetically determined FMI, 1.45 (P = 6.27×10-30), and 1.51 per SD change in genetically determined WHR (P = 2.11×10-9).
  • Compared with BMI, WHR had the stronger association with all-cause mortality, although it was not significantly stronger than FMI.
  • The association of genetically determined BMI and FMI with all-cause mortality varied across quantiles of observed BMI, but WHR did not (P = .04, P = .02, and P = .58, for BMI, FMI, and WHR, respectively).

IN PRACTICE:

“Current World Health Organization recommendations for optimal BMI range are inaccurate across individuals with various body compositions and therefore suboptimal for clinical guidelines.”

SOURCE:

Study by Irfan Khan, MSc, of the Population Health Research Institute, David Braley Cardiac, Vascular, and Stroke Research Institute, Hamilton, Ont., and colleagues. Published online  in JAMA Network Open.

LIMITATIONS:

Study population was genetically homogeneous, White, and British, so results may not be representative of other racial or ethnic groups.

DISCLOSURES:

Study was funded by, and Irfan Khan received support from, the Ontario Graduate Scholarship–Masters Scholarship, awarded by the government of Ontario.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Compared with body mass index, waist-hip ratio (WHR) had the strongest and most consistent association with all-cause mortality and was the only measurement unaffected by BMI.

METHODOLOGY:

  • Cohort study of incident deaths from the U.K. Biobank (2006-2022), including data from 22 centers across the United Kingdom.
  • A total of 387,672 participants were divided into a discovery cohort (n = 337,078) and validation cohort (n = 50,594), with the latter consisting of 25,297 deaths and 2,297 controls.
  • The discovery cohort was used to derive genetically determined adiposity measures while the validation cohort was used for analyses.
  • Exposure-outcome associations were analyzed through observational and mendelian randomization analyses.

TAKEAWAY:

  • In adjusted analysis, a J-shaped association was found for both measured BMI and fat mass index (FMI), whereas the association with WHR was linear (hazard ratio 1.41 per standard deviation increase).
  • There was a significant association between all three adiposity measures and all-cause mortality, with odds ratio 1.29 per SD change in genetically determined BMI (P = 1.44×10-13), 1.45 per SD change in genetically determined FMI, 1.45 (P = 6.27×10-30), and 1.51 per SD change in genetically determined WHR (P = 2.11×10-9).
  • Compared with BMI, WHR had the stronger association with all-cause mortality, although it was not significantly stronger than FMI.
  • The association of genetically determined BMI and FMI with all-cause mortality varied across quantiles of observed BMI, but WHR did not (P = .04, P = .02, and P = .58, for BMI, FMI, and WHR, respectively).

IN PRACTICE:

“Current World Health Organization recommendations for optimal BMI range are inaccurate across individuals with various body compositions and therefore suboptimal for clinical guidelines.”

SOURCE:

Study by Irfan Khan, MSc, of the Population Health Research Institute, David Braley Cardiac, Vascular, and Stroke Research Institute, Hamilton, Ont., and colleagues. Published online  in JAMA Network Open.

LIMITATIONS:

Study population was genetically homogeneous, White, and British, so results may not be representative of other racial or ethnic groups.

DISCLOSURES:

Study was funded by, and Irfan Khan received support from, the Ontario Graduate Scholarship–Masters Scholarship, awarded by the government of Ontario.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM JAMA NETWORK OPEN

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Islet, kidney transplants boost survival in type 1 diabetes

Article Type
Changed
Wed, 09/20/2023 - 10:06

 

TOPLINE:

Patients with type 1 diabetes who received transplanted islets along with a kidney transplant had significantly reduced mortality and transplant failure risks, compared with those who received kidney alone and continued to use insulin.

METHODOLOGY:

  • Study population was all patients with type 1 diabetes in France who received a kidney transplant between 2000 and 2017.
  • Among 2,393 patients, 327 were eligible for islet transplantation, including 47 who were actually transplanted with islets.
  • The subjects were matched for factors including year of transplantation, recipient age, kidney function, and hemoglobin A1c.

TAKEAWAY:

  • Those receiving islets along with the kidney transplant had a 53% lower risk of graft failure, compared with the kidney-alone group.
  • Those receiving islet transplantation had a significantly higher estimated life expectancy during 10-year follow-up (9.61 vs. 8.85 years).
  • At 1 year post islet transplant, there was an estimated 89.4% probability of graft survival and a 70.2% probability of achieving independence from insulin.

IN PRACTICE:

“Although islet transplantation has previously been shown to improve glycemic control, compared with conventional insulin therapy in recent clinical trials, little was known about its long-term impact on patient prognosis until now. ... These results are exciting and provide hope for people living with type 1 diabetes and kidney transplants.”

SOURCE:

Presented Sept. 17, 2023, at the European Society for Organ Transplantation (ESOT) Congress 2023 by Mehdi Maanaoui, MD, a nephrologist at the University of Lille (France).

LIMITATIONS:

Observational, potential for residual confounding.

DISCLOSURES:

Dr. Maanaoui reports no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

Patients with type 1 diabetes who received transplanted islets along with a kidney transplant had significantly reduced mortality and transplant failure risks, compared with those who received kidney alone and continued to use insulin.

METHODOLOGY:

  • Study population was all patients with type 1 diabetes in France who received a kidney transplant between 2000 and 2017.
  • Among 2,393 patients, 327 were eligible for islet transplantation, including 47 who were actually transplanted with islets.
  • The subjects were matched for factors including year of transplantation, recipient age, kidney function, and hemoglobin A1c.

TAKEAWAY:

  • Those receiving islets along with the kidney transplant had a 53% lower risk of graft failure, compared with the kidney-alone group.
  • Those receiving islet transplantation had a significantly higher estimated life expectancy during 10-year follow-up (9.61 vs. 8.85 years).
  • At 1 year post islet transplant, there was an estimated 89.4% probability of graft survival and a 70.2% probability of achieving independence from insulin.

IN PRACTICE:

“Although islet transplantation has previously been shown to improve glycemic control, compared with conventional insulin therapy in recent clinical trials, little was known about its long-term impact on patient prognosis until now. ... These results are exciting and provide hope for people living with type 1 diabetes and kidney transplants.”

SOURCE:

Presented Sept. 17, 2023, at the European Society for Organ Transplantation (ESOT) Congress 2023 by Mehdi Maanaoui, MD, a nephrologist at the University of Lille (France).

LIMITATIONS:

Observational, potential for residual confounding.

DISCLOSURES:

Dr. Maanaoui reports no relevant financial relationships.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

Patients with type 1 diabetes who received transplanted islets along with a kidney transplant had significantly reduced mortality and transplant failure risks, compared with those who received kidney alone and continued to use insulin.

METHODOLOGY:

  • Study population was all patients with type 1 diabetes in France who received a kidney transplant between 2000 and 2017.
  • Among 2,393 patients, 327 were eligible for islet transplantation, including 47 who were actually transplanted with islets.
  • The subjects were matched for factors including year of transplantation, recipient age, kidney function, and hemoglobin A1c.

TAKEAWAY:

  • Those receiving islets along with the kidney transplant had a 53% lower risk of graft failure, compared with the kidney-alone group.
  • Those receiving islet transplantation had a significantly higher estimated life expectancy during 10-year follow-up (9.61 vs. 8.85 years).
  • At 1 year post islet transplant, there was an estimated 89.4% probability of graft survival and a 70.2% probability of achieving independence from insulin.

IN PRACTICE:

“Although islet transplantation has previously been shown to improve glycemic control, compared with conventional insulin therapy in recent clinical trials, little was known about its long-term impact on patient prognosis until now. ... These results are exciting and provide hope for people living with type 1 diabetes and kidney transplants.”

SOURCE:

Presented Sept. 17, 2023, at the European Society for Organ Transplantation (ESOT) Congress 2023 by Mehdi Maanaoui, MD, a nephrologist at the University of Lille (France).

LIMITATIONS:

Observational, potential for residual confounding.

DISCLOSURES:

Dr. Maanaoui reports no relevant financial relationships.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

COVID booster may transiently raise glucose levels in T1D

Article Type
Changed
Mon, 09/25/2023 - 11:17

 

TOPLINE:

The COVID-19 booster vaccine typically causes transient, clinically insignificant elevations in glucose levels in people with type 1 diabetes, but some individuals may develop more pronounced hyperglycemia.

METHODOLOGY:

  • In a single-center prospective cohort study of 21 adults with type 1 diabetes, patients were given a blinded Dexcom G6 Pro continuous glucose monitor (CGM) at the first research clinic visit.
  • After 3-4 days, participants received a COVID-19 booster vaccine.
  • They returned to the clinic 10 days after the initial visit (5-6 days after booster vaccination) to have the CGM removed and glycemia assessed.

TAKEAWAY:

  • Compared with baseline, the mean daily glucose level was significantly increased at day 2 (162.9 mg/dL vs. 172.8 mg/dL; P = .04) and day 3 (173.1 mg/dL; P = .02) post vaccination.
  • Glucose excursions at day 0 (173.2 mg/dL; P = .058) and day 1 (173.1 mg/dL; P = .078) didn’t quite reach statistical significance.
  • One participant experienced increases in glucose of 36%, 69%, 35%, 26%, 22%, and 19% on days 0-5, respectively, compared with baseline.
  • Glucose excursions of at least 25% above baseline occurred in four participants on day 0 and day 1 and in three participants on days 2 and 5.
  • Insulin resistance, as measured by Total Daily Insulin Resistance (a metric that integrates daily mean glucose concentration with total daily insulin dose), was also significantly increased from baseline to day 2 post vaccination (7,171 mg/dL vs. 8,070 mg/dL units; P = .03).
  • No other measures of glycemia differed significantly, compared with baseline.
  • Outcomes didn’t differ significantly by sex, age, or vaccine manufacturer.

IN PRACTICE:

  • “To our knowledge this is the first study investigating the effect of the COVID-19 booster vaccine on glycemia specifically in people with type 1 diabetes,” say the authors.
  • “Clinicians, pharmacists, and other health care providers may need to counsel people with T1D to be more vigilant with glucose testing and insulin dosing for the first 5 days after vaccination. Most importantly, insulin, required to control glycemia, may need to be transiently increased.”
  • “Further studies are warranted to investigate whether other vaccines have similar glycemic effects, and which individuals are at highest risk for profound glucose perturbations post vaccination.”

SOURCE:

The study was conducted by Mihail Zilbermint, MD, of the division of hospital medicine, Johns Hopkins Medicine, Bethesda, Md., and colleagues. It was published in Diabetes Research and Clinical Practice.

LIMITATIONS:

  • The sample size was small.
  • There were no measurements of inflammatory markers, dietary intake, physical activity, or survey patient symptomatology to adjust for variables that may have influenced glycemic control.
  • In the study cohort, glycemia was moderately well controlled at baseline.

DISCLOSURES:

The study was supported by an investigator-initiated study grant from DexCom Inc. Dr. Zilbermint has consulted for EMD Serono.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

The COVID-19 booster vaccine typically causes transient, clinically insignificant elevations in glucose levels in people with type 1 diabetes, but some individuals may develop more pronounced hyperglycemia.

METHODOLOGY:

  • In a single-center prospective cohort study of 21 adults with type 1 diabetes, patients were given a blinded Dexcom G6 Pro continuous glucose monitor (CGM) at the first research clinic visit.
  • After 3-4 days, participants received a COVID-19 booster vaccine.
  • They returned to the clinic 10 days after the initial visit (5-6 days after booster vaccination) to have the CGM removed and glycemia assessed.

TAKEAWAY:

  • Compared with baseline, the mean daily glucose level was significantly increased at day 2 (162.9 mg/dL vs. 172.8 mg/dL; P = .04) and day 3 (173.1 mg/dL; P = .02) post vaccination.
  • Glucose excursions at day 0 (173.2 mg/dL; P = .058) and day 1 (173.1 mg/dL; P = .078) didn’t quite reach statistical significance.
  • One participant experienced increases in glucose of 36%, 69%, 35%, 26%, 22%, and 19% on days 0-5, respectively, compared with baseline.
  • Glucose excursions of at least 25% above baseline occurred in four participants on day 0 and day 1 and in three participants on days 2 and 5.
  • Insulin resistance, as measured by Total Daily Insulin Resistance (a metric that integrates daily mean glucose concentration with total daily insulin dose), was also significantly increased from baseline to day 2 post vaccination (7,171 mg/dL vs. 8,070 mg/dL units; P = .03).
  • No other measures of glycemia differed significantly, compared with baseline.
  • Outcomes didn’t differ significantly by sex, age, or vaccine manufacturer.

IN PRACTICE:

  • “To our knowledge this is the first study investigating the effect of the COVID-19 booster vaccine on glycemia specifically in people with type 1 diabetes,” say the authors.
  • “Clinicians, pharmacists, and other health care providers may need to counsel people with T1D to be more vigilant with glucose testing and insulin dosing for the first 5 days after vaccination. Most importantly, insulin, required to control glycemia, may need to be transiently increased.”
  • “Further studies are warranted to investigate whether other vaccines have similar glycemic effects, and which individuals are at highest risk for profound glucose perturbations post vaccination.”

SOURCE:

The study was conducted by Mihail Zilbermint, MD, of the division of hospital medicine, Johns Hopkins Medicine, Bethesda, Md., and colleagues. It was published in Diabetes Research and Clinical Practice.

LIMITATIONS:

  • The sample size was small.
  • There were no measurements of inflammatory markers, dietary intake, physical activity, or survey patient symptomatology to adjust for variables that may have influenced glycemic control.
  • In the study cohort, glycemia was moderately well controlled at baseline.

DISCLOSURES:

The study was supported by an investigator-initiated study grant from DexCom Inc. Dr. Zilbermint has consulted for EMD Serono.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

The COVID-19 booster vaccine typically causes transient, clinically insignificant elevations in glucose levels in people with type 1 diabetes, but some individuals may develop more pronounced hyperglycemia.

METHODOLOGY:

  • In a single-center prospective cohort study of 21 adults with type 1 diabetes, patients were given a blinded Dexcom G6 Pro continuous glucose monitor (CGM) at the first research clinic visit.
  • After 3-4 days, participants received a COVID-19 booster vaccine.
  • They returned to the clinic 10 days after the initial visit (5-6 days after booster vaccination) to have the CGM removed and glycemia assessed.

TAKEAWAY:

  • Compared with baseline, the mean daily glucose level was significantly increased at day 2 (162.9 mg/dL vs. 172.8 mg/dL; P = .04) and day 3 (173.1 mg/dL; P = .02) post vaccination.
  • Glucose excursions at day 0 (173.2 mg/dL; P = .058) and day 1 (173.1 mg/dL; P = .078) didn’t quite reach statistical significance.
  • One participant experienced increases in glucose of 36%, 69%, 35%, 26%, 22%, and 19% on days 0-5, respectively, compared with baseline.
  • Glucose excursions of at least 25% above baseline occurred in four participants on day 0 and day 1 and in three participants on days 2 and 5.
  • Insulin resistance, as measured by Total Daily Insulin Resistance (a metric that integrates daily mean glucose concentration with total daily insulin dose), was also significantly increased from baseline to day 2 post vaccination (7,171 mg/dL vs. 8,070 mg/dL units; P = .03).
  • No other measures of glycemia differed significantly, compared with baseline.
  • Outcomes didn’t differ significantly by sex, age, or vaccine manufacturer.

IN PRACTICE:

  • “To our knowledge this is the first study investigating the effect of the COVID-19 booster vaccine on glycemia specifically in people with type 1 diabetes,” say the authors.
  • “Clinicians, pharmacists, and other health care providers may need to counsel people with T1D to be more vigilant with glucose testing and insulin dosing for the first 5 days after vaccination. Most importantly, insulin, required to control glycemia, may need to be transiently increased.”
  • “Further studies are warranted to investigate whether other vaccines have similar glycemic effects, and which individuals are at highest risk for profound glucose perturbations post vaccination.”

SOURCE:

The study was conducted by Mihail Zilbermint, MD, of the division of hospital medicine, Johns Hopkins Medicine, Bethesda, Md., and colleagues. It was published in Diabetes Research and Clinical Practice.

LIMITATIONS:

  • The sample size was small.
  • There were no measurements of inflammatory markers, dietary intake, physical activity, or survey patient symptomatology to adjust for variables that may have influenced glycemic control.
  • In the study cohort, glycemia was moderately well controlled at baseline.

DISCLOSURES:

The study was supported by an investigator-initiated study grant from DexCom Inc. Dr. Zilbermint has consulted for EMD Serono.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM DIABETES RESEARCH AND CLINICAL PRACTICE

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Heart attack deaths static in those with type 1 diabetes

Article Type
Changed
Thu, 09/14/2023 - 06:34

People with type 1 diabetes have not experienced the same improved survival after a heart attack over the past 15 years that has occurred in people with type 2 diabetes and those without diabetes, new research shows.

Between 2006 and 2020, the annual incidences of overall mortality and major adverse cardiovascular events after a first-time myocardial infarction dropped significantly for people with type 2 diabetes and those without diabetes (controls).

However, the same trend was not seen for people with type 1 diabetes.

“There is an urgent need for further studies understanding cardiovascular disease in people with type 1 diabetes. Clinicians have to be aware of the absence of the declined mortality trend in people with type 1 diabetes having a first-time myocardial infarction,” lead author Thomas Nyström, MD, professor of medicine at the Karolinska Institute, Stockholm, said in an interview.

The findings are scheduled to be presented Oct. 5, 2023, at the annual meeting of the European Association for the Study of Diabetes.

Discussing potential reasons for the findings, the authors say that the standard care after a heart attack has improved with more availability of, for example, percutaneous coronary intervention and better overall medical treatment. However, this standard of care should have improved in all three groups.

“Although glycemic control and diabetes duration were much different between diabetes groups, in that those with type 1 had been exposed for a longer period of glycemia, the current study cannot tell whether glucose control is behind the association between mortality trends observed. Whether this is the case must be investigated with further studies,” Nyström said.
 

Data from Swedish health care registry

Among people with a first-time MI recorded in national Swedish health care registries between 2006 and 2020, there were 2,527 individuals with type 1 diabetes, 48,321 with type 2 diabetes, and 243,170 controls with neither form of diabetes.

Those with type 1 diabetes were younger than those with type 2 diabetes and controls (62 years vs. 75 and 73 years, respectively). The type 1 diabetes group also had a higher proportion of females (43.6% vs. 38.1% of both the type 2 diabetes and control groups).

The proportions of people with the most severe type of heart attack, ST-elevation MI (STEMI), versus non-STEMI were 29% versus 71% in the type 1 diabetes group, 30% versus 70% in the type 2 diabetes group, and 39% versus 61% in the control group, respectively.

After adjustment for covariates including age, sex, comorbidities, socioeconomic factors, and medication, there was a significant decreased annual incidence trend for all-cause death among the controls (–1.9%) and persons with type 2 diabetes (–1.3%), but there was no such decrease among those with type 1 diabetes.

For cardiovascular deaths, the annual incidence declines were –2.0% and –1.6% in the control group and the type 2 diabetes group, respectively, versus a nonsignificant –0.5% decline in the type 1 diabetes group. Similarly, for major adverse cardiovascular events, those decreases were –2.0% for controls and –1.6% for those with type 2 diabetes, but –0.6% for those with type 1 diabetes – again, a nonsignificant value.

“During the last 15 years, the risk of death and major cardiovascular events in people without diabetes and with type 2 diabetes after having a first-time heart attack has decreased significantly. In contrast, this decreasing trend was absent in people with type 1 diabetes. Our study highlights the urgent need for understanding the cardiovascular risk in people with type 1 diabetes,” the authors conclude.

Dr. Nyström has received honoraria from AstraZeneca, Merck Sharp & Dohme, Novo Nordisk, Eli Lilly , Boehringer Ingelheim, Abbott, and Amgen. The authors acknowledge the ALF agreement between Stockholm County Council and Karolinska Institutet.

A version of this article appeared on Medscape.com.

Meeting/Event
Publications
Topics
Sections
Meeting/Event
Meeting/Event

People with type 1 diabetes have not experienced the same improved survival after a heart attack over the past 15 years that has occurred in people with type 2 diabetes and those without diabetes, new research shows.

Between 2006 and 2020, the annual incidences of overall mortality and major adverse cardiovascular events after a first-time myocardial infarction dropped significantly for people with type 2 diabetes and those without diabetes (controls).

However, the same trend was not seen for people with type 1 diabetes.

“There is an urgent need for further studies understanding cardiovascular disease in people with type 1 diabetes. Clinicians have to be aware of the absence of the declined mortality trend in people with type 1 diabetes having a first-time myocardial infarction,” lead author Thomas Nyström, MD, professor of medicine at the Karolinska Institute, Stockholm, said in an interview.

The findings are scheduled to be presented Oct. 5, 2023, at the annual meeting of the European Association for the Study of Diabetes.

Discussing potential reasons for the findings, the authors say that the standard care after a heart attack has improved with more availability of, for example, percutaneous coronary intervention and better overall medical treatment. However, this standard of care should have improved in all three groups.

“Although glycemic control and diabetes duration were much different between diabetes groups, in that those with type 1 had been exposed for a longer period of glycemia, the current study cannot tell whether glucose control is behind the association between mortality trends observed. Whether this is the case must be investigated with further studies,” Nyström said.
 

Data from Swedish health care registry

Among people with a first-time MI recorded in national Swedish health care registries between 2006 and 2020, there were 2,527 individuals with type 1 diabetes, 48,321 with type 2 diabetes, and 243,170 controls with neither form of diabetes.

Those with type 1 diabetes were younger than those with type 2 diabetes and controls (62 years vs. 75 and 73 years, respectively). The type 1 diabetes group also had a higher proportion of females (43.6% vs. 38.1% of both the type 2 diabetes and control groups).

The proportions of people with the most severe type of heart attack, ST-elevation MI (STEMI), versus non-STEMI were 29% versus 71% in the type 1 diabetes group, 30% versus 70% in the type 2 diabetes group, and 39% versus 61% in the control group, respectively.

After adjustment for covariates including age, sex, comorbidities, socioeconomic factors, and medication, there was a significant decreased annual incidence trend for all-cause death among the controls (–1.9%) and persons with type 2 diabetes (–1.3%), but there was no such decrease among those with type 1 diabetes.

For cardiovascular deaths, the annual incidence declines were –2.0% and –1.6% in the control group and the type 2 diabetes group, respectively, versus a nonsignificant –0.5% decline in the type 1 diabetes group. Similarly, for major adverse cardiovascular events, those decreases were –2.0% for controls and –1.6% for those with type 2 diabetes, but –0.6% for those with type 1 diabetes – again, a nonsignificant value.

“During the last 15 years, the risk of death and major cardiovascular events in people without diabetes and with type 2 diabetes after having a first-time heart attack has decreased significantly. In contrast, this decreasing trend was absent in people with type 1 diabetes. Our study highlights the urgent need for understanding the cardiovascular risk in people with type 1 diabetes,” the authors conclude.

Dr. Nyström has received honoraria from AstraZeneca, Merck Sharp & Dohme, Novo Nordisk, Eli Lilly , Boehringer Ingelheim, Abbott, and Amgen. The authors acknowledge the ALF agreement between Stockholm County Council and Karolinska Institutet.

A version of this article appeared on Medscape.com.

People with type 1 diabetes have not experienced the same improved survival after a heart attack over the past 15 years that has occurred in people with type 2 diabetes and those without diabetes, new research shows.

Between 2006 and 2020, the annual incidences of overall mortality and major adverse cardiovascular events after a first-time myocardial infarction dropped significantly for people with type 2 diabetes and those without diabetes (controls).

However, the same trend was not seen for people with type 1 diabetes.

“There is an urgent need for further studies understanding cardiovascular disease in people with type 1 diabetes. Clinicians have to be aware of the absence of the declined mortality trend in people with type 1 diabetes having a first-time myocardial infarction,” lead author Thomas Nyström, MD, professor of medicine at the Karolinska Institute, Stockholm, said in an interview.

The findings are scheduled to be presented Oct. 5, 2023, at the annual meeting of the European Association for the Study of Diabetes.

Discussing potential reasons for the findings, the authors say that the standard care after a heart attack has improved with more availability of, for example, percutaneous coronary intervention and better overall medical treatment. However, this standard of care should have improved in all three groups.

“Although glycemic control and diabetes duration were much different between diabetes groups, in that those with type 1 had been exposed for a longer period of glycemia, the current study cannot tell whether glucose control is behind the association between mortality trends observed. Whether this is the case must be investigated with further studies,” Nyström said.
 

Data from Swedish health care registry

Among people with a first-time MI recorded in national Swedish health care registries between 2006 and 2020, there were 2,527 individuals with type 1 diabetes, 48,321 with type 2 diabetes, and 243,170 controls with neither form of diabetes.

Those with type 1 diabetes were younger than those with type 2 diabetes and controls (62 years vs. 75 and 73 years, respectively). The type 1 diabetes group also had a higher proportion of females (43.6% vs. 38.1% of both the type 2 diabetes and control groups).

The proportions of people with the most severe type of heart attack, ST-elevation MI (STEMI), versus non-STEMI were 29% versus 71% in the type 1 diabetes group, 30% versus 70% in the type 2 diabetes group, and 39% versus 61% in the control group, respectively.

After adjustment for covariates including age, sex, comorbidities, socioeconomic factors, and medication, there was a significant decreased annual incidence trend for all-cause death among the controls (–1.9%) and persons with type 2 diabetes (–1.3%), but there was no such decrease among those with type 1 diabetes.

For cardiovascular deaths, the annual incidence declines were –2.0% and –1.6% in the control group and the type 2 diabetes group, respectively, versus a nonsignificant –0.5% decline in the type 1 diabetes group. Similarly, for major adverse cardiovascular events, those decreases were –2.0% for controls and –1.6% for those with type 2 diabetes, but –0.6% for those with type 1 diabetes – again, a nonsignificant value.

“During the last 15 years, the risk of death and major cardiovascular events in people without diabetes and with type 2 diabetes after having a first-time heart attack has decreased significantly. In contrast, this decreasing trend was absent in people with type 1 diabetes. Our study highlights the urgent need for understanding the cardiovascular risk in people with type 1 diabetes,” the authors conclude.

Dr. Nyström has received honoraria from AstraZeneca, Merck Sharp & Dohme, Novo Nordisk, Eli Lilly , Boehringer Ingelheim, Abbott, and Amgen. The authors acknowledge the ALF agreement between Stockholm County Council and Karolinska Institutet.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM EASD 2023

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Diabetes patients satisfied with continuous glucose monitors

Article Type
Changed
Tue, 09/12/2023 - 13:42

 

TOPLINE:

In an online survey of 605 people with diabetes who use insulin and continuous glucose monitors (CGMs), a majority expressed satisfaction with many aspects of the devices’ performance. However, significant proportions also reported concerns about accuracy under certain circumstances and about skin problems.

METHODOLOGY:

Researchers did an online survey of 504 people with type 1 diabetes from the T1D Exchange and 101 with type 2 diabetes from the Dynata database.

TAKEAWAY:

  • The Dexcom G6 device was used by 60.7% of all current CGM users, including 69% of those with type 1 diabetes vs. 12% with type 2 diabetes.
  • People with type 2 diabetes were more likely to use older Dexcom versions (G4/G5) (32%) or Abbott’s FreeStyle Libre systems (35%).
  • Overall, 90% agreed that most sensors were accurate, but just 79% and 78%, respectively, were satisfied with sensor performance on the first and last day of wear.
  • Moreover, 42% suspected variations in accuracy from sensor to sensor, and 32% continue to perform finger-stick monitoring more than six times a week.
  • Individuals with type 2 diabetes were more likely than those with type 1 diabetes to be concerned about poor sensor performance affecting confidence in making diabetes management decisions (52% vs. 19%).
  • Over half reported skin reactions and/or pain with the sensors (53.7% and 55.4%, respectively).
  • Concerns about medications affecting sensor accuracy were more common among those with type 2 vs. type 1 diabetes (65% vs. 29%).
  • Among overall concerns about substances or situations affecting sensor accuracy, the top choice (47%) was dehydration (despite a lack of supportive published literature), followed by pain medications (43%), cold/flu medications (32%), and coffee (24%).
  • Inaccurate/false alarms negatively affected daily life for 36% of participants and diabetes management for 34%.

IN PRACTICE:

“CGM is a game-changing technology and has evolved in the past decade to overcome many technical and usability obstacles. Our survey suggests that there remain areas for further improvement ... Mistrust in CGM performance was more common than expected.”

SOURCE:

The study was done by Elizabeth Holt, of LifeScan, and colleagues. It was published in Clinical Diabetes.

LIMITATIONS:

  • The databases used to recruit study participants may not be representative of the entire respective patient populations.
  • Exercise wasn’t given as an option for affecting CGM accuracy, which might partly explain the dehydration finding.

DISCLOSURES:

Funding for this study and preparation of the manuscript were provided by LifeScan Inc. Two authors are LifeScan employees, and two others currently work for the T1D Exchange.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

In an online survey of 605 people with diabetes who use insulin and continuous glucose monitors (CGMs), a majority expressed satisfaction with many aspects of the devices’ performance. However, significant proportions also reported concerns about accuracy under certain circumstances and about skin problems.

METHODOLOGY:

Researchers did an online survey of 504 people with type 1 diabetes from the T1D Exchange and 101 with type 2 diabetes from the Dynata database.

TAKEAWAY:

  • The Dexcom G6 device was used by 60.7% of all current CGM users, including 69% of those with type 1 diabetes vs. 12% with type 2 diabetes.
  • People with type 2 diabetes were more likely to use older Dexcom versions (G4/G5) (32%) or Abbott’s FreeStyle Libre systems (35%).
  • Overall, 90% agreed that most sensors were accurate, but just 79% and 78%, respectively, were satisfied with sensor performance on the first and last day of wear.
  • Moreover, 42% suspected variations in accuracy from sensor to sensor, and 32% continue to perform finger-stick monitoring more than six times a week.
  • Individuals with type 2 diabetes were more likely than those with type 1 diabetes to be concerned about poor sensor performance affecting confidence in making diabetes management decisions (52% vs. 19%).
  • Over half reported skin reactions and/or pain with the sensors (53.7% and 55.4%, respectively).
  • Concerns about medications affecting sensor accuracy were more common among those with type 2 vs. type 1 diabetes (65% vs. 29%).
  • Among overall concerns about substances or situations affecting sensor accuracy, the top choice (47%) was dehydration (despite a lack of supportive published literature), followed by pain medications (43%), cold/flu medications (32%), and coffee (24%).
  • Inaccurate/false alarms negatively affected daily life for 36% of participants and diabetes management for 34%.

IN PRACTICE:

“CGM is a game-changing technology and has evolved in the past decade to overcome many technical and usability obstacles. Our survey suggests that there remain areas for further improvement ... Mistrust in CGM performance was more common than expected.”

SOURCE:

The study was done by Elizabeth Holt, of LifeScan, and colleagues. It was published in Clinical Diabetes.

LIMITATIONS:

  • The databases used to recruit study participants may not be representative of the entire respective patient populations.
  • Exercise wasn’t given as an option for affecting CGM accuracy, which might partly explain the dehydration finding.

DISCLOSURES:

Funding for this study and preparation of the manuscript were provided by LifeScan Inc. Two authors are LifeScan employees, and two others currently work for the T1D Exchange.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

In an online survey of 605 people with diabetes who use insulin and continuous glucose monitors (CGMs), a majority expressed satisfaction with many aspects of the devices’ performance. However, significant proportions also reported concerns about accuracy under certain circumstances and about skin problems.

METHODOLOGY:

Researchers did an online survey of 504 people with type 1 diabetes from the T1D Exchange and 101 with type 2 diabetes from the Dynata database.

TAKEAWAY:

  • The Dexcom G6 device was used by 60.7% of all current CGM users, including 69% of those with type 1 diabetes vs. 12% with type 2 diabetes.
  • People with type 2 diabetes were more likely to use older Dexcom versions (G4/G5) (32%) or Abbott’s FreeStyle Libre systems (35%).
  • Overall, 90% agreed that most sensors were accurate, but just 79% and 78%, respectively, were satisfied with sensor performance on the first and last day of wear.
  • Moreover, 42% suspected variations in accuracy from sensor to sensor, and 32% continue to perform finger-stick monitoring more than six times a week.
  • Individuals with type 2 diabetes were more likely than those with type 1 diabetes to be concerned about poor sensor performance affecting confidence in making diabetes management decisions (52% vs. 19%).
  • Over half reported skin reactions and/or pain with the sensors (53.7% and 55.4%, respectively).
  • Concerns about medications affecting sensor accuracy were more common among those with type 2 vs. type 1 diabetes (65% vs. 29%).
  • Among overall concerns about substances or situations affecting sensor accuracy, the top choice (47%) was dehydration (despite a lack of supportive published literature), followed by pain medications (43%), cold/flu medications (32%), and coffee (24%).
  • Inaccurate/false alarms negatively affected daily life for 36% of participants and diabetes management for 34%.

IN PRACTICE:

“CGM is a game-changing technology and has evolved in the past decade to overcome many technical and usability obstacles. Our survey suggests that there remain areas for further improvement ... Mistrust in CGM performance was more common than expected.”

SOURCE:

The study was done by Elizabeth Holt, of LifeScan, and colleagues. It was published in Clinical Diabetes.

LIMITATIONS:

  • The databases used to recruit study participants may not be representative of the entire respective patient populations.
  • Exercise wasn’t given as an option for affecting CGM accuracy, which might partly explain the dehydration finding.

DISCLOSURES:

Funding for this study and preparation of the manuscript were provided by LifeScan Inc. Two authors are LifeScan employees, and two others currently work for the T1D Exchange.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Ketogenic diet short-term may benefit women with PCOS

Article Type
Changed
Thu, 09/07/2023 - 15:35
Analysis examined data from seven studies

Ketogenic diets may improve reproductive hormone levels in women with polycystic ovary syndrome (PCOS), new research suggests.

In the first-ever systematic review and meta-analysis of clinical trials on the association, ketogenic diets followed for 45 days to 24 weeks showed improvements in the luteinizing hormone (LH)/follicle-stimulating hormone (FSH) ratio, serum free testosterone, and serum sex hormone binding globulin (SHBG).  

Previous evidence supporting ketogenic diets in PCOS has been “relatively patchy,” and although there have been reviews on the topic, this is the first meta-analysis, write Karniza Khalid, MD, of the National Institutes of Health, Ministry of Health Malaysia, and colleagues. 

Study co-author Syed A.A. Rizvi, MD, PhD, told this news organization: “Our paper supports the positive effects of short-term ketogenic diets on hormonal imbalances commonly associated with PCOS, a complex disease state associated with a multitude of presenting symptoms among individuals. Based on the presentation and individual patient circumstances, besides pharmacologic treatment, lifestyle changes and a ketogenic diet can lead to even faster improvements.”

However, Dr. Rizvi, a professor at the College of Biomedical Sciences, Larkin University, Miami, cautioned: “I would highly recommend a keto diet to women suffering from PCOS, but we all know every person has a different situation. Some may not want to change their diet, some may not be able to afford it, and for some it is just too much work. ... This is why any lifestyle change has to be discussed and planned carefully between patients and their health care providers.”

The findings were published online in the Journal of the Endocrine Society.
 

The literature search yielded seven qualifying studies of ketogenic diets, generally defined as a daily carbohydrate intake below 50 g while allowing variable amounts of fat and protein. A total of 170 participants were enrolled in the studies from Italy, China, and the United States.

Pooled data showed a significant association between ketogenic diet and reduced LH/FSH ratio (P < .001) and free testosterone (P < .001). There was also a significant increase in circulating SHBG (P = .002).

On the other hand, serum progesterone levels did not change significantly (P = .353).

Weight loss, a secondary outcome, was significantly greater with the ketogenic diet (P < .001).

“Since low-carbohydrate diets have shown to be effective in addressing obesity and type 2 diabetes, it makes sense that they would also be helpful to the patients with PCOS, and in fact, it has been the case,” Dr. Rizvi noted.

The exact mechanisms for the hormonal effects aren’t clear, but one theory is that the reduction in hyperinsulinemia from the ketogenic diet decreases stimulation of ovarian androgen production and increases SHBG levels. Another is that the physiologic ketosis induced by low carbohydrate intake reduces both circulating insulin and insulin-like growth factor-1, thereby suppressing the stimulus on the production of both ovarian and adrenal androgens.

The analysis didn’t include pregnancy rates. However, Dr. Rizvi noted, “there have been published studies showing that [patients with] PCOS on keto diets have significantly improved pregnancy rates, also including via [in vitro fertilization].”

The study received no outside funding. The authors have reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Topics
Sections
Analysis examined data from seven studies
Analysis examined data from seven studies

Ketogenic diets may improve reproductive hormone levels in women with polycystic ovary syndrome (PCOS), new research suggests.

In the first-ever systematic review and meta-analysis of clinical trials on the association, ketogenic diets followed for 45 days to 24 weeks showed improvements in the luteinizing hormone (LH)/follicle-stimulating hormone (FSH) ratio, serum free testosterone, and serum sex hormone binding globulin (SHBG).  

Previous evidence supporting ketogenic diets in PCOS has been “relatively patchy,” and although there have been reviews on the topic, this is the first meta-analysis, write Karniza Khalid, MD, of the National Institutes of Health, Ministry of Health Malaysia, and colleagues. 

Study co-author Syed A.A. Rizvi, MD, PhD, told this news organization: “Our paper supports the positive effects of short-term ketogenic diets on hormonal imbalances commonly associated with PCOS, a complex disease state associated with a multitude of presenting symptoms among individuals. Based on the presentation and individual patient circumstances, besides pharmacologic treatment, lifestyle changes and a ketogenic diet can lead to even faster improvements.”

However, Dr. Rizvi, a professor at the College of Biomedical Sciences, Larkin University, Miami, cautioned: “I would highly recommend a keto diet to women suffering from PCOS, but we all know every person has a different situation. Some may not want to change their diet, some may not be able to afford it, and for some it is just too much work. ... This is why any lifestyle change has to be discussed and planned carefully between patients and their health care providers.”

The findings were published online in the Journal of the Endocrine Society.
 

The literature search yielded seven qualifying studies of ketogenic diets, generally defined as a daily carbohydrate intake below 50 g while allowing variable amounts of fat and protein. A total of 170 participants were enrolled in the studies from Italy, China, and the United States.

Pooled data showed a significant association between ketogenic diet and reduced LH/FSH ratio (P < .001) and free testosterone (P < .001). There was also a significant increase in circulating SHBG (P = .002).

On the other hand, serum progesterone levels did not change significantly (P = .353).

Weight loss, a secondary outcome, was significantly greater with the ketogenic diet (P < .001).

“Since low-carbohydrate diets have shown to be effective in addressing obesity and type 2 diabetes, it makes sense that they would also be helpful to the patients with PCOS, and in fact, it has been the case,” Dr. Rizvi noted.

The exact mechanisms for the hormonal effects aren’t clear, but one theory is that the reduction in hyperinsulinemia from the ketogenic diet decreases stimulation of ovarian androgen production and increases SHBG levels. Another is that the physiologic ketosis induced by low carbohydrate intake reduces both circulating insulin and insulin-like growth factor-1, thereby suppressing the stimulus on the production of both ovarian and adrenal androgens.

The analysis didn’t include pregnancy rates. However, Dr. Rizvi noted, “there have been published studies showing that [patients with] PCOS on keto diets have significantly improved pregnancy rates, also including via [in vitro fertilization].”

The study received no outside funding. The authors have reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Ketogenic diets may improve reproductive hormone levels in women with polycystic ovary syndrome (PCOS), new research suggests.

In the first-ever systematic review and meta-analysis of clinical trials on the association, ketogenic diets followed for 45 days to 24 weeks showed improvements in the luteinizing hormone (LH)/follicle-stimulating hormone (FSH) ratio, serum free testosterone, and serum sex hormone binding globulin (SHBG).  

Previous evidence supporting ketogenic diets in PCOS has been “relatively patchy,” and although there have been reviews on the topic, this is the first meta-analysis, write Karniza Khalid, MD, of the National Institutes of Health, Ministry of Health Malaysia, and colleagues. 

Study co-author Syed A.A. Rizvi, MD, PhD, told this news organization: “Our paper supports the positive effects of short-term ketogenic diets on hormonal imbalances commonly associated with PCOS, a complex disease state associated with a multitude of presenting symptoms among individuals. Based on the presentation and individual patient circumstances, besides pharmacologic treatment, lifestyle changes and a ketogenic diet can lead to even faster improvements.”

However, Dr. Rizvi, a professor at the College of Biomedical Sciences, Larkin University, Miami, cautioned: “I would highly recommend a keto diet to women suffering from PCOS, but we all know every person has a different situation. Some may not want to change their diet, some may not be able to afford it, and for some it is just too much work. ... This is why any lifestyle change has to be discussed and planned carefully between patients and their health care providers.”

The findings were published online in the Journal of the Endocrine Society.
 

The literature search yielded seven qualifying studies of ketogenic diets, generally defined as a daily carbohydrate intake below 50 g while allowing variable amounts of fat and protein. A total of 170 participants were enrolled in the studies from Italy, China, and the United States.

Pooled data showed a significant association between ketogenic diet and reduced LH/FSH ratio (P < .001) and free testosterone (P < .001). There was also a significant increase in circulating SHBG (P = .002).

On the other hand, serum progesterone levels did not change significantly (P = .353).

Weight loss, a secondary outcome, was significantly greater with the ketogenic diet (P < .001).

“Since low-carbohydrate diets have shown to be effective in addressing obesity and type 2 diabetes, it makes sense that they would also be helpful to the patients with PCOS, and in fact, it has been the case,” Dr. Rizvi noted.

The exact mechanisms for the hormonal effects aren’t clear, but one theory is that the reduction in hyperinsulinemia from the ketogenic diet decreases stimulation of ovarian androgen production and increases SHBG levels. Another is that the physiologic ketosis induced by low carbohydrate intake reduces both circulating insulin and insulin-like growth factor-1, thereby suppressing the stimulus on the production of both ovarian and adrenal androgens.

The analysis didn’t include pregnancy rates. However, Dr. Rizvi noted, “there have been published studies showing that [patients with] PCOS on keto diets have significantly improved pregnancy rates, also including via [in vitro fertilization].”

The study received no outside funding. The authors have reported no relevant financial relationships.

A version of this article appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article

Obesity-related cardiovascular disease deaths surging

Article Type
Changed
Thu, 09/07/2023 - 06:27

 

TOPLINE:

In contrast to an overall decline in cardiovascular mortality, obesity-related cardiovascular deaths have risen substantially in the past 2 decades, most prominently among Black women. “We observed a threefold increase in obesity-related cardiovascular age-adjusted mortality rates between 1999 and 2020,” wrote the authors.

METHODOLOGY:

Data from the U.S. population-level Multiple Cause of Death database were analyzed, including 281,135 deaths in 1999-2020 for which obesity was listed as a contributing factor.

TAKEAWAY:

  • Overall, the crude rate of all cardiovascular deaths dropped by 17.6% across all races.
  • However, age-adjusted obesity-related cardiovascular mortality tripled from 2.2/100,000 to 6.6/100,000 from 1999 to 2020, consistent across all racial groups.
  • Blacks had the highest age-adjusted obesity-related cardiovascular mortality (rising from 4.2/100,000 in 1999 to 11.6/100,000 in 2000).
  • Ischemic heart disease was the most common cardiovascular cause of death across all races, and hypertensive disease was second.
  • Age-adjusted obesity-related cardiovascular mortality was higher among Blacks (6.7/100,000) than any other racial group, followed by American Indians or Alaskan Natives (3.8/100,000), and lowest among Asian or Pacific Islanders (0.9/100,000).
  • The risk of obesity-related cardiovascular disease death rose most rapidly among American Indians and Alaskan Natives.
  • Among Blacks, age-adjusted mortality was slightly higher among women than men (6.7/100,000 vs. 6.6/100,000), whereas the reverse was true for all other races (0.6-3.0/100,000 vs. 1.2-6.0/100,000).
  • Blacks living in urban settings experienced higher rates of age-adjusted cardiovascular mortality than those living in rural areas (6.8/100,000 vs. 5.9/100,000), whereas the opposite was true for all other racial groups (0.9-3.5/100,000 vs. 2.2-5.4/100,000).

IN PRACTICE:

“There is need for dedicated health strategies aimed at individual communities to better understand and tackle the social determinants of obesity and to design interventions that may alleviate the population burden of both obesity and cardiovascular disease,” the authors wrote.

SOURCE:

The study, by Zahra Raisi-Estabragh, MD, PhD, Queen Mary University, London, and colleagues, was published online Sept. 6 in the Journal of the American Heart Association.

LIMITATIONS:

  • Database limited to U.S. residents.
  • Possible miscoding or diagnostic errors.
  • Potential for residual confounding.
  • No data on underlying drivers of observed trends.

DISCLOSURES:

Dr. Raisi-Estabragh has reported receiving funding from the Integrated Academic Training program of the National Institute for Health Research and a Clinical Research Training Fellowship from the British Heart Foundation. Another author has reported receiving research support from the National Heart, Lung, and Blood Institute.

A version of this article first appeared on Medscape.com.

Publications
Topics
Sections

 

TOPLINE:

In contrast to an overall decline in cardiovascular mortality, obesity-related cardiovascular deaths have risen substantially in the past 2 decades, most prominently among Black women. “We observed a threefold increase in obesity-related cardiovascular age-adjusted mortality rates between 1999 and 2020,” wrote the authors.

METHODOLOGY:

Data from the U.S. population-level Multiple Cause of Death database were analyzed, including 281,135 deaths in 1999-2020 for which obesity was listed as a contributing factor.

TAKEAWAY:

  • Overall, the crude rate of all cardiovascular deaths dropped by 17.6% across all races.
  • However, age-adjusted obesity-related cardiovascular mortality tripled from 2.2/100,000 to 6.6/100,000 from 1999 to 2020, consistent across all racial groups.
  • Blacks had the highest age-adjusted obesity-related cardiovascular mortality (rising from 4.2/100,000 in 1999 to 11.6/100,000 in 2000).
  • Ischemic heart disease was the most common cardiovascular cause of death across all races, and hypertensive disease was second.
  • Age-adjusted obesity-related cardiovascular mortality was higher among Blacks (6.7/100,000) than any other racial group, followed by American Indians or Alaskan Natives (3.8/100,000), and lowest among Asian or Pacific Islanders (0.9/100,000).
  • The risk of obesity-related cardiovascular disease death rose most rapidly among American Indians and Alaskan Natives.
  • Among Blacks, age-adjusted mortality was slightly higher among women than men (6.7/100,000 vs. 6.6/100,000), whereas the reverse was true for all other races (0.6-3.0/100,000 vs. 1.2-6.0/100,000).
  • Blacks living in urban settings experienced higher rates of age-adjusted cardiovascular mortality than those living in rural areas (6.8/100,000 vs. 5.9/100,000), whereas the opposite was true for all other racial groups (0.9-3.5/100,000 vs. 2.2-5.4/100,000).

IN PRACTICE:

“There is need for dedicated health strategies aimed at individual communities to better understand and tackle the social determinants of obesity and to design interventions that may alleviate the population burden of both obesity and cardiovascular disease,” the authors wrote.

SOURCE:

The study, by Zahra Raisi-Estabragh, MD, PhD, Queen Mary University, London, and colleagues, was published online Sept. 6 in the Journal of the American Heart Association.

LIMITATIONS:

  • Database limited to U.S. residents.
  • Possible miscoding or diagnostic errors.
  • Potential for residual confounding.
  • No data on underlying drivers of observed trends.

DISCLOSURES:

Dr. Raisi-Estabragh has reported receiving funding from the Integrated Academic Training program of the National Institute for Health Research and a Clinical Research Training Fellowship from the British Heart Foundation. Another author has reported receiving research support from the National Heart, Lung, and Blood Institute.

A version of this article first appeared on Medscape.com.

 

TOPLINE:

In contrast to an overall decline in cardiovascular mortality, obesity-related cardiovascular deaths have risen substantially in the past 2 decades, most prominently among Black women. “We observed a threefold increase in obesity-related cardiovascular age-adjusted mortality rates between 1999 and 2020,” wrote the authors.

METHODOLOGY:

Data from the U.S. population-level Multiple Cause of Death database were analyzed, including 281,135 deaths in 1999-2020 for which obesity was listed as a contributing factor.

TAKEAWAY:

  • Overall, the crude rate of all cardiovascular deaths dropped by 17.6% across all races.
  • However, age-adjusted obesity-related cardiovascular mortality tripled from 2.2/100,000 to 6.6/100,000 from 1999 to 2020, consistent across all racial groups.
  • Blacks had the highest age-adjusted obesity-related cardiovascular mortality (rising from 4.2/100,000 in 1999 to 11.6/100,000 in 2000).
  • Ischemic heart disease was the most common cardiovascular cause of death across all races, and hypertensive disease was second.
  • Age-adjusted obesity-related cardiovascular mortality was higher among Blacks (6.7/100,000) than any other racial group, followed by American Indians or Alaskan Natives (3.8/100,000), and lowest among Asian or Pacific Islanders (0.9/100,000).
  • The risk of obesity-related cardiovascular disease death rose most rapidly among American Indians and Alaskan Natives.
  • Among Blacks, age-adjusted mortality was slightly higher among women than men (6.7/100,000 vs. 6.6/100,000), whereas the reverse was true for all other races (0.6-3.0/100,000 vs. 1.2-6.0/100,000).
  • Blacks living in urban settings experienced higher rates of age-adjusted cardiovascular mortality than those living in rural areas (6.8/100,000 vs. 5.9/100,000), whereas the opposite was true for all other racial groups (0.9-3.5/100,000 vs. 2.2-5.4/100,000).

IN PRACTICE:

“There is need for dedicated health strategies aimed at individual communities to better understand and tackle the social determinants of obesity and to design interventions that may alleviate the population burden of both obesity and cardiovascular disease,” the authors wrote.

SOURCE:

The study, by Zahra Raisi-Estabragh, MD, PhD, Queen Mary University, London, and colleagues, was published online Sept. 6 in the Journal of the American Heart Association.

LIMITATIONS:

  • Database limited to U.S. residents.
  • Possible miscoding or diagnostic errors.
  • Potential for residual confounding.
  • No data on underlying drivers of observed trends.

DISCLOSURES:

Dr. Raisi-Estabragh has reported receiving funding from the Integrated Academic Training program of the National Institute for Health Research and a Clinical Research Training Fellowship from the British Heart Foundation. Another author has reported receiving research support from the National Heart, Lung, and Blood Institute.

A version of this article first appeared on Medscape.com.

Publications
Publications
Topics
Article Type
Sections
Article Source

FROM THE JOURNAL OF THE AMERICAN HEART ASSOCIATION

Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article