Article Type
Changed
Wed, 11/08/2023 - 13:30

For understanding the evolution in child neurology over the past 30 years, it would make sense to start with the science, particularly genetics, that have led to treatments and even cures for numerous inherited diseases over that time. When John Bodensteiner, MD, a pillar in the field of child neurology, was asked, he started with something different.

Parent advocacy accelerates advances in rare pediatric diseases

For the progress in many of the rare diseases seen by child neurologists in the last few decades, Dr. Bodensteiner first acknowledged parent support. “The concept was simple initially. For so many of these relatively rare diseases, like the Rett and Sturge-Weber syndromes, parents were learning of them for the first time. The support groups helped parents understand they were not alone. But it then evolved,” recalled Dr. Bodensteiner, who has been a professor of pediatrics and neurology at numerous institutions, most recently the Mayo Clinic in Rochester, Minn.

Many of these support groups first formed, or at least gained momentum, in the 1990s. “As the support groups grew, the members expanded their role to support research, in addition to supporting each other. They ended up volunteering their own data, providing more information about the epidemiology and disease course. They offered tissue samples for experimental studies. They enrolled their children in trials. And they raised funds,” Dr. Bodensteiner explained.

The impact of this advocacy has been enormous, according to Dr. Bodensteiner. As an expert in neuromuscular diseases, he worked directly with several of these groups.

Dr. John Bodensteiner

Although the growth in parent advocacy took place in parallel with major advances in genetics that were driving new insights into disease pathophysiology, Dr. Bodensteiner characterized parent advocates as important partners in accelerating the transition of new information to clinical utility. He suggested that there is little doubt about the importance of their role in moving the science forward by drawing attention to rare disorders that had few, if any, treatment options at the time the advocacy groups were formed.

Since the 1990s, the list of childhood neurologic diseases for which there has been meaningful progress is long. Dr. Bodensteiner selected several examples. For Rett syndrome, key molecular mechanisms have now been isolated, providing meaningful targets that show potential for treatment. For spinal muscular atrophy (SMA), therapies have become available, one of which involves gene replacement that appears to provide cure if initiated early in life. For tuberous sclerosis complex (TSC), gene targets are showing strong promise for controlling seizures and other TSC manifestations.

It has also to be acknowledged that much of the ongoing expansion in knowledge taking place across diseases in pediatric neurology would have taken place with or without parent support. Dr. Bodensteiner singled out seizure disorders only as an illustration. “In the various forms of epilepsy, we now understand mechanisms in much greater detail than we did even a decade ago, let alone 30 years ago,” Dr. Bodensteiner said. In the context of the seizure medicines once widely employed on an empirical basis, “we now often have a clearer picture of why one drug works and not another.”
 

 

 

Growing pains: Child neurology evolves from a subspecialty to a specialty

Until about 10 years ago, child neurology was a subspecialty, variably placed within the departments of pediatrics or neurology based on institution. The decision to elevate child neurology to its own specialty solved some issues but created others, according to Dr. Bodensteiner.

“The initial problem was there was no immediate funding mechanism of residency slots and training,” Dr. Bodensteiner explained. The issue was particularly acute at smaller centers that had been able to support a subspecialty within another department but struggled with a new autonomous unit.

So far, the training requirements for specializing in child neurology remain largely unchanged. Clinical training requires 2 years of straight pediatrics, 1 year of adult neurology, 1 year of basic neurological science,” and 1 year of child neurology, but Dr. Bodensteiner said it might be time to reconsider. He pointed out that neurologists in general and child neurologists specifically are becoming increasingly focused in one area of expertise, such as epilepsy, neuromuscular diseases, and neurodevelopmental delay.

“It can be argued that a few months spent in a dementia clinic during training might not be the best use of time for a child neurologist working in congenital neurological diseases,” he said.

One consequence of the increasing degree of specialization in neurology overall, not just child neurology, has been the changes in recertification, according to Dr. Bodensteiner. Following a model used in other specialties, recertification in child neurology was initially based on an every-10-year examination. Ultimately, this was recognized as inconsistent with the target of keeping clinicians up to date.

“In general, I think that a lot of people waited for 9.5 years before cramming for an examination that was not necessarily relevant to the area in which they were working,” Dr. Bodensteiner said.

The revised process, carried out on an every-3-year cycle, involves board-guided review of the medical literature in 10 topic areas. Child neurologists can elect an article in any of the topic areas, but to complete their recertification process they must read articles in eight of these areas. Dr. Bodensteiner said that this approach has been more popular and is presumably more useful for staying abreast of developments.
 

Increased specialization necessitates collaboration

The radical increase in specialization in child neurology, like neurology in general, has been a necessary consequence of an avalanche of new information as advances in the field accelerate, but Dr. Bodensteiner cautioned that it is important for those working in these specialized areas to collaborate with others outside of their field of expertise.

“We cannot recognize what we do not know,” Dr. Bodensteiner said. If subspecialization within neurology is critical to stay current with rapid advances in very different diseases, then it also means that clinicians at every level, including within the field of child neurology, need to know when to collaborate or refer to ensure early diagnosis in challenging cases.

“Epileptologists have been trying for years to make it widely known that patients resistant to standard medications deserve referral, but I think this is increasingly true across domains,” Dr. Bodensteiner said. Neurology and child neurology are not alone, but the window of opportunity for effective intervention in children with a progressive disease might be particularly limited.

“The point is that this is more of a risk than it was 20 years ago,” said Dr. Bodensteiner, referring to the growth in new therapies. He cited data suggesting that a causative gene mutation can be identified in about 60% of rare diseases, which is a relatively new phenomenon. Of advances to improve outcomes, faster triage is becoming one of the most important in this increasingly specialized world.

With the growth in knowledge, “there is really no way to be an expert across all diseases in child neurology,” Dr. Bodensteiner said. “As physicians become increasingly insulated in their areas of expertise, I think there needs to be a greater emphasis on communication and collaboration.”

To some degree, this type of specialization has always existed, but Dr. Bodensteiner said the intensification of this trend is among the ways the field has most evolved over the past few decades. In inherited diseases that affect early child development, working together for a prompt diagnosis has assumed a new level of urgency.

Publications
Topics
Sections

For understanding the evolution in child neurology over the past 30 years, it would make sense to start with the science, particularly genetics, that have led to treatments and even cures for numerous inherited diseases over that time. When John Bodensteiner, MD, a pillar in the field of child neurology, was asked, he started with something different.

Parent advocacy accelerates advances in rare pediatric diseases

For the progress in many of the rare diseases seen by child neurologists in the last few decades, Dr. Bodensteiner first acknowledged parent support. “The concept was simple initially. For so many of these relatively rare diseases, like the Rett and Sturge-Weber syndromes, parents were learning of them for the first time. The support groups helped parents understand they were not alone. But it then evolved,” recalled Dr. Bodensteiner, who has been a professor of pediatrics and neurology at numerous institutions, most recently the Mayo Clinic in Rochester, Minn.

Many of these support groups first formed, or at least gained momentum, in the 1990s. “As the support groups grew, the members expanded their role to support research, in addition to supporting each other. They ended up volunteering their own data, providing more information about the epidemiology and disease course. They offered tissue samples for experimental studies. They enrolled their children in trials. And they raised funds,” Dr. Bodensteiner explained.

The impact of this advocacy has been enormous, according to Dr. Bodensteiner. As an expert in neuromuscular diseases, he worked directly with several of these groups.

Dr. John Bodensteiner

Although the growth in parent advocacy took place in parallel with major advances in genetics that were driving new insights into disease pathophysiology, Dr. Bodensteiner characterized parent advocates as important partners in accelerating the transition of new information to clinical utility. He suggested that there is little doubt about the importance of their role in moving the science forward by drawing attention to rare disorders that had few, if any, treatment options at the time the advocacy groups were formed.

Since the 1990s, the list of childhood neurologic diseases for which there has been meaningful progress is long. Dr. Bodensteiner selected several examples. For Rett syndrome, key molecular mechanisms have now been isolated, providing meaningful targets that show potential for treatment. For spinal muscular atrophy (SMA), therapies have become available, one of which involves gene replacement that appears to provide cure if initiated early in life. For tuberous sclerosis complex (TSC), gene targets are showing strong promise for controlling seizures and other TSC manifestations.

It has also to be acknowledged that much of the ongoing expansion in knowledge taking place across diseases in pediatric neurology would have taken place with or without parent support. Dr. Bodensteiner singled out seizure disorders only as an illustration. “In the various forms of epilepsy, we now understand mechanisms in much greater detail than we did even a decade ago, let alone 30 years ago,” Dr. Bodensteiner said. In the context of the seizure medicines once widely employed on an empirical basis, “we now often have a clearer picture of why one drug works and not another.”
 

 

 

Growing pains: Child neurology evolves from a subspecialty to a specialty

Until about 10 years ago, child neurology was a subspecialty, variably placed within the departments of pediatrics or neurology based on institution. The decision to elevate child neurology to its own specialty solved some issues but created others, according to Dr. Bodensteiner.

“The initial problem was there was no immediate funding mechanism of residency slots and training,” Dr. Bodensteiner explained. The issue was particularly acute at smaller centers that had been able to support a subspecialty within another department but struggled with a new autonomous unit.

So far, the training requirements for specializing in child neurology remain largely unchanged. Clinical training requires 2 years of straight pediatrics, 1 year of adult neurology, 1 year of basic neurological science,” and 1 year of child neurology, but Dr. Bodensteiner said it might be time to reconsider. He pointed out that neurologists in general and child neurologists specifically are becoming increasingly focused in one area of expertise, such as epilepsy, neuromuscular diseases, and neurodevelopmental delay.

“It can be argued that a few months spent in a dementia clinic during training might not be the best use of time for a child neurologist working in congenital neurological diseases,” he said.

One consequence of the increasing degree of specialization in neurology overall, not just child neurology, has been the changes in recertification, according to Dr. Bodensteiner. Following a model used in other specialties, recertification in child neurology was initially based on an every-10-year examination. Ultimately, this was recognized as inconsistent with the target of keeping clinicians up to date.

“In general, I think that a lot of people waited for 9.5 years before cramming for an examination that was not necessarily relevant to the area in which they were working,” Dr. Bodensteiner said.

The revised process, carried out on an every-3-year cycle, involves board-guided review of the medical literature in 10 topic areas. Child neurologists can elect an article in any of the topic areas, but to complete their recertification process they must read articles in eight of these areas. Dr. Bodensteiner said that this approach has been more popular and is presumably more useful for staying abreast of developments.
 

Increased specialization necessitates collaboration

The radical increase in specialization in child neurology, like neurology in general, has been a necessary consequence of an avalanche of new information as advances in the field accelerate, but Dr. Bodensteiner cautioned that it is important for those working in these specialized areas to collaborate with others outside of their field of expertise.

“We cannot recognize what we do not know,” Dr. Bodensteiner said. If subspecialization within neurology is critical to stay current with rapid advances in very different diseases, then it also means that clinicians at every level, including within the field of child neurology, need to know when to collaborate or refer to ensure early diagnosis in challenging cases.

“Epileptologists have been trying for years to make it widely known that patients resistant to standard medications deserve referral, but I think this is increasingly true across domains,” Dr. Bodensteiner said. Neurology and child neurology are not alone, but the window of opportunity for effective intervention in children with a progressive disease might be particularly limited.

“The point is that this is more of a risk than it was 20 years ago,” said Dr. Bodensteiner, referring to the growth in new therapies. He cited data suggesting that a causative gene mutation can be identified in about 60% of rare diseases, which is a relatively new phenomenon. Of advances to improve outcomes, faster triage is becoming one of the most important in this increasingly specialized world.

With the growth in knowledge, “there is really no way to be an expert across all diseases in child neurology,” Dr. Bodensteiner said. “As physicians become increasingly insulated in their areas of expertise, I think there needs to be a greater emphasis on communication and collaboration.”

To some degree, this type of specialization has always existed, but Dr. Bodensteiner said the intensification of this trend is among the ways the field has most evolved over the past few decades. In inherited diseases that affect early child development, working together for a prompt diagnosis has assumed a new level of urgency.

For understanding the evolution in child neurology over the past 30 years, it would make sense to start with the science, particularly genetics, that have led to treatments and even cures for numerous inherited diseases over that time. When John Bodensteiner, MD, a pillar in the field of child neurology, was asked, he started with something different.

Parent advocacy accelerates advances in rare pediatric diseases

For the progress in many of the rare diseases seen by child neurologists in the last few decades, Dr. Bodensteiner first acknowledged parent support. “The concept was simple initially. For so many of these relatively rare diseases, like the Rett and Sturge-Weber syndromes, parents were learning of them for the first time. The support groups helped parents understand they were not alone. But it then evolved,” recalled Dr. Bodensteiner, who has been a professor of pediatrics and neurology at numerous institutions, most recently the Mayo Clinic in Rochester, Minn.

Many of these support groups first formed, or at least gained momentum, in the 1990s. “As the support groups grew, the members expanded their role to support research, in addition to supporting each other. They ended up volunteering their own data, providing more information about the epidemiology and disease course. They offered tissue samples for experimental studies. They enrolled their children in trials. And they raised funds,” Dr. Bodensteiner explained.

The impact of this advocacy has been enormous, according to Dr. Bodensteiner. As an expert in neuromuscular diseases, he worked directly with several of these groups.

Dr. John Bodensteiner

Although the growth in parent advocacy took place in parallel with major advances in genetics that were driving new insights into disease pathophysiology, Dr. Bodensteiner characterized parent advocates as important partners in accelerating the transition of new information to clinical utility. He suggested that there is little doubt about the importance of their role in moving the science forward by drawing attention to rare disorders that had few, if any, treatment options at the time the advocacy groups were formed.

Since the 1990s, the list of childhood neurologic diseases for which there has been meaningful progress is long. Dr. Bodensteiner selected several examples. For Rett syndrome, key molecular mechanisms have now been isolated, providing meaningful targets that show potential for treatment. For spinal muscular atrophy (SMA), therapies have become available, one of which involves gene replacement that appears to provide cure if initiated early in life. For tuberous sclerosis complex (TSC), gene targets are showing strong promise for controlling seizures and other TSC manifestations.

It has also to be acknowledged that much of the ongoing expansion in knowledge taking place across diseases in pediatric neurology would have taken place with or without parent support. Dr. Bodensteiner singled out seizure disorders only as an illustration. “In the various forms of epilepsy, we now understand mechanisms in much greater detail than we did even a decade ago, let alone 30 years ago,” Dr. Bodensteiner said. In the context of the seizure medicines once widely employed on an empirical basis, “we now often have a clearer picture of why one drug works and not another.”
 

 

 

Growing pains: Child neurology evolves from a subspecialty to a specialty

Until about 10 years ago, child neurology was a subspecialty, variably placed within the departments of pediatrics or neurology based on institution. The decision to elevate child neurology to its own specialty solved some issues but created others, according to Dr. Bodensteiner.

“The initial problem was there was no immediate funding mechanism of residency slots and training,” Dr. Bodensteiner explained. The issue was particularly acute at smaller centers that had been able to support a subspecialty within another department but struggled with a new autonomous unit.

So far, the training requirements for specializing in child neurology remain largely unchanged. Clinical training requires 2 years of straight pediatrics, 1 year of adult neurology, 1 year of basic neurological science,” and 1 year of child neurology, but Dr. Bodensteiner said it might be time to reconsider. He pointed out that neurologists in general and child neurologists specifically are becoming increasingly focused in one area of expertise, such as epilepsy, neuromuscular diseases, and neurodevelopmental delay.

“It can be argued that a few months spent in a dementia clinic during training might not be the best use of time for a child neurologist working in congenital neurological diseases,” he said.

One consequence of the increasing degree of specialization in neurology overall, not just child neurology, has been the changes in recertification, according to Dr. Bodensteiner. Following a model used in other specialties, recertification in child neurology was initially based on an every-10-year examination. Ultimately, this was recognized as inconsistent with the target of keeping clinicians up to date.

“In general, I think that a lot of people waited for 9.5 years before cramming for an examination that was not necessarily relevant to the area in which they were working,” Dr. Bodensteiner said.

The revised process, carried out on an every-3-year cycle, involves board-guided review of the medical literature in 10 topic areas. Child neurologists can elect an article in any of the topic areas, but to complete their recertification process they must read articles in eight of these areas. Dr. Bodensteiner said that this approach has been more popular and is presumably more useful for staying abreast of developments.
 

Increased specialization necessitates collaboration

The radical increase in specialization in child neurology, like neurology in general, has been a necessary consequence of an avalanche of new information as advances in the field accelerate, but Dr. Bodensteiner cautioned that it is important for those working in these specialized areas to collaborate with others outside of their field of expertise.

“We cannot recognize what we do not know,” Dr. Bodensteiner said. If subspecialization within neurology is critical to stay current with rapid advances in very different diseases, then it also means that clinicians at every level, including within the field of child neurology, need to know when to collaborate or refer to ensure early diagnosis in challenging cases.

“Epileptologists have been trying for years to make it widely known that patients resistant to standard medications deserve referral, but I think this is increasingly true across domains,” Dr. Bodensteiner said. Neurology and child neurology are not alone, but the window of opportunity for effective intervention in children with a progressive disease might be particularly limited.

“The point is that this is more of a risk than it was 20 years ago,” said Dr. Bodensteiner, referring to the growth in new therapies. He cited data suggesting that a causative gene mutation can be identified in about 60% of rare diseases, which is a relatively new phenomenon. Of advances to improve outcomes, faster triage is becoming one of the most important in this increasingly specialized world.

With the growth in knowledge, “there is really no way to be an expert across all diseases in child neurology,” Dr. Bodensteiner said. “As physicians become increasingly insulated in their areas of expertise, I think there needs to be a greater emphasis on communication and collaboration.”

To some degree, this type of specialization has always existed, but Dr. Bodensteiner said the intensification of this trend is among the ways the field has most evolved over the past few decades. In inherited diseases that affect early child development, working together for a prompt diagnosis has assumed a new level of urgency.

Publications
Publications
Topics
Article Type
Sections
Disallow All Ads
Content Gating
No Gating (article Unlocked/Free)
Alternative CME
Disqus Comments
Default
Use ProPublica
Hide sidebar & use full width
render the right sidebar.
Conference Recap Checkbox
Not Conference Recap
Clinical Edge
Display the Slideshow in this Article
Medscape Article
Display survey writer
Reuters content
Disable Inline Native ads
WebMD Article